Recent progress on cast magnesium alloy and components

Hecong XieHua ZhaoXin GuoYongfeng LiHengrui HuJiangfeng SongBin Jiang & Fusheng Pan

Abstract

The application of cast magnesium alloy components is increasing in recent years, especially in the new energy automotive and transportation industries. As component application scenarios become increasingly complex, the performance of cast magnesium alloys needs to be further enhanced. Significant progress has been made in casting technology and the design of cast magnesium alloys. In addition, some new application of cast magnesium alloy components is also developed recently. This paper provides an overview of the current status of high-performance cast magnesium alloys, including the alloy design, casting techniques, control of casting defects, and applications of cast magnesium alloys. Based on the issues and challenges identified here, some future research directions on cast magnesium alloys are suggested.

  1. Niranjan CA, Raghavendra T, Rao MP et al (2023) Magnesium alloys as extremely promising alternatives for temporary orthopedic implants—a review. J Magnes Alloys 11:2688–2718. https://doi.org/10.1016/j.jma.2023.08.002
  2. Lei Y, Wang Z, Kang G (2022) Experimental investigation on uniaxial cyclic plasticity of cast AZ91 magnesium alloy. J Magnes Alloys 11:3255–3271. https://doi.org/10.1016/j.jma.2021.12.001
  3. Lee S, Park Y, Go J, et al (2023) Elucidating the evolution of long-period stacking ordered phase and its effect on deformation behavior in the as-cast Mg-6Gd-1Zn-0.6Zr alloy 11:2801–2810. J Magnes Alloys. https://doi.org/10.1016/j.jma.2023.07.012
  4. Ouyang S, Yang G, Qin H, Wang C, Luo S, Jie W (2022) Effect of the precipitation state on high temperature tensile and creep behaviors of Mg-15Gd alloy. J Magnes Alloys 10:3459–3469. https://doi.org/10.1016/j.jma.2021.06.016
  5. Zhou W, Li Z, Li D et al (2022) Comparative study of corrosion behaviors of die cast LA42 and AZ91 alloys. J Magnes Alloys. https://doi.org/10.1016/j.jma.2022.10.022
  6. Zhou T, Li Y, Guo F, Li Q, Jia Z, Liu D (2023) Achieving high strength-ductility synergy in Mg-6Sn-3Zn-0.3Zr (wt.%) alloy via a combination of casting, pre-treatment and hot extrusion. J Magnes Alloys. https://doi.org/10.1016/j.jma.2023.08.022
  7. Yu Z, Xu X, Shi K et al (2023) Development and characteristics of a low rare-earth containing magnesium alloy with high strength-ductility synergy. J Magnes Alloys 11:1629–1642. https://doi.org/10.1016/j.jma.2022.01.005
  8. Yang Y, Xiong X, Chen J, Peng X, Chen D, Pan F (2023) Research advances of magnesium and magnesium alloys worldwide in 2022. J Magnes Alloys 11:2611–2654. https://doi.org/10.1016/j.jma.2023.07.011
  9. Song J, Chen J, Xiong X, Peng X, Chen D, Pan F (2022) Research advances of magnesium and magnesium alloys worldwide in 2021. J Magnes Alloys 10:863–898. https://doi.org/10.1016/j.jma.2022.04.001
  10. Bai Y, Ye B, Wang L et al (2021) A novel die-casting Mg alloy with superior performance: study of microstructure and mechanical behavior. Mater Sci Eng A 802:140655. https://doi.org/10.1016/j.msea.2020.140655
  11. Polmear I, StJohn D, Nie J-F, Qian M (2017) Light alloys: metallurgy of the light metals. Butterworth-Heinemann, Oxford
  12. Jung Y-G, Yang W, Kim YJ et al (2021) Effect of Ca addition on the microstructure and mechanical properties of heat-treated Mg-6.0Zn-1.2Y-0.7Zr alloy. J Magnes Alloys 9:1619–1631. https://doi.org/10.1016/j.jma.2021.01.010
  13. Jang H-S, Lee J-K, Tapia AJSF, Kim NJ, Lee B-J (2022) Activation of non-basal slip in multicomponent Mg alloys. J Magnes Alloys 10:585–597. https://doi.org/10.1016/j.jma.2021.03.007
  14. Lin H (2018) Research and Development of Mg-Al BasedCasting Magnesium Alloys with Low Cost. PhD Dissertation, Chongqing University.
  15. Wu G, Chen Y, Ding W (2016) Current research, application and future prospect of magnesium alloys in aerospace industry. Manned Spaceflight 22:281–292. https://doi.org/10.16329/j.cnki.zrht.2016.03.002
  16. Zhang D, Zhang D, Bu F et al (2017) Effects of minor Sr addition on the microstructure, mechanical properties and creep behavior of high pressure die casting AZ91-0.5 RE based alloy. Mater Sci Eng A 693:51–59. https://doi.org/10.1016/j.msea.2017.03.055
  17. Yang Y, Liu Y, Qin S, Fang Y (2006) High cycle fatigue properties of die-cast magnesium alloy AZ91D with addition of different concentrations of cerium. J Rare Earths 24:591–595. https://doi.org/10.1016/S1002-0721(06)60170-1
  18. Wei J, Wang Q, Cai H, Ebrahimi M, Lei C (2022) Microstructure and impact behavior of Mg-4Al-5RE-xGd cast magnesium alloys. J Magnes Alloys. https://doi.org/10.1016/j.jma.2022.06.014
  19. Dargusch M, Shi Z, Zhu H, Atrens A, Song G (2021) Microstructure modification and corrosion resistance enhancement of die-cast Mg-Al-Re alloy by Sr alloying. J Magnes Alloys 9:950–963. https://doi.org/10.1016/j.jma.2020.09.008
  20. Lv S, Lü X, Meng F, et al. (2020) Microstructures and mechanical properties in a Gd-modified high-pressure die casting Mg–4Al–3La−0.3 Mn alloy. Materi Sci Eng A 773: 138725. https://doi.org/10.1016/j.msea.2019.138725
  21. Zhang J, Leng Z, Zhang M, Meng J, Wu R (2011) Effect of Ce on microstructure, mechanical properties and corrosion behavior of high-pressure die-cast Mg–4Al-based alloy. J Alloy Compd 509:1069–1078. https://doi.org/10.1016/j.jallcom.2010.09.185
  22. Evangelista E, Gariboldi E, Lohne O, Spigarelli S (2004) High-temperature behaviour of as die-cast and heat treated Mg–Al–Si AS21X magnesium alloy. Mater Sci Eng A 387–389:41–45. https://doi.org/10.1016/j.msea.2004.02.077
  23. Yang Q, Bu F, Meng F et al (2015) The improved effects by the combinative addition of lanthanum and samarium on the microstructures and the tensile properties of high-pressure die-cast Mg–4Al-based alloy. Mater Sci Eng A 628:319–326. https://doi.org/10.1016/j.msea.2015.01.050
  24. Yang Q, Guan K, Bu F et al (2016) Microstructures and tensile properties of a high-strength die-cast Mg–4Al–2RE–2Ca–0.3 Mn alloy. Mater Charact 113:180–188. https://doi.org/10.1016/j.matchar.2016.01.024
  25. Zhang J, Ke L, Fang D et al (2009) Microstructures, mechanical properties and corrosion behavior of high-pressure die-cast Mg–4Al–0.4Mn–xPr (x=1, 2, 4, 6) alloys. J Alloy Compd 480:810–819. https://doi.org/10.1016/j.jallcom.2009.02.090
  26. Zhang J, Wang J, Qiu X et al (2008) Effect of Nd on the microstructure, mechanical properties and corrosion behavior of die-cast Mg–4Al-based alloy. J Alloy Compd 464:556–564. https://doi.org/10.1016/j.jallcom.2007.10.056
  27. Zhang J, Yu P, Liu K, Fang D, Tang D, Meng J (2009) Effect of substituting cerium-rich mischmetal with lanthanum on microstructure and mechanical properties of die-cast Mg–Al–RE alloys. Mater Des 30:2372–2378. https://doi.org/10.1016/j.matdes.2008.10.028
  28. Braszczyńska-Malik K (2017) Effect of high-pressure die casting on structure and properties of Mg-5Al-0.4 Mn-xRE (x= 1, 3 and 5 wt%) experimental alloys. J Alloy Compd 694:841–847. https://doi.org/10.1016/j.jallcom.2016.10.033
  29. Zhang J, Zhang M, Meng J, Wu R, Tang D (2010) Microstructures and mechanical properties of heat-resistant high-pressure die-cast Mg–4Al–xLa–0.3 Mn (x= 1, 2, 4, 6) alloys. Mater Sci Eng A 527:2527–2537. https://doi.org/10.1016/j.msea.2009.12.048
  30. Zhang J, Liu S, Leng Z, Zhang M, Meng J, Wu R (2011) Microstructures and mechanical properties of heat-resistant HPDC Mg–4Al-based alloys containing cheap misch metal. Mater Sci Eng A 528:2670–2677. https://doi.org/10.1016/j.msea.2010.12.031
  31. Yang Y, Li X (2010) Influence of neodymium on high cycle fatigue behavior of die cast AZ91D magnesium alloy. J Rare Earths 28:456–460. https://doi.org/10.1016/S1002-0721(09)60133-2
  32. Zhang J, Niu X, Qiu X et al (2009) Effect of yttrium-rich misch metal on the microstructures, mechanical properties and corrosion behavior of die cast AZ91 alloy. J Alloy Compd 471:322–330. https://doi.org/10.1016/j.jallcom.2008.03.089
  33. Cui X-P, Liu H-F, Jian M, Zhang D-P (2010) Microstructure and mechanical properties of die-cast AZ91D magnesium alloy by Pr additions. Trans Nonferrous Metals Soc China 20:s435–s438. https://doi.org/10.1016/S1003-6326(10)60513-4
  34. Hirai K, Somekawa H, Takigawa Y, Higashi K (2005) Effects of Ca and Sr addition on mechanical properties of a cast AZ91 magnesium alloy at room and elevated temperature. Mater Sci Eng A 403:276–280. https://doi.org/10.1016/j.msea.2005.05.028
  35. Feng W, Yue W, Mao P-L, Yu B-Y, Guo Q-Y (2010) Effects of combined addition of Y and Ca on microstructure and mechanical properties of die casting AZ91 alloy. Trans Nonferrous Metals Soc China 20:s311–s317. https://doi.org/10.1016/S1003-6326(10)60489-X
  36. Yang Q, Wu X, Zhang W et al (2023) Microstructures and mechanical properties of an ultrathin wall high-pressure die casting Mg-8Zn-8Al (wt%) alloy. J Alloy Compd 936:168200. https://doi.org/10.1016/j.jallcom.2022.168200
  37. Liu Z, Zhou J, Yang L, Lai Y, Liu Y, Jin H (2023) Study on microstructure and properties of Mg-Al-Si-Ca alloy by heat treatment. J Alloy Compd 947:169431. https://doi.org/10.1016/j.jallcom.2023.169431
  38. Li Q, Wang Q, Wang Y, Zeng X, Ding W (2007) Effect of Nd and Y addition on microstructure and mechanical properties of as-cast Mg–Zn–Zr alloy. J Alloy Compd 427:115–123. https://doi.org/10.1016/j.jallcom.2006.02.054
  39. Lee JY, Lim HK, Kim DH, Kim WT, Kim DH (2007) Effect of volume fraction of qusicrystal on the mechanical properties of quasicrystal-reinforced Mg–Zn–Y alloys. Mater Sci Eng A 449:987–990. https://doi.org/10.1016/j.msea.2006.03.141
  40. Zengin H, Turen Y, Ahlatci H, Sun Y (2020) Microstructure, mechanical properties and corrosion resistance of as-cast and as-extruded Mg–4Zn–1La magnesium alloy. Rare Met 39:909–917. https://doi.org/10.1007/s12598-018-1045-7
  41. Meng F, Lv S, Yang Q et al (2022) Multiplex intermetallic phases in a gravity die-cast Mg−6.0Zn−1.5Nd−0.5Zr (wt%) alloy. J Magnes Alloys 10:209–223. https://doi.org/10.1016/j.jma.2020.10.005
  42. Wang J, Zhou H, Wang L, Zhu S, Guan S (2019) Microstructure, mechanical properties and deformation mechanisms of an as-cast Mg–Zn–Y–Nd–Zr alloy for stent applications. J Mater Sci Technol 35:1211–1217. https://doi.org/10.1016/j.jmst.2019.01.007
  43. Vital A, Angermann A, Dittmann R, Graule T, Töpfer J (2007) Highly sinter-active (Mg–Cu)–Zn ferrite nanoparticles prepared by flame spray synthesis. Acta Mater 55:1955–1964. https://doi.org/10.1016/j.actamat.2006.11.002
  44. Lotfpour M, Emamy M, Dehghanian C, Tavighi K (2017) Influence of Cu addition on the structure, mechanical and corrosion properties of cast Mg-2% Zn alloy. J Mater Eng Perform 26:2136–2150. https://doi.org/10.1007/s11665-017-2672-0
  45. Liu C, Chen X, Chen J, Atrens A, Pan F (2021) The effects of Ca and Mn on the microstructure, texture and mechanical properties of Mg-4 Zn alloy. J Magnes Alloys 9:1084–1097. https://doi.org/10.1016/j.jma.2020.03.012
  46. Luo Z, Zhang S (1993) Microstructures of Mg-Zr, Mg-Zn, and Mg-Zn-Zr alloys. Acta Metall Sin 29:30–36. https://doi.org/10.3321/j.issn:1000-324X.2000.04.015
  47. Nakanishi M, Mabuchi M, Saito N, Nakamura M, Higashi K (1998) Tensile properties of the ZK60 magnesium alloy produced by hot extrusion of machined chip. J Mater Sci Lett 17:2003–2005. https://doi.org/10.1023/A:1006668924650
  48. Jun J, Kim J, Park B, Kim K, Jung W (2005) Effects of rare earth elements on microstructure and high temperature mechanical properties of ZC63 alloy. J Mater Sci 40:2659–2661. https://doi.org/10.1007/s10853-005-2099-0
  49. Zhang L, Zhang Y, Zhang J, Zhao R, Xu C (2020) Effect of alloyed Mo on mechanical properties, biocorrosion and cytocompatibility of As-Cast Mg-Zn-Y-Mn alloys. Metal Sinica (English Letters) 33:500–513. https://doi.org/10.1007/s40195-019-00995-z
  50. Zhao R, Zhu W, Zhang J, Zhang L, Zhang J, Xu C (2020) Influence of Ni and Bi microalloying on microstructure and mechanical properties of as-cast low RE LPSO-containing Mg–Zn–Y–Mn alloy. Mater Sci Eng A 788:139594. https://doi.org/10.1016/j.msea.2020.139594
  51. Liu Y, Wen J, He J, Li H (2020) Enhanced mechanical properties and corrosion resistance of biodegradable Mg–Zn–Zr–Gd alloy by Y microalloying. J Mater Sci 55:1813–1825. https://doi.org/10.1007/s10853-019-04026-1
  52. Cheng P, Zhao Y, Lu R, Hou H (2018) Effect of the morphology of long-period stacking ordered phase on mechanical properties and corrosion behavior of cast Mg-Zn-Y-Ti alloy. J Alloy Compd 764:226–238. https://doi.org/10.1016/j.jallcom.2018.06.056
  53. Zhu S, Luo T, Zhang T, Li Y, Yang Y (2017) Effects of Cu addition on the microstructure and mechanical properties of as-cast and heat treated Mg-6Zn-4Al magnesium alloy. Mater Sci Eng A 689:203–211. https://doi.org/10.1016/j.msea.2017.02.061
  54. Xiao W, Jia S, Wang J, Wang J, Wang L (2008) Investigation on the microstructure and mechanical properties of a cast Mg–6Zn–5Al–4RE alloy. J Alloy Compd 458:178–183. https://doi.org/10.1016/j.jallcom.2007.03.118
  55. Ma T, Wang J, Cheng K et al (2022) The chemical environment and structural ordering in liquid Mg-Y-Zn system: An ab-initio molecular dynamics investigation of melt for the formation mechanism of LPSO structure. J Magnes Alloys. https://doi.org/10.1016/j.jma.2022.06.006
  56. Li J, Dong Z, Yi X, Wu D, Chen R (2023) Twin evolution in cast Mg-Gd-Y alloys and its dependence on aging heat treatment. J Magnes Alloys 11:2285–2298. https://doi.org/10.1016/j.jma.2021.09.023
  57. Fu P (2009) Study on the microstructure, mechanical properties and strengthen mechanism of Mg-Nd-Zn-Zr Alloys. PhD Dissertation, Shanghai Jiao Tong University.
  58. Meier JM, Caris J, Luo AA (2022) Towards high strength cast Mg-RE based alloys: phase diagrams and strengthening mechanisms. J Magnes Alloys 10:1401–1427. https://doi.org/10.1016/j.jma.2022.03.008
  59. Li D, Wang Q, Ding W (2006) Characterization of phases in Mg–4Y–4Sm–0.5 Zr alloy processed by heat treatment. Mater Sci Eng A 428:295–300. https://doi.org/10.1016/j.msea.2006.05.011
  60. Nie JF, Muddle BC (2000) Characterisation of strengthening precipitate phases in a Mg–Y–Nd alloy. Acta Mater 48:1691–1703. https://doi.org/10.1016/S1359-6454(00)00013-6
  61. Kamado S, Iwasawa S, Ohuchi K, Kojima Y, Ninomiya R (1992) Age hardening characteristics and high temperature strength of Mg-Gd and Mg-Tb alloys. Keikinzoku 42:727–733. https://doi.org/10.2464/jilm.42.727
  62. Eifert A, Thomas J, Rateick R Jr (1999) Influence of anodization on the fatigue life of WE43A-T6 magnesium. Scripta Mater 40:929–935. https://doi.org/10.1016/S1359-6462(99)00040-8
  63. Xie H, Liu Z, Liu X et al (2020) Microstructure, generation of intermetallic compounds and mechanical strengthening mechanism of as-cast Mg–4Y–xZn alloys. Mater Sci Eng A 797:139948. https://doi.org/10.1016/j.msea.2020.139948
  64. Lyu J, Kim J, Liao H et al (2020) Effect of substitution of Zn with Ni on microstructure evolution and mechanical properties of LPSO dominant Mg–Y–Zn alloys. Mater Sci Eng A 773:138735. https://doi.org/10.1016/j.msea.2019.138735
  65. Liu B, Zhang K, Han J et al (2015) Homogenization heat treatment of Mg–7.0 wt%Y–1.0 wt%Nd–0.5 wt%Zr alloy. Rare Metals, pp 1–6. https://doi.org/10.1007/s12598-015-0588-0
  66. Jiang Q, Lv X, Lu D, Zhang J, Hou B (2018) The corrosion behavior and mechanical property of the Mg–7Y–xNd ternary alloys. J Magnes Alloys 6:346–355. https://doi.org/10.1016/j.jma.2018.09.002
  67. Li J, He Z, Fu P, Wu Y, Peng L, Ding W (2016) Heat treatment and mechanical properties of a high-strength cast Mg–Gd–Zn alloy. Mater Sci Eng A 651:745–752. https://doi.org/10.1016/j.msea.2015.11.021
  68. Zhang S, Liu W, Gu X, Lu C, Yuan G, Ding W (2013) Effect of solid solution and aging treatments on the microstructures evolution and mechanical properties of Mg–14Gd–3Y–1.8Zn–0.5Zr alloy. J Alloy Compd 557:91–97. https://doi.org/10.1016/j.jallcom.2012.12.093
  69. Wu G, Wang C, Sun M, Ding W (2020) Recent developments and applications on high-performance cast magnesium rare-earth alloys. J Magnes Alloys 9:1–20. https://doi.org/10.1016/j.jma.2020.06.021
  70. Song J, She J, Chen D, Pan F (2020) Latest research advances on magnesium and magnesium alloys worldwide. J Magnes Alloys 8:1–41. https://doi.org/10.1016/j.jma.2020.02.003
  71. Zhou B, Liu W, Wu G et al (2020) Microstructure and mechanical properties of sand-cast Mg-6Gd-3Y-0.5 Zr alloy subject to thermal cycling treatment. J Mater Sci Technol 43:208–219. https://doi.org/10.1016/j.jmst.2020.01.013
  72. Xiao Y, Zhang X, Chen J, Jiang H, Deng Z (2006) Performance of Mg-9Gd-4Y-0.6Zr alloy with high strength and heat resistance. J Central South Univ (Science and Technology) 37: 850–855.
  73. Zhang N (2019) Effect of Sn on microstructure and mechanical properties of Mg-Gd-Zn alloy. PhD Dissertation, Chongqing University.
  74. Peng Q, Dong H, Wang L, Wu Y, Wang L (2008) Microstructure and mechanical property of Mg–8.31 Gd–1.12 Dy–0.38 Zr alloy. Mater Sci Eng A 477:193–197. https://doi.org/10.1016/j.msea.2007.05.081
  75. Liu N, Zhang Z, Peng L, Ding W (2015) Microstructure evolution and mechanical properties of Mg-Gd-Sm-Zr alloys. Mater Sci Eng A 627:223–229. https://doi.org/10.1016/j.msea.2014.12.114
  76. Zheng K (2008) Study on the Microstructure and Mechanical Properties of High Strength and Heat Resistant Mg-Gd-Nd-Zr Alloys. PhD Dissertation, Shanghai Jiao Tong University.
  77. Wu X, Pan F, Cheng R, Luo S (2018) Effect of morphology of long period stacking ordered phase on mechanical properties of Mg-10Gd-1Zn-0.5Zr magnesium alloy. Mater Sci Eng A 726:64–68. https://doi.org/10.1016/j.msea.2018.04.079
  78. Yu X, Wang G, Bai Y, Ye B (2022) Research Status and Development Trend of Die-casting Heat-resistant. Special Casti Nonferrous Alloys 42:144–151. https://doi.org/10.15980/j.tzzz.2022.02.003
  79. Zhang D, Yang Q, Li B et al (2019) Improvement on both strength and ductility of Mg−Sm−Zn−Zr casting alloy via Yb addition. J Alloy Compd 805:811–821. https://doi.org/10.1016/j.jallcom.2019.07.094
  80. Liu J, Yang L, Zhang C et al (2019) Significantly improved corrosion resistance of Mg-15Gd-2Zn-0.39Zr alloys: Effect of heat-treatment. J Mater Sci Technol 35:1644–1654. https://doi.org/10.1016/j.jmst.2019.03.027
  81. Wang K, Wang J, Dou X et al (2020) Microstructure and mechanical properties of large-scale Mg-Gd-Y-Zn-Mn alloys prepared through semi-continuous casting. J Mater Sci Technol 52:72–82. https://doi.org/10.1016/j.jmst.2020.04.013
  82. Srinivasan A, Huang Y, Mendis C, Blawert C, Kainer K, Hort N (2014) Investigations on microstructures, mechanical and corrosion properties of Mg–Gd–Zn alloys. Mater Sci Eng A 595:224–234. https://doi.org/10.1016/j.msea.2013.12.016
  83. Wang D, Zhang W, Zong X, Nie K, Xu C, Zhang J (2014) Abundant long period stacking ordered structure induced by Ni addition into Mg–Gd–Zn alloy. Mater Sci Eng A 618:355–358. https://doi.org/10.1016/j.msea.2014.09.015
  84. Yamada K, Hoshikawa H, Maki S et al (2009) Enhanced age-hardening and formation of plate precipitates in Mg–Gd–Ag alloys. Scripta Mater 61:636–639. https://doi.org/10.1016/j.scriptamat.2009.05.044
  85. Wang Q, Chen J, Zhao Z, He S (2010) Microstructure and super high strength of cast Mg-8.5Gd-2.3Y-1.8Ag-0.4Zr alloy. Mater Sci Eng A 528:323–328. https://doi.org/10.1016/j.msea.2010.09.004
  86. Fu S (2016) Microstructure and properties of heat-resistant Mg-Gd(-Y-Sm-Zr) magnesium alloys. PhD Dissertation, Xi’an University of Technology.
  87. Yan J (2017) Study on the microstructure and properties of heat resistant magnesium alloys Mg-10Gd-3Y-xNd-0.5Zr. PhD Dissertation, Henan University of Science and Technology.
  88. Wu G, Jafari Nodooshan H, Zeng X, Liu W, Li D, Ding W (2018) Microstructure and high temperature tensile properties of Mg–10Gd–5Y–0.5 Zr alloy after thermo-mechanical processing. Metals 8:980. https://doi.org/10.3390/met8120980
  89. Ke-Jie L, Quan-An L (2011) Microstructure and superior mechanical properties of cast Mg–12Gd–2Y–0.5Sm–0.5Sb–0.5Zr alloy. Mater Sci Eng A 528:5453–5457. https://doi.org/10.1016/j.msea.2011.03.049
  90. Peng Q, Hou X, Wang L, Wu Y, Cao Z, Wang L (2009) Microstructure and mechanical properties of high performance Mg–Gd based alloys. Mater Des 30:292–296. https://doi.org/10.1016/j.matdes.2008.04.069
  91. Liu X, Chen R, Han E (2008) Effects of ageing treatment on microstructures and properties of Mg–Gd–Y–Zr alloys with and without Zn additions. J Alloy Compd 465:232–238. https://doi.org/10.1016/j.jallcom.2007.10.068
  92. Peng QM, Wu YM, Fang DQ, Meng J, Wang LM (2007) Microstructures and properties of Mg–7Gd alloy containing Y. J Alloy Compd 430:252–256. https://doi.org/10.1016/j.jallcom.2006.05.004
  93. Chen X, Li Q, Chen J, Zhu L (2019) Microstructure and mechanical properties of Mg-Gd-Y-Sm-Al alloy and analysis of grain refinement and strengthening mechanism. J Rare Earths 37:1351–1358. https://doi.org/10.1016/j.jre.2018.12.014
  94. Mathieu S, Rapin C, Steinmetz J, Steinmetz P (2003) A corrosion study of the main constituent phases of AZ91 magnesium alloys. Corros Sci 45:2741–2755. https://doi.org/10.1016/S0010-938X(03)00109-4
  95. Ambat R, Aung NN, Zhou W (2000) Evaluation of microstructural effects on corrosion behaviour of AZ91D magnesium alloy. Corros Sci 42:1433–1455. https://doi.org/10.1016/S0010-938X(99)00143-2
  96. Haitani T, Tamura Y, Motegi T, Kono N, Tamehiro H (2003) Solubility of Iron in Pure Magnesium and Cast Structure of Mg-Fe Alloy. Mater Sci Forum 419:697–702. https://doi.org/10.4028/www.scientific.net/MSF.440-441
  97. Haitani T, Tamura Y, Motegi T, Kono N, Tamehiro H, Sato E (2002) Solubility of iron into pure magnesium and Mg-Al alloy melts. Journal of Japan Institute of Light Metals 52:591–597. https://doi.org/10.2464/jilm.52.591
  98. Gu D, Wang J, Chen Y, Peng J (2020) Effect of Mn addition and refining process on Fe reduction of Mg−Mn alloys made from magnesium scrap. Trans Nonferrous Metals Soc China 30:2941–2951. https://doi.org/10.1016/S1003-6326(20)65433-4
  99. Kim JI, Nguyen HN, You BS, Kim YM (2019) Effect of Y addition on removal of Fe impurity from magnesium alloys. Scripta Mater 162:355–360. https://doi.org/10.1016/j.scriptamat.2018.11.046
  100. Wang Q, Tang A, Xu T, Yu Z, Li S (2016) Influence of Mn addition on the distribution of silicon in magnesium alloys. China Sciencepaper 11:404–408. https://doi.org/10.3969/j.issn.2095-2783.2016.04.011
  101. Bakke P, Laurin J, Provost A, Karlsen D (1997) Consistency of inclusions in pure magnesium. Light Metals-Warrendale, pp 1019–1028.
  102. Baek UH, Lee BD, Lee KW, Yoon JY, Han GS, Han JW (2016) Removal of Ca from magnesium melt by flux refining. Mater Trans 57:1156–1164. https://doi.org/10.2320/matertrans.M2015426
  103. Gao HT, Wu GH, Ding WJ, Zhu YP (2004) Effect of boride on purification of magnesium alloy. Foundry Technol 25:8–10. https://doi.org/10.3969/j.issn.1000-8365.2004.09.002
  104. Zhai C, Ding W, Xu X, Deng Z, Yu Z (2002) Development of new type hazardless fluxes used in the melting of Mg-alloys. Special Cast Nonferrous Alloys 3:284–286. https://doi.org/10.15980/j.tzzz.2002.s1.11
  105. Zhang J, He L, Li P (2005) Purification technique of regenerated magnesium alloy melt. Foundry 54:5. https://doi.org/10.3321/j.issn:1001-4977.2005.07.007
  106. Wang J, Zhou J-x, Tong W-h, Yang Y-s (2010) Effect of purification treatment on properties of Mg-Gd-Y-Zr alloy. Trans Nonferrous Metals Soc China 20:1235–1239. https://doi.org/10.1016/S1003-6326(09)60284-3
  107. Cahn RW (ed) (1996) Structure and properties of nonferrous alloys. Struct Properties oNonferrous Alloys, 8.
  108. Guo X, Li P, Zeng D, Liu S (2004) Inclusions decrease in recycling magnesium alloy with rare earths. Chin J Nonferrous Metals 14:1295–1300. https://doi.org/10.19476/j.ysxb.1004.0609.2004.08.007
  109. Wang W, Wang WuG, Q, Huang Y, Sun M, Ding W-j (2008) Investigation of flux containing GdCl3 on recycling Mg-Gd-Y-Zr scraps. Trans Nonferrous Metals Soc China 18:s292–s298. https://doi.org/10.1016/S1003-6326(10)60220-8
  110. Wang W, Huang Y, Wu G, Wang Q, Sun M, Ding W (2009) Influence of flux containing YCl3 additions on purifying effectiveness and properties of Mg–10Gd–3Y–0.5Zr alloy. J Alloy Compd 480:386–391. https://doi.org/10.1016/j.jallcom.2009.02.073
  111. Zhang Z, Le Q, Cui J, Wang X, Zhang H (2010) Purification process of magnesium alloy melt under ultrasonic field. Special Cast Nonferrous Alloys 11:988–991. https://doi.org/10.3870/tzzz.2010.11.003
  112. Zha J, Shaoyong XU, You G (2011) A continuous fluxiess purification technique for Mg scrap melt. In: International conference on advanced engineering materials and technology.
  113. Zha J (2018) A study on Mg melt continuous non-flux purification theory and key techniques. PhD Dissertation, Chongqing University.
  114. Li Z, Qiao X, Xu C, Liu X, Kamado S, Zheng M (2020) Enhanced strength by precipitate modification in wrought Mg–Al–Ca alloy with trace Mn addition. J Alloy Compd 836:154689. https://doi.org/10.1016/j.jallcom.2020.154689
  115. Li H, Wang K, Xu G, Jiang H, Wang Q, Wang Y (2021) Effective inhibition of anomalous grain coarsening in cast AZ91 alloys during fast cooling via nanoparticle addition. J Magnes Alloys 7:32. https://doi.org/10.1016/j.jma.2021.10.008
  116. Peng X, Liang X, Liu W et al (2021) High-cycle fatigue behavior of Mg-8Li-3Al-2Zn-0.5Y alloy under different states. J Magnes Alloys 9:1609–1618. https://doi.org/10.1016/j.jma.2020.07.012
  117. Fan Z, Gao F, Wang Y, Wang SH, Patel JB (2022) Grain refinement of Mg-alloys by native MgO particles: an overview. J Magnes Alloys 10:2919–2945. https://doi.org/10.1016/j.jma.2022.10.006
  118. Yang H, Huang Y, Song B, Kainer KU, Dieringa H (2019) Enhancing the creep resistance of AlN/Al nanoparticles reinforced Mg-2.85Nd-0.92Gd-0.41Zr-0.29Zn alloy by a high shear dispersion technique. Mater Sci Eng A 755:18–27. https://doi.org/10.1016/j.msea.2019.03.131
  119. Zhang A, Zhao Z, Yin G, Lin C (2017) A novel model to account for the heterogeneous nucleation mechanism of α-Mg refined with Al4C3 in Mg-Al alloy. Comput Mater Sci 140:61–69. https://doi.org/10.1016/j.commatsci.2017.08.032
  120. Peng L, Zeng G, Lin CJ, Gourlay CM (2020) Al2MgC2 and AlFe3C formation in AZ91 Mg alloy melted in Fe-C crucibles. J Alloy Compd 854:156415. https://doi.org/10.1016/j.jallcom.2020.156415
  121. Qiu D, Zhang M-X, Kelly PM (2009) Crystallography of heterogeneous nucleation of Mg grains on Al2Y nucleation particles in an Mg–10 wt.% Y alloy. Scripta Mater 61:312–315. https://doi.org/10.1016/j.scriptamat.2009.04.011
  122. Jiang Z, Jiang B, Zeng Y, Dai J, Pan F (2015) Role of Al modification on the microstructure and mechanical properties of as-cast Mg–6Ce alloys. Mater Sci Eng A 645:57–64. https://doi.org/10.1016/j.msea.2015.08.002
  123. Turnbull D, Vonnegut B (1952) Nucleation catalysis. Ind Eng Chem 44:1292–1298. https://doi.org/10.1021/ie50510a031
  124. Bramfitt BL (1970) The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron. Metallurgical Transactions 1:1987–1995. https://doi.org/10.1007/BF02642799
  125. Zhang M-X, Kelly P (1998) Crystallography and morphology of Widmanstätten cementite in austenite. Acta Mater 46:4617–4628. https://doi.org/10.1016/S1359-6454(98)00139-6
  126. Zhang M-X, Kelly PM, Easton MA, Taylor JA (2005) Crystallographic study of grain refinement in aluminum alloys using the edge-to-edge matching model. Acta Mater 53:1427–1438. https://doi.org/10.1016/j.actamat.2004.11.037
  127. Zhang M, Kelly P, Qian M, Taylor J (2005) Crystallography of grain refinement in Mg–Al based alloys. Acta Mater 53:3261–3270. https://doi.org/10.1016/j.actamat.2005.03.030
  128. Qiu D, Zhang M-X, Taylor J, Fu H, Kelly P (2007) A novel approach to the mechanism for the grain refining effect of melt superheating of Mg–Al alloys. Acta Mater 55:1863–1871. https://doi.org/10.1016/j.actamat.2006.10.047
  129. Qiu D, Zhang M-X (2009) Effect of active heterogeneous nucleation particles on the grain refining efficiency in an Mg–10 wt.% Y cast alloy. J Alloy Compd 488:260–264. https://doi.org/10.1016/j.jallcom.2009.08.100
  130. Wang F, Qiu D, Liu Z-L, Taylor JA, Easton MA, Zhang M-X (2013) The grain refinement mechanism of cast aluminium by zirconium. Acta Mater 61:5636–5645. https://doi.org/10.1016/j.actamat.2013.05.044
  131. Jiang B, Liu W, Qiu D, Zhang M-X, Pan F (2012) Grain refinement of Ca addition in a twin-roll-cast Mg–3Al–1Zn alloy. Mater Chem Phys 133:611–616. https://doi.org/10.1016/j.matchemphys.2011.12.087
  132. Qiu D, Zhang M-X, Taylor J, Kelly P (2009) A new approach to designing a grain refiner for Mg casting alloys and its use in Mg–Y-based alloys. Acta Mater 57:3052–3059. https://doi.org/10.1016/j.actamat.2009.03.011
  133. Dai J, Easton M, Zhu S, Wu G, Ding W (2012) Grain refinement of Mg–10Gd alloy by Al additions. J Mater Res 27:2790–2797. https://doi.org/10.1557/jmr.2012.313
  134. Wang C, Dai J, Liu W, Zhang L, Wu G (2015) Effect of Al additions on grain refinement and mechanical properties of Mg–Sm alloys. J Alloy Compd 620:172–179. https://doi.org/10.1016/j.jallcom.2014.09.025
  135. Dai J (2014) Study on the effects of al and trace elementson grain refinement behavior,microstructure and mechanical propertiesof Mg-Gd(-Y)alloys. PhD Dissertation, Shanghai Jiao Tong University.
  136. Rzychoń T, Kiełbus A, Cwajna J, Mizera J (2009) Microstructural stability and creep properties of die casting Mg–4Al–4RE magnesium alloy. Mater Charact 60:1107–1113. https://doi.org/10.1016/j.matchar.2009.05.014
  137. Li S, Zheng W, Tang B, Zeng D, Guo X (2007) Grain coarsening behavior of Mg-Al alloys with mischmetal addition. J Rare Earths 25:227–232. https://doi.org/10.1016/S1002-0721(07)60078-7
  138. Dai J, Zhu S, Easton MA et al (2013) Heat treatment, microstructure and mechanical properties of a Mg–Gd–Y alloy grain-refined by Al additions. Mater Sci Eng A 576:298–305. https://doi.org/10.1016/j.msea.2013.04.016
  139. Vidrich G, Moll O, Ferkel H (2005) Grain-refining of MG alloys by nanoscaled TiN Particles. Magnes Technol 02:13–17Google Scholar
  140. Klösch G, McKay B, Schumacher P (2016) Preliminary investigation on the grain refinement behavior of ZrB2 particles in Mg-Al alloys. Essential Read Magnes Technol, pp 255–261. https://doi.org/10.1007/978-3-319-48099-2_42
  141. Wang Y, Zeng X, Ding W (2006) Effect of Al–4Ti–5B master alloy on the grain refinement of AZ31 magnesium alloy. Scripta Mater 54:269–273. https://doi.org/10.1016/j.scriptamat.2005.09.022
  142. Liu S, Zhang Y, Han H, Li B (2009) Effect of Mg–TiB2 master alloy on the grain refinement of AZ91D magnesium alloy. J Alloy Compd 487:202–205. https://doi.org/10.1016/j.jallcom.2009.08.065
  143. Qian M, Cao P (2005) Discussions on grain refinement of magnesium alloys by carbon inoculation. Scripta Mater 52:415–419. https://doi.org/10.1016/j.scriptamat.2004.10.014
  144. Jin Q, Eom J-P, Lim S-G, Park W-W, You B-S (2003) Grain refining mechanism of a carbon addition method in a Mg–Al magnesium alloy. Scripta Mater 49:1129–1132. https://doi.org/10.1016/j.scriptamat.2003.07.001
  145. Motegi T (2005) Grain-refining mechanisms of superheat-treatment of and carbon addition to Mg–Al–Zn alloys. Mater Sci Eng A 413–414:408–411. https://doi.org/10.1016/j.msea.2005.08.214
  146. Kim YM, Wang L, You BS (2010) Grain refinement of Mg–Al cast alloy by the addition of manganese carbonate. J Alloy Compd 490:695–699. https://doi.org/10.1016/j.jallcom.2009.10.141
  147. Du J, Wang M, Li W (2010) Effects of Fe addition and addition sequence on carbon inoculation of Mg–3%Al alloy. J Alloy Compd 502:74–79. https://doi.org/10.1016/j.jallcom.2010.04.156
  148. Huang Y, Kainer KU, Hort N (2011) Mechanism of grain refinement of Mg–Al alloys by SiC inoculation. Scripta Mater 64:793–796. https://doi.org/10.1016/j.scriptamat.2011.01.005
  149. Easton MA, Schiffl A, Yao J-Y, Kaufmann H (2006) Grain refinement of Mg–Al(–Mn) alloys by SiC additions. Scripta Mater 55:379–382. https://doi.org/10.1016/j.scriptamat.2006.04.014
  150. Chen X, Ning F, Hou J, Le Q, Tang Y (2018) Dual-frequency ultrasonic treatment on microstructure and mechanical properties of ZK60 magnesium alloy. Ultrason Sonochem 40:433–441. https://doi.org/10.1016/j.ultsonch.2017.07.027Article CAS PubMed Google Scholar
  151. Liu X, Osawa Y, Takamori S, Mukai T (2008) Microstructure and mechanical properties of AZ91 alloy produced with ultrasonic vibration. Mater Sci Eng A 487:120–123. https://doi.org/10.1016/j.msea.2007.09.071
  152. Mizutani Y, Tamura T, Miwa K (2005) Microstructural refinement process of pure magnesium by electromagnetic vibrations. Mater Sci Eng A 413–414:205–210. https://doi.org/10.1016/j.msea.2005.09.009
  153. Chen X, Jia Y, Liao Q et al (2019) The simultaneous application of variable frequency ultrasonic and low frequency electromagnetic fields in semi continuous casting of AZ80 magnesium alloy. J Alloy Compd 774:710–720. https://doi.org/10.1016/j.jallcom.2018.09.300
  154. Tao T, Zhou D, Liu J, Wang X (2022) Improvement of laser welded joint properties of AZ31B magnesium alloy to DP590 dual-phase steel produced by external magnetic field. J Manuf Process 79:270–283. https://doi.org/10.1016/j.jmapro.2022.04.069
  155. Bai S, Wang F, Du X et al (2023) Effect of alternating magnetic fields on hot tearing susceptibility of Mg–4Zn–1.5 Ca alloy. Mater Sci Technol 39:50–61. https://doi.org/10.1080/02670836.2022.2100605
  156. Zhou Y, Mao P, Wang Z, Zhou L, Wang F, Liu Z (2020) Effect of low frequency alternating magnetic field on hot tearing susceptibility of Mg-7Zn-1Cu-0.6 Zr magnesium alloy. J Mater Process Technol 282:116679. https://doi.org/10.1016/j.jmatprotec.2020.116679
  157. Liu W, Jiang L, Cao L et al (2014) Fatigue behavior and plane-strain fracture toughness of sand-cast Mg–10Gd–3Y–0.5 Zr magnesium alloy. Mater Des 59:466–474. https://doi.org/10.1016/j.matdes.2014.03.026
  158. Li Y, Zhang A, Li C et al (2023) Recent advances of high strength Mg-RE alloys: alloy development, forming and application. J Market Res 26:2919–2940. https://doi.org/10.1016/j.jmrt.2023.08.055
  159. Liu W, Zhou B, Wu G, Zhang L, Peng X, Cao L (2019) High temperature mechanical behavior of low-pressure sand-cast Mg–Gd–Y–Zr magnesium alloy. J Magnes Alloys 7:597–604. https://doi.org/10.1016/j.jma.2019.07.006
  160. Li Y, Wu G, Chen A et al (2015) Effects of Gd and Zr additions on the microstructures and high-temperature mechanical behavior of Mg–Gd–Y–Zr magnesium alloys in the product form of a large structural casting. J Mater Res 30:3461–3473. https://doi.org/10.1557/jmr.2015.306
  161. Jorstad J, Apelian D (2008) Pressure assisted processes for high integrity aluminum castings. Int J Metalcast 2:19–39. https://doi.org/10.1007/BF03355420
  162. Liu H, Ning Z, Sun H et al (2016) Microstructure and elevated-temperature tensile properties of differential pressure sand cast Mg-4Y-3Nd-0.5 Zr alloy. China Foundry 13:30–35. https://doi.org/10.1007/s41230-016-5014-1
  163. Yang L, Kang Y, Zhang F et al (2010) Rheo-diecasting of AZ91D magnesium alloy by taper barrel rheomoulding process. Trans Nonferrous Metals Soc China 20:966–972. https://doi.org/10.1016/s1003-6326(09)60243-0
  164. Lin C, Wu S, Lü S, An P, Wan L (2013) Microstructure and mechanical properties of rheo-diecast hypereutectic Al–Si alloy with 2%Fe assisted with ultrasonic vibration process. J Alloy Compd 568:42–48. https://doi.org/10.1016/j.jallcom.2013.03.089
  165. Fan Z (2005) Development of the rheo-diecasting process for magnesium alloys. Mater Sci Eng A 413:72–78. https://doi.org/10.1016/j.msea.2005.09.038
  166. Ji S, Qian M, Fan Z (2006) Semisolid processing characteristics of AM series Mg alloys by rheo-diecasting. Metall Mater Trans A 37:779–787. https://doi.org/10.1007/s11661-006-0049-3
  167. Fan Z, Liu G, Wang Y (2006) Microstructure and mechanical properties of rheo-diecast AZ91D magnesium alloy. J Mater Sci 41:3631–3644. https://doi.org/10.1007/s10853-006-6248-x
  168. Zhou B, Kang YL, Qi MF, Zhang HH, Zhu GM (2015) Microstructure and property of Rheo-diecasting magnesium-alloy with forced convection mixing process. Solid State Phenom 217:455–460. https://doi.org/10.4028/www.scientific.net/SSP.217-218.455
  169. Qi M, Kang Y, Zhou B et al (2016) A forced convection stirring process for Rheo-HPDC aluminum and magnesium alloys. J Mater Process Technol 234:353–367. https://doi.org/10.1016/j.jmatprotec.2016.04.003
  170. Weiler JP (2019) A review of magnesium die-castings for closure applications. J Magnes Alloys 7:297–304. https://doi.org/10.1016/j.jma.2019.02.005
  171. Dong X, Feng L, Wang S, Nyberg EA, Ji S (2021) A new die-cast magnesium alloy for applications at higher elevated temperatures of 200–300 °C. J Magnes Alloys 9:90–101. https://doi.org/10.1016/j.jma.2020.09.012
  172. Zhu S, Abbott TB, Nie J-F et al (2021) Re-evaluation of the mechanical properties and creep resistance of commercial magnesium die-casting alloy AE44. J Magnes Alloys 9:1537–1545. https://doi.org/10.1016/j.jma.2021.04.016
  173. Wang GG, Bos J (2018) A study on joining magnesium alloy high pressure die casting components with thread forming fasteners. J Magnes Alloys 6:114–120. https://doi.org/10.1016/j.jma.2018.04.002
  174. Prasad SVS, Prasad SB, Verma K, Mishra RK, Kumar V, Singh S (2022) The role and significance of Magnesium in modern day research—a review. J Magnes Alloys 10:1–61. https://doi.org/10.1016/j.jma.2021.05.012
  175. Dong X, Zhu X, Ji S (2019) Effect of super vacuum assisted high pressure die casting on the repeatability of mechanical properties of Al-Si-Mg-Mn die-cast alloys. J Mater Process Technol 266:105–113. https://doi.org/10.1016/j.jmatprotec.2018.10.030
  176. Li S, Li D, Zeng X, Ding W (2014) Microstructure and mechanical properties of Mg–6Gd–3Y–0.5Zr alloy processed by high-vacuum die-casting. Trans Nonferrous Metals Soc China 24:3769–3776. https://doi.org/10.1016/S1003-6326(14)63531-7
  177. Niyama E (1982) A method of shrinkage prediction and its application to steel casting practice. In: International foundry congress
  178. Carlson KD, Beckermann C (2009) Prediction of shrinkage pore volume fraction using a dimensionless Niyama criterion. Metall Mater Trans A 40:163–175. https://doi.org/10.1007/s11661-008-9715-y
  179. Zhang A, Du J, Zhang X et al (2020) Phase-field modeling of microstructure evolution in the presence of bubble during solidification. Metall Mater Trans A 51:1023–1037. https://doi.org/10.1007/s11661-019-05593-3
  180. Zhang A, Guo Z, Jiang B et al (2021) Multiphase and multiphysics modeling of dendrite growth and gas porosity evolution during solidification. Acta Mater 214:117005. https://doi.org/10.1016/j.actamat.2021.117005
  181. Su X, Feng Z, Wang F, Li Y, Li Z, Lou Y (2021) Effect of pouring and mold temperatures on hot tearing susceptibility of WE43 magnesium alloy. Int J Metalcast 15:576–586. https://doi.org/10.1007/s40962-020-00493-4
  182. Leng F, Wang F, Wang Z, Du X, Liu Z, Mao P (2021) Hot tearing behavior of Mg-4Zn-xSn-0.6Zr Alloys. Int J Metalcast 15:292–305. https://doi.org/10.1007/s40962-020-00464-9
  183. Zhang T, Yu W, Ma C, Chen W, Zhang L, Xiong S (2022) The effect of different high pressure die casting parameters on 3D microstructure and mechanical properties of AE44 magnesium alloy. J Magnes Alloys. https://doi.org/10.1016/j.jma.2022.05.001
  184. Li Z, Li D, Zhou W et al (2022) Characterization on the formation of porosity and tensile properties prediction in die casting Mg alloys. J Magnes Alloys 10:1857–1867. https://doi.org/10.1016/j.jma.2020.12.006
  185. Song J, Zhao H, Liao J et al (2022) Comparison on hot tearing behavior of binary Mg–Al, Mg–Y, Mg–Gd, Mg–Zn, and Mg–Ca alloys. Metall Mater Trans A 53:2986–3001. https://doi.org/10.1007/s11661-022-06719-w
  186. Ma C, Wenbo Y, Zhang T, Zhang Z, Ma Y, Xiong S (2021) The effect of slow shot speed and casting pressure on the 3D microstructure of high pressure die casting AE44 magnesium alloy. J Magnes Alloys. https://doi.org/10.1016/j.jma.2021.09.011
  187. Li X, Yu W, Wang J, Xiong S (2018) Influence of melt flow in the gating system on microstructure and mechanical properties of high pressure die casting AZ91D magnesium alloy. Mater Sci Eng A 736:219–227. https://doi.org/10.1016/j.msea.2018.08.090
  188. Li X, Xiong S, Guo Z (2016) Improved mechanical properties in vacuum-assist high-pressure die casting of AZ91D alloy. J Mater Process Technol 231:1–7. https://doi.org/10.1016/j.jmatprotec.2015.12.005
  189. Zhong H, Lin Z, Han Q et al (2023) Hot tearing behavior of AZ91D magnesium alloy. J Magnes Alloys. https://doi.org/10.1016/j.jma.2023.02.010
  190. Clyne TW, Brit GJD (1981) The influence of composition on solidification cracking susceptibility in binary alloy systems. Mater Phys 74:65–73Google Scholar
  191. Pellini W (1952) Strain theory of hot tearing. Foundry 80:125–199Google Scholar
  192. Zhao H, Song J, Jiang B et al (2021) The effect of Sr addition on hot tearing susceptibility of Mg-1Ca-xSr alloys. J Mater Eng Perform 30:7645–7654. https://doi.org/10.1007/s11665-021-05925-8
  193. Huang H, Fu P-h, Wang Y-x, Peng L-m, Jiang H-y (2014) Effect of pouring and mold temperatures on hot tearing susceptibility of AZ91D and Mg–3Nd–0.2 Zn–Zr Mg alloys. Trans Nonferrous Metals Soc China 24:922–929. https://doi.org/10.1016/S1003-6326(14)63144-7
  194. Su X, Huang J, Du X, An R, Wang F, Lou Y (2021) Influence of a low-frequency alternating magnetic field on hot tearing susceptibility of EV31 magnesium alloy. China Foundry 18:229–238. https://doi.org/10.1007/s41230-021-1011-0
  195. Du X, Wang F, Bai S et al (2023) Effect of low-frequency alternating magnetic field strength on hot tearing susceptibility of AXJ530 alloy. Int J Metalcast 17:2017–2029. https://doi.org/10.1007/s40962-022-00911-9
  196. Koltun P, Tharumarajah A (2009) Life cycle environmental impact of magnesium instrument panel. Mater Sci Forum 618–619:17–20. https://doi.org/10.4028/www.scientific.net/MSF.618-619.17
  197. Liu B, Qiu ZC, Yang Q, Wang K, Wu XH (2017) Optimized design of aluminum cross car beam (CCB) based in modal strain energy analysis. Mater Sci Forum 877:668–673. https://doi.org/10.4028/www.scientific.net/MSF.877.668
  198. Joost W, Krajewski J, Paul E (2017) Towards magnesium alloys for high-volume automotive applications. Scripta Mater 128:107–112. https://doi.org/10.1016/j.scriptamat.2016.07.035
  199. Polmear I (1994) Magnesium alloys and applications. Mater Sci Technol 10:1–16. https://doi.org/10.1179/mst.1994.10.1.1
  200. Aghion E, Bronfín B, Buch FV, Schumann S, Friedrich H (2003) Newly developed magnesium alloys for powertrain applications. Springer-, Cham, 55:30–33. https://doi.org/10.1007/S11837-003-0206-8
  201. Novotny S, Geiger M (2003) Process design for hydroforming of lightweight metal sheets at elevated temperatures. J Mater Process Tech 138:594–599. https://doi.org/10.1016/S0924-0136(03)00042-6
  202. Liu B, Yang J, Zhang X, Yang Q, Zhang J, Li X (2023) Development and application of magnesium alloy parts for automotive OEMs: a review. J Magnes Alloys 11:15–47. https://doi.org/10.1016/j.jma.2022.12.015
  203. Nayak S, Garg AK, Chaturvedi M, Wieczorek T, Marks M (2010) Performance evaluation of PU over-molded thermoplastic steering wheel. SAE Technical Paper 1:7. https://doi.org/10.4271/2010-01-0916
  204. Garg A, Surisetty G, Chaturvedi M, Jaarda E (2009) High performance thermoplastic steering wheel 1:7. SAE Technical Papers. https://doi.org/10.4271/2009-26-0074
  205. Ames W, Altenhof W (2000) Observations of the relative performance of magnesium and aluminum steering wheel skeletons with identical geometry. SAE Trans 109:390–399. https://doi.org/10.4271/2000-01-0784
  206. Mao P-L, Zheng L, C-y WANG et al (2008) Fatigue behavior of magnesium alloy and application in auto steering wheel frame. Trans Nonferrous Metals Soc China 18:s218–s222. https://doi.org/10.1016/S1003-6326(10)60206-3
  207. Wickberg A, Ericsson R (1985) Magnesium in the Volvo LCP 2000. SAE Technical Papers 1:12. https://doi.org/10.4271/850418
  208. Chen X, Wagner D, Heath G, Mehta S, Uicker J (2021) Cast magnesium subframe development-bolt load retention.·SAE Technical Paper 1:8. https://doi.org/10.4271/2021-01-0274
  209. Luo AA (2013) Magnesium casting technology for structural applications. J Magnes Alloys 1:2–22. https://doi.org/10.1016/j.jma.2013.02.002
  210. News CNM https://www.cnmn.com.cn/ShowNews1.aspx?id=445932. Accessed 6 October 2023.
  211. Zheng J, Yan Z, Ji J et al (2022) Effect of heat treatment on mechanical properties and microstructure evolution of Mg-9.5Gd-4Y-2.2Zn-0.5Zr alloy. J Magnes Alloys 10:1124–1132. https://doi.org/10.1016/j.jma.2021.05.018
  212. Graf G, Spoerk-Erdely P, Maawad E et al (2023) Effect of wire-arc directed energy deposition on the microstructural formation and age-hardening response of the Mg-9Al-1Zn (AZ91) alloy. J Magnes Alloys 11:1944–1958. https://doi.org/10.1016/j.jma.2023.05.012
  213. Liu J (2016) Reseach on solidfication behavior of magnesium alloy during centrifugal casting and forming of large ring. PhD Dissertation, Chongqing University.
  214. Alloys WoHBL. http://www.alloymg.com/mgjzmb.html. Accessed 7 October 2023.
  215. Zou Q, Le Q, Ren L et al (2023) Corrosion behaviour of magnesium alloy AZ80 alloyed with Nd in simulated concrete pore solutions. J Market Res 25:5964–5981. https://doi.org/10.1016/j.jmrt.2023.07.082
  216. Wang D, Wang Y, Wang J et al (2022) Corrosion resistance of Mg-Al-Zn magnesium alloy concrete formwork in Portland cement paste. Constr Build Mater 325:126745. https://doi.org/10.1016/j.conbuildmat.2022.126745
  217. Wang Y, Xiao W, Ma K, Dai C, Wang D, Wang J (2023) A new design strategy for the crack-free composite CaHPO4· 2H2O/CaCO3 coating on AZ41 Mg alloy for magnesium concrete formwork. Surf Coat Technol 468:129784. https://doi.org/10.1016/j.surfcoat.2023.129784
  218. Wang Y, Wu G (2021) Improving corrosion resistance of magnesium alloy in Cl-containing simulated concrete pore solution by ultrasound-assisted chemical deposition. Scanning 2021:5462741. https://doi.org/10.1155/2021/5462741Article CAS PubMed PubMed Central Google Scholar
  219. Darimont G, Cloots R, Heinen E, Seidel L, Legrand R (2002) In vivo behaviour of hydroxyapatite coatings on titanium implants: a quantitative study in the rabbit. Biomaterials 23:2569–2575. https://doi.org/10.1016/S0142-9612(01)00392-1Article CAS PubMed Google Scholar
  220. Song Y, Xu Z, Dong K, Shan D, Han E-H (2019) Investigation of microcracks on conversion film of AZ80 Mg alloy. Surf Eng 35:527–535. https://doi.org/10.1080/02670844.2018.1507292
  221. Liao G, Wu G, Liu W, et al. (2022) Microstructure evolution and enhanced fatigue behavior in the Mg-10Li-5Zn-0.5Er alloys micro-alloyed with Yb. J Magnes Alloys. https://doi.org/10.1016/j.jma.2022.07.017
  222. Association IM (2008) Magnesium’s Tough Strength Endures Abuse to Protect Portable Electronic Devices. International Magnesium Association.
  223. Yuan S, Wang J, Li X, Ma H, Zhang L, Jin P (2022) Enhanced mechanical properties of Mg-1Al-12Y alloy containing long period stacking ordered phase. J Magnes Alloys. https://doi.org/10.1016/j.jma.2022.03.005
  224. Chen Q, Chen R, Su J et al (2022) The mechanisms of grain growth of Mg alloys: a review. J Magnes Alloys 10:2384–2397. https://doi.org/10.1016/j.jma.2022.09.001Article CAS Google Scholar