This paper summary is based on the article An Experimental and Computational Study on the Thermal Performance of Phase Change Material Heatsink Assemblies presented at the ASME and Applied Thermal Engineering 1. Overview: 2. Research Background: 3. Research Purpose and Research Questions: 4. Research Methodology 5. Main Research Results: 6. Conclusion and Discussion: 7. Future
1. Overview: 2. Research Background: The increasing need to reduce CO2 and SO2 emissions due to climate change necessitates improvements in electric vehicle efficiency. While Brushless Direct Current (BLDC) motors are widely used in EVs due to their high power density, efficiency, and reliability, their operational lifespan is limited by high internal heat generation and
1. Overview: 2. Background: The paper begins by highlighting the increasing concentration of greenhouse gases (GHGs) since the 1900s, primarily due to the combustion of fossil fuels in internal combustion engines (ICEs). Transportation is a significant contributor to these emissions. Electric Vehicles (EVs) and Hybrid Electric Vehicles (HEVs) are presented as promising solutions to reduce
Joshua Thomas JamesonBurda, Elizabeth A.Moorea, HeshamEzzatbRandolphKirchainaRichardRothaa Materials Systems Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Ave, E19-695, Cambridge, MA 02139, United Statesb WorldAuto Steel/American Iron and Steel Institute, 2000 Town Center, Suite 320, Southfield, MI 48075, United States Highlights Global demand for and adoption of battery electric vehicles is on the rise. To achieve increased