Tag Archives: Stress–strain

Figure 8(a) Inverse pole figure maps for halite grains with large Kristallbrocken grains labelled 1–5. (b) Pole figures of fine-grained matrix halite excluding five Kristallbrocken grains show no significant crystallographic preferred orientation (CPO). (c) Kernel average misorientation (KAM) map overlaid with white low- and high-angle grain boundaries (misorientation >5∘). KAM map was calculated over a distance of 40 µm (second neighbour) with a threshold of 3∘ in order to enhance the small-angle subgrain boundaries. KAM shows subgrain-free matrix halite with few exceptions in large matrix halite grains, Kristallbrocken 1 and 5 with subgrains, and subgrains in boudin necks of Kristallbrocken 3 and 4. (d) Cumulative reference orientation deviation map over the areas of Kristallbrocken 3 and 4, based on more highly resolved EBSD measurements. Reference points for each of the two grains are indicated. Panels (a) and (b) consist of 30 individual measurements, which due to image distortion under 70∘ tilt cannot be stitched perfectly. Therefore, in some cases an artificial separation of areas belonging to the same grain is visible

Large grain-size-dependent rheology contrasts of halite at low differential stress: evidence from microstructural study of naturally deformed gneissic Zechstein 2 rock salt (Kristallbrockensalz) from the northern Netherlands

Jessica Barabasch,Joyce Schmatz,Jop Klaver,Alexander Schwedt,and Janos L. Urai Abstract Constitutive laws to predict long-term deformation of solution-mined caverns and radioactive-waste repositories in rock salt play an important role in the energy transition. Much of this deformation is at differential stresses of a few megapascals, while the vast majority of laboratory measurements are at much higher differential

Read More

Figure 1.Base shell configuration of notebook computer.

Die-Casting Parameter Sizing for AZ91D in Notebook Computer Base Shell

Yung-Kuang Yang and Chorng-Jyh Tzeng Keywords: ANOVA, AZ91D, Die-casting, Taguchi method, Stress–strain. Introduction Magnesium and its alloys are becoming increasingly important as structural materials for applications in which weight reduction is critical, because of their low density and high stiffness-to-weight ratio. Popular applications include automotive, industrial, materials-handling, and aerospace equipment such as automotive pulleys, cog-tooth

Read More