Category Archives: Salt Core-E

Fig. 7. Cost and mass scaling for the motor subsystems to estimate motor costs for the AHSS and Al lightweight design.

Improvements in electric vehicle battery technology influence vehicle lightweighting and material substitution decisions

Joshua Thomas JamesonBurda, Elizabeth A.Moorea, HeshamEzzatbRandolphKirchainaRichardRothaa Materials Systems Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Ave, E19-695, Cambridge, MA 02139, United Statesb WorldAuto Steel/American Iron and Steel Institute, 2000 Town Center, Suite 320, Southfield, MI 48075, United States Highlights Global demand for and adoption of battery electric vehicles is on the rise. To achieve increased

Read More

Fig. 3. Dies of the example structures used in gravity casting.

Approach on simulation of solidification and shrinkage of gravity cast salt cores

AndreasSchillingaKaiSalscheideraHenrikRuschebHrvojeJasakbMartinFehlbieraSebastianKohlstädtcaUniversity of Kassel, Department of Foundry Technology, Kurt-Wolters-Str. 3, 34125 Kassel, GermanybWikki GmbH, Ziegelbergsweg 68, 38855 Wernigerode, GermanycVolkswagen AG, Division of components manufacturing – Business Unit Casting Dr. Rudolf-Leiding-Platz 1, 34225 Baunatal, Germany Abstract In this work, a toolchain for the solidification and the shrinkage of cast salt cores used in high-pressure die casting is

Read More

Figure 6. The pressure field at the times of impact and immediately afterwards

On the CFD Modelling of Slamming of the Metal Melt in High-Pressure Die Casting Involving Lost Cores

by Sebastian Kohlstädt 1,2,Michael Vynnycky 1,3,* andStephan Goeke 41Division of Processes, Department of Materials Science and Engineering, KTH Royal Institute of Technology, Brinellvägen 23, 100 44 Stockholm, Sweden2Volkswagen AG—Division of Components Manufacturing, Dr. Rudolf-Leiding-Platz 1, 34225 Baunatal, Germany3Department of Mathematics and Statistics, University of Limerick, Limerick V94 T9PX, Ireland4Institute of Mechanics, Kassel University, Mönchebergstr. 7, 34125 Kassel, Germany*Author to whom

Read More

Fig. 2. Baseline and Optimized plunger speed profiles.

On the probabilistic nature of high-pressure die casting

EwanLordanaYijieZhangaKunDouabAlainJacotacChrysoulaTzileroglouaPaulBlakedZhongyunFanaaBrunel Centre for Advanced Solidification Technology, Brunel University London, Uxbridge, Middlesex, UB83PH, UKbSchool of Metallurgy and Environment, Central South University, Changsha, 410083, Hunan, ChinacCalcom ESI SA, SwitzerlanddJaguar Land Rover Ltd, Coventry, CV3 4LF, UK Abstract This article unmasks the probabilistic nature of high-pressure die casting; specifically, the cause of scatter in the tensile ductility of

Read More

Fig. 2. Comparison of strengths of salt cores squeezed and shot from different salt kinds (mean value of 6 cores; fraction 0.063 – 1.0 mm; A = squeezed cores (104 MPa); B = shot ones (binder Na – water glass 7.5 – 8.0 bars)

Lost Cores for High-Pressure Die Casting

P. Jelínek, E. Adámková*Department of Metallurgy and Foundry Engineering, VŠB-Technical University of Ostrava, listopadu 2172/15, 708 33 Ostrava – Poruba, Czech Republic*Corresponding author. E-mail address: eliska.adamkova@vsb.czReceived 04.03.2014; accepted in revised form 30.03.2014 Abstract Development of salt cores prepared by high-pressure squeezing and shooting with inorganic binders has shown a high potential of the given technology

Read More

Sources of Porosity in Die Casting

How to Control Porosity With Processing Parameters

The porosity of die cast parts is one of the primary concerns of buyers and designers. In die casting, porosity refers to the air pockets, small voids, or pores found within a metal part. Too much porosity in a part can be dangerous as it can compromise the structural integrity of the component. Porosity can

Read More

Schematic of a hot-chamber machine

Hot Chamber Die Casting Method vs Cold Chamber Die Casting Method

Depending on the project, aluminium casting is carried out through a “hot” or “low” process. Diecasting is one of the most economical and fast molding processes. The advantage of this production process is that hundreds of thousands of castings can be produced relatively quickly using a single mold. All parts produced are of uniform quality

Read More

measuring can be done three ways

How to Avoid Die Casting Defects

Reference : https://diecasting.com/blog/how-to-avoid-die-casting-defects/ The production of die-castings includes a number of steps, any of which can result in a defective casting if not properly executed. Since repairing bad castings can be expensive, it’s important to avoid defect occurrences if possible. We’ll look at some common to areas of  die casting defects — including wall thickness

Read More

다이 캐스팅의 대부분을 차지하는 주요 합금

HPDC in the Automotive Industry

Origin Article : https://www.diecastingdesign.org/blog/advancements-in-die-casting/ HPDC in the Automotive Industry There are several reasons HPDC is a popular method within the automotive industry. For starters, automotive designers quickly realized the potential in HPDC based on its ability to successfully achieve crash and safety-critical application requirements. HPDC also helps the growing interest in overall improved consumption by

Read More

FLOW-3D Courtesy Littler Diecasting Corporation, (www.flow3d.co.kr)

CFD for die casting processes

Computer simulation techniques for die casting processes Die casting is the go-to manufacturing technology for mass-produced, lightweight components made from metal, predominantly Aluminum and Magnesium alloys. Most of the high pressure die casted parts are manufactured for the automotive industry but consumer electronics are also making use of this technology. High Pressure Die Casting (HPDC)

Read More