by Sebastian Kohlstädt 1,2,Michael Vynnycky 1,3,* andStephan Goeke 41Division of Processes, Department of Materials Science and Engineering, KTH Royal Institute of Technology, Brinellvägen 23, 100 44 Stockholm, Sweden2Volkswagen AG—Division of Components Manufacturing, Dr. Rudolf-Leiding-Platz 1, 34225 Baunatal, Germany3Department of Mathematics and Statistics, University of Limerick, Limerick V94 T9PX, Ireland4Institute of Mechanics, Kassel University, Mönchebergstr. 7, 34125 Kassel, Germany*Author to whom
Sang-SooShina, Sang-KeeLeeb, Dae-KyeomKimc, BinLeecaR&D Center, Oh-Sung Tech Co. Ltd., Siheung, 15112, Republic of KoreabDepartment of Advanced Material Application, Daegu Campus of Korea Polytecnic, Daegu, 41765, Republic of KoreacKorea Institute for Rare Metals, Korea Institute of Industrial Technology, Incheon, 21999, Republic of Korea Abstract The cooling efficiency of aluminum die-casting molds is critical to prevent soldering,
Mingfan Qi a,∗, Yonglin Kanga, Bing Zhoua, Wanneng Liaoa, Guoming Zhua, Yangde Li b,Weirong Li ba School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China b Dongguan EONTEC Corporation, Ltd., Dongguan 523662, China Abstract A simplified process, namely forced convection stirring (FCS), was proposed to prepare four differentsemisolid slurries
Yung-Kuang Yang and Chorng-Jyh Tzeng Keywords: ANOVA, AZ91D, Die-casting, Taguchi method, Stress–strain. Introduction Magnesium and its alloys are becoming increasingly important as structural materials for applications in which weight reduction is critical, because of their low density and high stiffness-to-weight ratio. Popular applications include automotive, industrial, materials-handling, and aerospace equipment such as automotive pulleys, cog-tooth
Bok-Hyun Kang*, Ki-Young KimKorea University of Technology and Education 코어드 와이어 피딩에 의한 Cu 용탕에의 합금 첨가 시 효율 평가 Abstract To add alloying elements into a pure copper melt, the wire-feeding efficiency of cored (alloy containing) wire was evaluated using a commercial, computational fluid-dynamics program. The model design was based on an industrial-scale production
Yuncan Tian, Dongye Yang, Mengqi Jiang, and Bo HeResearch Center of High-Temperature Alloy Precision Forming, School of Materials Engineering, Shanghai University ofEngineering Science, Shanghai 201620, China International Journal of Metalcasting volume 15, pages259–270 (2021)Cite this article Abstract Automobile steering knuckle is an important part of the steering system, which is subjected to significant impacts and loads during its
Effect of vacuum annealing and characterization of diecast ADC12 aluminum alloys Jo, Jihoon (Department of Materials Science and Engineering, Chosun University) ; Ham, Daseul (Department of Materials Science and Engineering, Chosun University) ; Oh, Seongchan (Department of Materials Science and Engineering, Chosun University) ; Cha, Su Yeon (Department of Materials Science and Engineering, Chosun University) ; Kang, Hyon Chol (Department
by Filip Nikolić 1,2,3,Ivan Štajduhar 4,* andMarko Čanađija 1,*1Department of Engineering Mechanics, Faculty of Engineering, University of Rijeka, 51000 Rijeka, Croatia2Research and Development Department, CIMOS d.d. Automotive Industry, 6000 Koper, Slovenia3CAE Department, Elaphe Propulsion Technologies Ltd., 1000 Ljubljana, Slovenia4Department of Computer Engineering, Faculty of Engineering, University of Rijeka, 51000 Rijeka, Croatia*Authors to whom correspondence should be addressed. Abstract This paper
EwanLordanaYijieZhangaKunDouabAlainJacotacChrysoulaTzileroglouaPaulBlakedZhongyunFanaaBrunel Centre for Advanced Solidification Technology, Brunel University London, Uxbridge, Middlesex, UB83PH, UKbSchool of Metallurgy and Environment, Central South University, Changsha, 410083, Hunan, ChinacCalcom ESI SA, SwitzerlanddJaguar Land Rover Ltd, Coventry, CV3 4LF, UK Abstract This article unmasks the probabilistic nature of high-pressure die casting; specifically, the cause of scatter in the tensile ductility of
Abstract Jie WeiCorporate Product Technology Unit, Fujitsu Limited , Kawasaki , Japan Cooling technologies that address high-density and asymmetric heat dissipation in CPU packages of high-performance servers are discussed. Thermal management schemes and the development of associated technologies are reviewed from a viewpoint of industrial application. Particular attention is directed to heat conduction in the