Accurate Simulation of Complex Temperature Field in Counter-Pressure Casting Process Using A356 Aluminum Alloy

Yuncan Tian, Dongye Yang, Mengqi Jiang, and Bo He
Research Center of High-Temperature Alloy Precision Forming, School of Materials Engineering, Shanghai University of
Engineering Science, Shanghai 201620, China

International Journal of Metalcasting volume 15, pages259–270 (2021)Cite this article

Abstract

Automobile steering knuckle is an important part of the steering system, which is subjected to significant impacts and loads during its operation. Generally, cast aluminum steering knuckles are usually produced using some type of enhanced low-pressure casting process, like counter-pressure casting. Compared with aluminum forging and sand cast ductile iron, it can improve the production speed and achieve the adequate casting quality. In this study, various methodologies such as dynamic thermomechanical analysis, differential scanning calorimetry, and the laser flash method were employed to study the thermophysical properties of AlSi7Mg0.3. Further, the physical model of a counter-pressure casting system with an aluminum interior was established based on the combination of the tested and the theoretical properties of aluminum; this was achieved with the consideration of the presence of other factors including rapid solidification. The temperature field of the system was computed and verified by thermocouples at six different points during the tooling and the shrinkage simulation. It was observed that the plot shape of the computed temperatures and that of the simulated ones correlated; further, the difference between the peaks and the valleys was controlled to be 3% on an average, with the maximum variation of 7% at only one point. Moreover, all the predicted shrinkages were verified by the casting. This study provides a solid foundation for facilitating the simulation of the morphologies of the microstructure.

Keywords : aluminum alloy; counter-pressure casting; finite element simulation; thermophysical properties; temperature field; shrinkage and porosity prediction

This is a preview of subscription content, access via your institution.

Korea

자동차 조향 너클은 조향 시스템의 중요한 부분으로 작동 중에 상당한 충격과 부하를 받습니다. 일반적으로 주조 알루미늄 스티어링 너클은 일반적으로 역압 주조와 같은 향상된 저압 주조 공정을 사용하여 생산됩니다. 알루미늄 단조 및 사주 연성 철에 비해 생산 속도를 향상시키고 적절한 주조 품질을 얻을 수 있습니다.

이 연구에서는 AlSi7Mg0.3의 열 물리적 특성을 연구하기 위해 동적 열역학 분석, 시차 주사 열량계 및 레이저 플래시 방법과 같은 다양한 방법론을 사용했습니다. 또한 알루미늄 내부의 역압 주조 시스템의 물리적 모델은 테스트 된 알루미늄의 이론적 특성과 조합을 기반으로 설정되었습니다.

이것은 급속 응고를 포함한 다른 요인의 존재를 고려하여 달성 되었습니다. 시스템의 온도 필드는 툴링 및 수축 시뮬레이션 동안 6 개의 서로 다른 지점에서 열전대에 의해 계산되고 검증되었습니다. 계산 된 온도의 플롯 모양과 시뮬레이션 된 온도의 플롯 모양이 서로 연관되어 있음이 관찰되었습니다.

또한 봉우리와 계곡 사이의 차이는 평균 3 %로 제어되었으며 최대 변동은 한 지점에서만 7% 였습니다. 또한 모든 예상 수축은 주조에 의해 확인되었습니다. 이 연구는 미세 구조의 형태에 대한 시뮬레이션을 용이하게 하기 위한 견고한 기반을 제공합니다.

References

  1. 1.A. Biswas, D.J. Siegel, D.N. Seidman, Compositional evolution of Q-phase precipitates in an aluminum alloy. Acta Mater. 75(9), 322–336 (2014)CAS Article Google Scholar 
  2. 2.J.L. Murray, A.J. Mcalister, The Al–Si (aluminum–silicon) system. Bull. Alloy Phase Diagr. 5(1), 74 (1984)CAS Article Google Scholar 
  3. 3.F. Hsu, P. Chen, H. Lin, C. Wu, Boiling phenomena of cooling water in the permanent mold. Int. J. Metalcasting 9(2), 31–40 (2015)Article Google Scholar 
  4. 4.D. Sui, Z. Cui, R. Wang, S. Hao, Q. Han, Effect of cooling process on porosity in the aluminum alloy automotive wheel during low-pressure die casting. Int. J. Metalcasting 10(1), 32–42 (2016)Article Google Scholar 
  5. 5.Q.S. Yan, H. Yu, Z.F. Xu, B.W. Xiong, C.C. Cai, Effect of holding pressure on the microstructure of vacuum counter-pressure casting aluminum alloy. J. Alloy. Compd. 501(2), 352–357 (2010)CAS Article Google Scholar 
  6. 6.J. Jorstad, D. Apelian, Pressure assisted processes for high integrity aluminum castings. Int. J. Metalcasting 2(1), 19–39 (2008)CAS Article Google Scholar 
  7. 7.L.M. Galantucci, L. Tricarico, A computer aided approach for the simulation of the directional solidification process for gas turbine blades. J. Mater. Process. Technol. 77(1–3), 160–165 (1998)Article Google Scholar 
  8. 8.G. Ruff, T.E. Prucha, J. Barry, D. Patterson, Pressure counter pressure casting (PCPC) for automotive aluminum structural components. SAE Trans. 110, 360–365 (2001)Google Scholar 
  9. 9.L. Archer, R.A. Hardin, C. Beckermann, Counter-gravity sand casting of steel with pressurization during solidification. Int. J. Metalcasting 12(3), 596–606 (2018)CAS Article Google Scholar 
  10. 10.D. Moore, K. Mohler, X. Wan, Mandating IHTC through casting simulation. Modern Casting 95(8), 30–33 (2005)Google Scholar 
  11. 11.P.W. Cleary, J. Ha, V. Ahuja, High pressure die casting simulation using smoothed particle hydrodynamics. Cast Metals 12(6), 335–355 (2000)Article Google Scholar 
  12. 12.H. Shen, R.A. Hardin, R. Mackenzie, C. Beckermann, Simulation using realistic spray cooling for the continuous casting of multi-component steel. J. Mater. Sci. Technol. 18(4), 311–314 (2002)CAS Google Scholar 
  13. 13.W. Tu, X. Zhang, H. Shen, B. Liu, Numerical simulation on multiple pouring process for a 292 t steel ingot. China Foundry 11(1), 52–58 (2014)CAS Google Scholar 
  14. 14.B. Wang, J.Y. Zhang, X.M. Li, W.H. Qi, Simulation of solidification microstructure in twin-roll casting strip. Comput. Mater. Sci. 49(1), S135–S139 (2010)CAS Article Google Scholar 
  15. 15.E. Anglada, A. Meléndez, L. Maestro, I. Domiguez, Adjustment of numerical simulation model to the investment casting process. Proc. Eng. 63(1784), 75–83 (2013)CAS Article Google Scholar 
  16. 16.Z. Li, Q. Xu, B. Liu, Microstructure simulation on recrystallization of an as-cast nickel based single crystal superalloy. Comput. Mater. Sci. 107, 122–133 (2015)CAS Article Google Scholar 
  17. 17.Z. Li, Q. Xu, B. Liu, Simulation and experimental study of recrystallization kinetics of nickel based single crystal superalloys. Mater. Today Proc. 2(2), S440–S452 (2015)Article Google Scholar 
  18. 18.Y. Du, K. Li, P. Zhao, M. Yang, K. Cheng, M. Wei et al., Integrated computational materials engineering (ICME) for developing aluminum alloys. J. Aeronaut. Mater. 37(1), 1–17 (2017)Google Scholar 
  19. 19.M. Jolly, Casting simulation: how well do reality and virtual casting match? State of the art review. Cast Metals 14(5), 303–313 (2002)Article Google Scholar 
  20. 20.H.J. Kwon, H.K. Kwon, Computer aided engineering (CAE) simulation for the design optimization of gate system on high pressure die casting (HPDC) process. Robot. Comput. Integr. Manuf. 55, 147–153 (2019)Article Google Scholar 
  21. 21.R. Kopp, F.D. Philipp, Physical parameters and boundary conditions for the numerical simulation of hot forming processes. Steel Res. Int. 63(9), 392–398 (1992)CAS Article Google Scholar 
  22. 22.P.I. Manilal, D.P.K. Singh, Z.W. Chen, Computer modeling and experimentation for thermal control of dies in permanent mold casting. Trans. Am. Foundry Soc. 111, 125–135 (2003)CAS Google Scholar 
  23. 23.T. Vossel, N. Wolff, B. Pustal, A. Bhrig-Polaczek, Influence of die temperature control on solidification and the casting process. Int. J. Metalcasting (2019). https://doi.org/10.1007/s40962-019-00391-4Article Google Scholar 
  24. 24.C. Ying, X. Tang, K. Zhao, H. Ping, Y. Wu, Investigation of the factors influencing the interfacial heat transfer coefficient in hot stamping. J. Mater. Process. Technol. 228, 25–33 (2016)Article Google Scholar