This introduction paper is based on the paper "Sustainability through Alloy Design: Challenges and Opportunities" published by "Elsevier".
![Table 1. Recoverability of alloying elements during extractive metallurgical processes. Green indicates that an
element can be recovered in a single stage recovery process. Yellow indicates that an element is likely lost in a
single stage recovery process (requiring subsequent post-recovery) without detriment to the carrier metal. Red
indicates that an element cannot be economically recovered and are potentially detrimental to the carrier
metal. Reproduced from [15].](https://castman.co.kr/wp-content/uploads/image-2192.webp)
1. Overview:
- Title: Sustainability through Alloy Design: Challenges and Opportunities
- Author: Jaclyn L. Cann, Anthony De Luca, David C. Dunand, David Dye, Daniel B. Miracle, Hyun Seok Oh, Elsa A. Olivetti, Tresa M. Pollock, Warren J. Poole, Rui Yang, C. Cem Tasan
- Year of publication: 2020
- Journal/academic society of publication: Elsevier
- Keywords: Steel, Aluminum, Titanium, Magnesium, Superalloys, Shape memory alloys, High entropy alloys, Metallurgy, Sustainability
2. Abstract:
Exciting metallurgical breakthroughs of the last decades, and the development and wide range availability of new and more capable experimental and theoretical tools for metals research, demonstrate that we are witnessing the dawn of a new age in metals design. Historically, the discovery of new metallic materials has enabled the vast majority of the key engineering advances in human history.
Current engineering challenges create an urgent need for new metallic materials, to further our technological advances in multiple industries that are key to our existence. Yet, present data on metals processing clearly demonstrate the significant environmental impact of the metallurgical industry on our planet’s future. There are numerous reports in which this impact and corresponding processing solutions are discussed. On the other hand, design of new metallic materials with improved property combinations can help address key environmental challenges in various ways. To this end, the goal of this review is to discuss the most urgent sustainability challenges that can be addressed with alloy design, to help orchestrate the increasing interest in metallurgical research to focus on these most critical challenges.
3. Introduction:
The global use of metals is increasing [1], leading to a greater environmental burden from production and highlighting the urgency of addressing metals sustainability [2]. This requires a life cycle perspective, considering impacts from ore extraction, metal processing, product use, and end-of-life [3]. Alloy design can contribute significantly, for example, by enabling higher operating temperatures for increased thermodynamic efficiency, reducing mass in moving parts (like vehicles, offsetting higher production burdens with use-phase fuel savings [4–7]), or creating products with higher functionality for alternative energy generation.
While overall metal use grows, consumption of some toxic metals (Cd, Pb) has declined or stabilized [8], though their supply might persist as by-products [9]. Metals production, particularly primary production (using 7-8% of global energy), significantly impacts the environment through energy consumption, greenhouse gas emissions (e.g., CO2 in steel and Mg production), mining impacts (health, landscape, waste, water use), and potential release during use (corrosion) [10]. Steel has the largest impact by volume. High-impact metals per kilogram include trace elements (Sc, Re, Ge), while Fe, Al, and Cu contribute most to global warming potential annually [11].
Increasing elemental diversity in alloys (e.g., superalloys) improves properties but complicates end-of-life recovery and recycling [12, 13]. Recycling is limited by thermodynamics, element compatibility (Table 1), and infrastructure [14], posing challenges for compositionally complex alloys (CCAs) [15]. Resource availability and materials criticality are also concerns, especially for elements concentrated in politically unstable regions (Figure 1) or mined as byproducts [16–20].
Opportunities for increased sustainability exist in improving manufacturing efficiency (reducing yield losses, e.g., 25% in steel, 40% in Al - Figure 2) [21, 22], potentially through additive manufacturing [23]. However, the largest opportunity may lie in designing alloys for lifetime extension through improved durability, reliability, repairability, and reuse, particularly for ubiquitous materials like steel [24]. This review focuses on highlighting critical challenges and promising opportunities for promoting sustainability through alloy design across various alloy systems, considering environmental, political, and economic factors.
4. Summary of the study:
Background of the research topic:
The increasing demand for metals, coupled with the significant environmental footprint of their production and use (7-8% of global energy consumption, emissions, resource depletion), creates an urgent need for sustainable solutions within the metallurgical industry. Alloy design, influencing material properties and performance throughout the life cycle, represents a critical pathway to address these sustainability challenges.
Status of previous research:
Extensive research exists on improving sustainability through process modifications (e.g., production efficiency [26, 27], recycling [28, 29], CO2 reduction [26, 30], alternative production [26, 34]). Life cycle assessment methodologies [3] are established for evaluating environmental impacts. Specific alloy development efforts within various metal families have targeted improved properties like strength, temperature resistance, and durability. Research has also highlighted challenges related to recycling complex alloys [13, 14, Table 1], resource criticality [16, 17, Figure 1], and the trade-offs between production impacts and use-phase benefits (e.g., lightweighting [7]). Computational tools (DFT, CALPHAD, ICME) are increasingly used in alloy development.
Purpose of the study:
This review aims to identify and discuss the most significant sustainability challenges that can be effectively addressed through strategic alloy design. It surveys key opportunities across seven major alloy systems (steels, aluminum, titanium, magnesium, superalloys, shape memory alloys, high entropy/complex concentrated alloys) to guide future metallurgical research towards maximizing positive environmental impact. The focus is specifically on the role of alloy design, rather than processing improvements alone, in achieving sustainability goals.
Core study:
The review examines sustainability challenges and alloy design solutions for seven classes of metallic materials:
- Steels:
- Challenges: Largest production volume, significant environmental impact [21, 25], balancing strength/ductility, damage susceptibility in AHSS, recycling limitations (Cu contamination [67]), lifetime limitations (wear, fatigue, hydrogen embrittlement [HE]).
- Solutions: Designing steels that "do more, with less, for longer."
- Do more: Advanced High Strength Steels (AHSS - DP [36], TRIP [37], TWIP [38], 3rd Gen [41-43]) for improved strength-ductility, requiring better understanding of damage mechanisms [44-64].
- With less: Promoting reuse/reforming [65, 66], lightweighting via density reduction (e.g., Al-alloyed TRIPlex steels [74, 75, Figure 3]) or modulus reduction (composites [77]).
- For longer: Enhancing wear resistance (nano-bainite [78, 79], TWIP [84]), fatigue resistance (nanolaminated structures [80]), and HE resistance (austenite nano-films [95, 96], hcp ε-martensite designs [81, 98, 99]).
- Aluminum alloys:
- Challenges: High energy intensity of primary production [107], limited load-bearing capacity at elevated temperatures (>220°C) [104].
- Solutions: Developing creep-resistant alloys for higher temperature applications (lightweighting in transport [103], power transmission [105], heat exchangers [106]). Key strategy: Precipitation strengthening with thermally stable, coarsening-resistant L12 nanoprecipitates (e.g., Al3Sc [108-120], Al3Zr [121-126], Al3Er [127, 128]). Design involves ternary/quaternary additions (Zr, Er, REEs) creating core-shell structures [114, 130-138, Figure 4], micro-alloying/inoculants (Si, Zn, Ge, Sn, Sb) [139-145], replacing expensive Sc [146-151], adding refractory elements (Ti, Hf, V, Nb, Ta) [152-156], and dual precipitation with α-Al(Fe,Mn)Si phases [165-173, Figure 5]. Recycling offers significant energy savings (92%) [107].
- Titanium alloys:
- Challenges: Energy-intensive extraction (Kroll process [180]), high cost, difficult certification for new alloys (aerospace dominance).
- Solutions: Cost reduction via cheaper alloying elements (Fe for V [183, 184]), increased scrap usage [182], near-net-shape processing (AM [23]). Improving existing alloys:
- (α+β) alloys: Enhancing strength/toughness balance through hierarchical microstructures [185] by controlling α precipitation from β using metastable phases (ω [189, 191-193], α″ martensite [190, 196, Figure 6], O′ [197], O″ [198]). Stress-induced α″ enables superelasticity [199-202].
- Near α alloys: Mitigating cold dwell fatigue [186] by understanding and controlling microtexture and slip anisotropy (role of Mo, load shedding [203-210, Figure 7]).
- γ-TiAl alloys: Increasing operating temperature (>750°C [188]) by controlling detrimental metastable phases (β/B2, ω, O phase [211-217]) formed at service temperatures, potentially via alloying (Zr, Mo) and strain engineering.
- Magnesium alloys:
- Challenges: Low density but high CO2 emissions in production (Pidgeon process [218, 223, Figure 8]), poor corrosion resistance [224], relative immaturity as structural material, complex behavior due to HCP structure.
- Solutions: Holistic life cycle view is critical. Alloy design informed by ICME [235]: using CALPHAD [225, 226] and diffusion data [227], understanding solidification [229-232], controlling texture during wrought processing [234], activating slip for ductility via alloying (REs, Y, Ca, Mn, Zn, Al [236-242, Figure 9, Figure 10]), understanding deformation/recrystallization mechanisms [243-258], and precipitation hardening [259-262].
- Superalloys:
- Challenges: Reaching temperature limits of Ni-base alloys in high-pressure turbines [263, 264, Figure 11], reliance on expensive/critical elements (Re).
- Solutions: Developing higher melting point materials (SiC-SiC [266], refractory alloys [267-269], Co-base γ-γ' alloys [270-273]). For Co-base alloys (precipitating L12 Co3(Al,W) [270, Figure 12]): navigating large compositional space using computational tools (DFT for stacking fault energy [287, Figure 13a], CALPHAD [302-305]), understanding unique deformation mechanisms (SISF/SESF shearing [281, 282, 285, 286]), developing W-free [292-301] and Re-free compositions, ensuring oxidation resistance and coating compatibility [311-315]. Continued development of constitutive/degradation models is needed [316].
- Shape Memory Alloys (SMAs):
- Challenges: Limited functional lifetime (fatigue) hinders applications in actuation (e.g., aerospace [317]) and potentially high-efficiency elastocaloric cooling/heat pumps [318-322, Figure A1].
- Solutions:
- NiTi: Improving functional fatigue life (>10^7 cycles [332]) by understanding defect generation [331] and tailoring transformation strain/hysteresis via alloying (cofactor conditions [332-336]) and introducing nanoscale precipitates [334].
- CuZnAl: Exploring as a cheaper, lower-stress alternative [329, 337-341]; requires understanding its phase transformations (B2 -> 18R [342], γ phase [343, 346]) and stabilization strategies [345, 347]. Resource availability favors CuZnAl [346].
- High Entropy Alloys (HEAs) and Complex Concentrated Alloys (CCAs):
- Challenges: Moving beyond traditional single-base alloy design [348]; vast compositional space [349, 350]; constraints from cost, price volatility, resource availability (HHI Index [15, Figure 14]), and recyclability [15, Table 1]; need for fundamental understanding beyond configurational entropy [351, 363].
- Solutions: Rational element selection based on sustainability criteria [15]. Developing design rules based on physics (e.g., lattice distortion [363], solid-solution strengthening [360, 361, 364], ductility criteria [362]). Employing multi-mechanism design: introducing intermetallic precipitates (high entropy superalloys [365]) or short-range order (SRO) [366-368]. Utilizing high-throughput experimental [369-373] and computational methods. Expanding the design space by integrating concepts from functional materials research [375-377, Figure 15].
5. Research Methodology
Research Design:
This study employs a comprehensive literature review methodology. It synthesizes existing knowledge and research findings from a wide range of published scientific papers, reports, and databases.
Data Collection and Analysis Methods:
The authors collected data from published literature concerning the sustainability aspects of metals production and use, including environmental impacts (energy consumption, emissions, resource depletion), life cycle assessments, recycling challenges, and resource availability. They analyzed research focused on alloy design strategies within seven major alloy systems (steels, Al, Ti, Mg, superalloys, SMAs, HEAs/CCAs). The analysis involved identifying key sustainability challenges specific to each alloy system and reviewing alloy design approaches proposed or implemented to address these challenges. The findings were synthesized to highlight promising opportunities and guide future research directions.
Research Topics and Scope:
The research focuses on the intersection of materials science, specifically alloy design, and sustainability. The scope covers:
- General sustainability challenges in the metals sector: life cycle impacts, energy and resource consumption, emissions, recycling, material criticality.
- Specific challenges and alloy design opportunities within seven major structural and functional alloy systems:
- Steels
- Aluminum alloys
- Titanium alloys
- Magnesium alloys
- Superalloys
- Shape memory alloys
- High entropy alloys (HEAs) and complex concentrated alloys (CCAs)
- The role of alloy composition, microstructure, processing, and properties in influencing sustainability outcomes (e.g., lightweighting, efficiency, durability, recyclability).
- The application of computational and high-throughput methods in sustainable alloy design.
6. Key Results:
Key Results:
The review highlights that alloy design is a powerful tool for addressing sustainability challenges in metallurgy, offering diverse opportunities summarized in Table 2. Key strategies identified across various alloy systems include:
- Improving material efficiency: Designing alloys with enhanced combinations of properties (e.g., strength and ductility in AHSS, (α+β) Ti alloys, HEAs/CCAs) allows for reduced material usage ("doing more with less").
- Extending functional lifetime: Developing alloys with superior resistance to wear, fatigue, hydrogen embrittlement (steels, Ti), cold dwell fatigue (Ti), and improving functional stability (SMAs) reduces the need for replacement. Designing for reuse and recycling (steels, HEAs/CCAs) also contributes.
- Enhancing energy efficiency: Creating alloys stable at higher temperatures (Al alloys, γ-TiAl, superalloys) enables more efficient engines and energy systems. Developing materials for novel efficient technologies like elastocaloric heat pumps (SMAs) offers new pathways.
- Sustainable compositions: Strategically selecting alloying elements to replace scarce, costly, or environmentally problematic ones (e.g., Sc in Al, Re in superalloys, W in Co-base alloys) and designing alloys compatible with existing recycling streams or enabling new ones are crucial.
- Enabling tools: Computational materials science (ICME, DFT, CALPHAD) and high-throughput experimental techniques are essential for navigating complex alloy design spaces and accelerating the development of sustainable materials.
- Life Cycle Perspective: A consistent theme is the necessity of considering the entire life cycle – from extraction to end-of-life – when evaluating the sustainability benefits of alloy design choices.
![Figure 11. Aircraft engine schematic (GE 90) along with constituent materials by weight. Adapted from Schafrik et. al. [265].](https://castman.co.kr/wp-content/uploads/image-2193.webp)
Figure Name List:
- Table 1. Recoverability of alloying elements during extractive metallurgical processes. Green indicates that an element can be recovered in a single stage recovery process. Yellow indicates that an element is likely lost in a single stage recovery process (requiring subsequent post-recovery) without detriment to the carrier metal. Red indicates that an element cannot be economically recovered and are potentially detrimental to the carrier metal. Reproduced from [15].
- Figure 1. Geographic concentration for relevant materials. Concentrated supply chains are more vulnerable to disruption from socio-political upheaval, weather, and manufacturing bottlenecks.
- Figure 2. Energy Sankey diagram for the primary steel supply chain. Reproduced from [31].
- Figure 3. Ultimate tensile strength (MPa) versus elongation of high manganese TWIP or TRIPlex steels. Reproduced from [74].
- Figure 4. (a,b,c) LEAP tomography dataset obtained from an Al-0.08Zr-0.014Sc-0.008Er-0.10Si (at.%) alloy (further described in Refs. [150,151] over-aged for 21 day at 375°C, with Al atoms omitted for clarity; (b) and (c) display only the Zr and Sc atoms, respectively. (d) Associated proximity histogram showing (Al,Si)3(Zr,Sc,Er) concentration profile with a representative nano-precipitate in inset.
- Figure 5. STEM HAADF micrographs obtained from a Mo- and Mn-modified Al-Zr-Sc-Er-Si alloy aged 11 days at 400°C [172]. The α-AlMnSi precipitates exhibit an orientation relationship with the matrix, displaying both coherent and semi-coherent interfaces. The α-AlMnSi and L12 Al3M coexist and contribute jointly to strengthening.
- Figure 6. Lattice correspondence between the orthorhombic martensite α″ and the β phase with body centered cubic structure. Reproduced from [384].
- Figure 7. Illustration of the Stroh model [385] for planar slip in two neighbouring hexagonal grains. Reproduced from [186].
- Figure 8. Savings of greenhouse gas emissions during use stage for different magnesium scenarios. Reproduced from [223]
- Figure 9. Activation energy for cross-slip and ductility index χ for binary and higher-order Mg alloys. (A) Average solute contribution to energy difference ∆EII−I(c) between the pyramidal I and II (c+a) screw dislocations for various REs. Al, Zn, Zr, Ca, Mn, and Ag, immediately showing which solutes will be effective in enhancing ductility. (B) Predicted pyramidal II-I cross-slip activation energy barrier including solute fluctuations and ductility index χ for binary Mg alloys as a function of solute concentration c for the same solutes. χ > 1 indicates favorable conditions for ductility. RE solutes achieve χ > 1 at very low concentrations; Zr and Ca are also highly effective, and Mn is moderately effective. Zn and Ag (almost identical) have χ < 0 and do not reach favorable conditions for ductility. (C) Mg-Al-X-X’ with varying Al concentrations and (D) Mg-Zn-X-X’ with varying Zn concentrations. In (c), Al-Ca, Al-Mn, and Al-Ca-Mn reach the favorable ductility condition χ > 1 over some ranges of Al concentrations, and binary Mg-Al approaches χ = 0 at 1 to 3 at % Al. In (D), Zn-Ce, Zn-Mn, Zn-Mn-Ce, Zn-Zr, and Zn-Gd reach the favorable ductility condition χ > 1 at low Zn concentrations, and χ decreases as the Zn concentration increases. In (C) and (D), predictions are shown for Al and Zn concentrations above their very dilute limits; 0.1% wt Ca and 0.2% wt Ce can be in the very dilute limits. Attainable solute concentrations are limited by solubility and precipitation, factors not assessed here. The individual labels indicate solute weight percentage to make contact with standard alloy nomenclature. Reproduced from [241]
- Figure 10. Computed values of the yttrium-similarity index, YSI for the 2850 solute pairs computed in this study and visualized in the form of a symmetric matrix (a) with yellow indicating a high similarity and blue a low one. Solute pairs that have a high index (YSI > 0.95) are shown in the upper triangular part in (b). Applying a cost and solubility filter only a single pair, Al-Ca, remains (c). Reproduced from [242].
- Figure 11. Aircraft engine schematic (GE 90) along with constituent materials by weight. Adapted from Schafrik et. al. [265].
- Figure 12. (a) Microstructure of a Co-Al-W based alloy (45.9Co-9.8Al-6.3W-6.4Cr-2.4Ta-29.2Ni, at%), (b) compared to the microstructure of a commercial Ni-base alloy (René N5) and (c) TEM weak beam image of superlattice intrinsic stacking faults that form in the L12 precipitates during deformation of Co-base alloys at elevated temperatures.
- Figure 13. (a) The superlattice stacking fault energy (defined as the normalized difference between the energy of the L12 and DO19 structures) for Co3(Al, W) compared to Ni3Al, calculated with 32 atom supercells using density functional theory [287] and (b) the effect of solute addition to the Co3X and the scaling of the solvus with the SISF.
- Figure 14. (a) Alloy price in ($/mol) versus number of elements in alloy. (b) Price volatility versus number of elements in alloy. (c) Herfindahl-Hirschman Index (HHI) for various elements. Reproduced from [15].
- Figure 15. Diagrams illustrating the crystal structures of (a) the constituent elements at 600°C that make up the Cantor alloy, CoCrFeMnNi, and (b) oxide phases that have been mixed in equal proportions to produce a high entropy rocksalt (B1) structure [377] with oxygen (gray) atoms on one sublattice and a mixture of the metallic ions on the other sublattice. Three different types of cubic crystals produce an FCC solid solution in (a), and a mixture of cubic, monoclinic and hexagonal phases produce a cubic rocksalt structure in (b).
- Table 2. Summary table of sustainability challenges and key opportunities for each alloy system.
- Figure A1. Tusek’s regenerator. Elastocaloric material is held between grips. Starting in the austenite, the regenerator is loaded (a), causing the martensite transformation and heating of the superelastic material. (b) Fluid is pumped through the hot side heat exchanger HHEX, rejecting heat. (c) The regenerator is compressed into the austenite, cooling it, before finally at (d) the hot fluid is cooled and passed through the cold heat exchanger (CHEX). Redrawn from [380].
7. Conclusion:
This review has highlighted the most promising opportunities for using alloy design as a sustainable tool across seven different alloy systems, summarized in Table 2. These opportunities range from reducing material quantities via property improvements and extending functional lifetimes, to increasing stability at high temperatures for enhanced efficiency. Achieving these goals requires both environmentally-conscious selection of alloying elements and the use of computationally-informed material design strategies.
Common themes emerge, such as the simultaneous improvement of strength and ductility (e.g., in steels, Ti alloys, HEAs) to use less material, and increasing alloy lifetime through enhanced durability or enabling reuse/recycling. Energy efficiency gains are pursued through lightweighting (Mg, Al, steels) and developing materials for high-temperature applications (Al, γ-TiAl, superalloys) or novel cycles (SMAs). Sustainability considerations must permeate alloy design, from element selection (e.g., replacing Sc in Al, Re/W in superalloys) to designing for recyclability.
Theory and computational approaches (ICME, DFT, CALPHAD, phase-field, finite element, statistical methods) are indispensable for navigating the complex design spaces and accelerating progress. The increasing environmental burden from metal production [21, 12, 378] necessitates deliberate, informed decisions in alloy design. By focusing on the identified challenges and opportunities through conscientious alloy design, the metallurgical community can address urgent environmental issues and forge a sustainable path forward.
8. References:
[1] Krausmann F, Wiedenhofer D, Lauk C, Haas W, Tanikawa H, Fishman T, et al. Global socioeconomic material stocks rise 23-fold over the 20th century and require half of annual resource use. Proc Natl Acad Sci 2017;114:1880–5. doi:10.1073/pnas.1613773114.
[2] Van der Voet E, Van Oers L, Verboon M, Kuipers K. Environmental implications of future demand scenarios for metals: methodology and application to the case of seven major metals. J Ind Ecol 2018;23:141–55. doi:10.1111/jiec.12722.
[3] Nuss P, Eckelman MJ. Life cycle assessment of metals: A scientific synthesis. PLoS One 2014;9:e101298. doi:10.1371/journal.pone.0101298.
[4] A fresh design for the GREET life cycle analysis tool n.d. https://greet.es.anl.gov/net (2016).
[5] Keoleian G, Miller S, De Kleine R, Fang A, Mosley J. Life cycle materials update for GREET model. 2012.
[6] Burnham A, Wang MQ, Wu Y. Development and applications of GREET 2.7 -- The transportation vehicle-cycle model. Argonne National Laboratory; 2006. doi:10.2172/898530.
[7] Kelly JC, Sullivan JL, Burnham A, Elgowainy A. Impacts of Vehicle Weight Reduction via Material Substitution on Life-Cycle Greenhouse Gas Emissions. Environ Sci Technol 2015;49:12535–42. doi:10.1021/acs.est.5b03192.
[8] Tolcin AC, editor. Mineral Commodity Summaries 2019. US Geological Survey; 2019. doi:10.3133/70202434.
[9] Nassar NT, Graedel TE, Harper EM. By-product metals are technologically essential but have problematic supply. Sci Adv 2015;1:e1400180. doi:10.1126/sciadv.1400180.
[10] Allwood JM, Cullen JM, Milford RL. Options for achieving a 50% cut in industrial carbon emissions by 2050. Environ Sci Technol 2010;44:1888–94. doi:10.1021/es902909k.
[11] Nuss P, Eckelman MJ. Life cycle assessment of metals: a scientific synthesis. PLoS One 2014;9:e101298. doi:10.1371/journal.pone.0101298.
[12] Greenfield A, Graedel TE. The omnivorous diet of modern technology. Resour Conserv Recycl 2013;74:1–7. doi:10.1016/j.resconrec.2013.02.010.
[13] Dahmus JB, Gutowski TG. What gets recycled: An information theory based model for product recycling. Environ Sci Technol 2007;41:7543–50. doi:10.1021/es062254b.
[14] Worrell E, Reuter MA. Handbook of Recycling: State-of-the-art for Practitioners, Analysts, and Scientists. Elsevier; 2014. doi:10.1016/b978-0-12-396459-5.00001-5.
[15] Fu X, Schuh CA, Olivetti EA. Materials selection considerations for high entropy alloys. Scr Mater 2017;138:145–50. doi:10.1016/j.scriptamat.2017.03.014.
[16] Offerman SE. Critical materials: Underlying causes and sustainable mitigation strategies. World Sci Ser Curr Energy Issues 2019;5.
[17] Graedel TE, Harper EM, Nassar NT, Reck BK. On the materials basis of modern society. Proc Natl Acad Sci 2015;112:6295–300. doi:10.1073/pnas.1312752110.
[18] Alonso E, Gregory J, Field F, Kirchain R. Material availability and the supply chain: Risks, effects, and responses. Environ Sci Technol 2007;41:6649–56. doi:10.1021/es070159c.
[19] Alonso E, Sherman AM, Wallington TJ, Everson MP, Field FR, Roth R, et al. Evaluating rare earth element availability: A case with revolutionary demand from clean technologies. Environ Sci Technol 2012;46:3406–14. doi:10.1021/es203518d.
[20] Fu X, Polli A, Olivetti E. High-resolution insight into materials criticality: Quantifying risk for by-product metals from primary production. J Ind Ecol 2018. doi:10.1111/jiec.12757.
[21] Allwood JM, Cullen JM. Sustainable Materials With Both Open Eyes. 2012.
[22] Milford RL, Allwood JM, Cullen JM. Assessing the potential of yield improvements, through process scrap reduction, for energy and CO2 abatement in the steel and aluminium sectors. Resour Conserv Recycl 2011;55:1185–95. doi:10.1016/j.resconrec.2011.05.021.
[23] Kellens K, Baumers M, Gutowski TG, Flanagan W, Lifset R, Duflou JR. Environmental Dimensions of Additive Manufacturing: Mapping Application Domains and Their Environmental Implications. J Ind Ecol 2017;21:S49–68. doi:10.1111/jiec.12629.
[24] Dunant CF, Drewniok MP, Sansom M, Corbey S, Cullen JM, Allwood JM. Options to make steel reuse profitable: An analysis of cost and risk distribution across the UK construction value chain. J Clean Prod 2018;183:102–11. doi:10.1016/j.jclepro.2018.02.141.
[25] World Steel Association. World Steel in Figures 2019 2019:3–30.
[26] Hasanbeigi A, Arens M, Price L. Alternative emerging ironmaking technologies for energy efficiency and carbon dioxide emissions reduction: A technical review. Renew Sustain Energy Rev 2014;33:645–58. doi:10.1016/j.rser.2014.02.031.
[27] Zhang Q, Zhao X, Lu H, Ni T, Li Y. Waste energy recovery and energy efficiency improvement in China’s iron and steel industry. Appl Energy 2017;191:502–20. doi:10.1016/j.apenergy.2017.01.072.
[28] Kirschen M, Badr K, Pfeifer H. Influence of direct reduced iron on the energy balance of the electric arc furnace in steel industry. Energy 2011;36:6146–55. doi:10.1016/j.energy.2011.07.050.
[29] Saboohi Y, Fathi A, Škrjanc I, Logar V. Optimization of the electric arc furnace process. IEEE Trans Ind Electron 2019;66:8030–9. doi:10.1109/TIE.2018.2883247.
[30] Suopajärvi H, Umeki K, Mousa E, Hedayati A, Romar H, Kemppainen A, et al. Use of biomass in integrated steelmaking – Status quo, future needs and comparison to other low-CO2 steel production technologies. Appl Energy 2018;213:384–407. doi:10.1016/j.apenergy.2018.01.060.
[31] McBrien M, Serrenho AC, Allwood JM. Potential for energy savings by heat recovery in an integrated steel supply chain. Appl Therm Eng 2016;103:592–606. doi:10.1016/j.applthermaleng.2016.04.099.
[32] Leeson D, Mac Dowell N, Shah N, Petit C, Fennell PS. A Techno-economic analysis and systematic review of carbon capture and storage (CCS) applied to the iron and steel, cement, oil refining and pulp and paper industries, as well as other high purity sources. Int J Greenh Gas Control 2017;61:71–84. doi:10.1016/j.ijggc.2017.03.020.
[33] Griffin PW, Hammond GP. Industrial energy use and carbon emissions reduction in the iron and steel sector: A UK perspective. Appl Energy 2019;249:109–25. doi:10.1016/j.apenergy.2019.04.148.
[34] Allanore A, Yin L, Sadoway DR. A new anode material for oxygen evolution in molten oxide electrolysis. Nature 2013;497:353–6. doi:10.1038/nature12134.
[35] Allwood J, Cullen J. Sustainable Materials - with Both Eyes Open. UIT Cambridge; 2011.
[36] Rashid MS. Dual Phase Steels. Ann Rev Mater Sci 1981;11:245–66.
[37] Jacques PJ, Furnémont Q, Lani F, Pardoen T, Delannay F. Multiscale mechanics of TRIP-assisted multiphase steels: I. Characterization and mechanical testing. Acta Mater 2007;55:3681–93. doi:10.1016/j.actamat.2007.02.029.
[38] De Cooman BC, Estrin Y, Kim SK. Twinning-induced plasticity (TWIP) steels. Acta Mater 2018;142:283–362. doi:10.1016/j.actamat.2017.06.046.
[39] Grässel O, Krüger L, Frommeyer G, Meyer LW. High-strength Fe-Mn-(Al, Si) TRIP/TWIP steels development-properties-application. Int J Plast 2000;16:1391–409.
[40] Grässel O, Krüger L, Frommeyer G, Meyer LW. High strength Fe-Mn-(Al,Si) TRIP / TWIP steels development - properties - application. Int J Plast 2000;16:1391–409. doi:10.1016/S0749-6419(00)00015-2.
[41] Suh DW, Kim SJ. Medium Mn transformation-induced plasticity steels: Recent progress and challenges. Scr Mater 2017;126:63–7. doi:10.1016/j.scriptamat.2016.07.013.
[42] Wang MM, Tasan CC, Ponge D, Kostka A, Raabe D. Smaller is less stable: Size effects on twinning vs. transformation of reverted austenite in TRIP-maraging steels. Acta Mater 2014;79:268–81. doi:10.1016/j.actamat.2014.07.020.
[43] Edmonds D V, He K, Rizzo FC, De Cooman BC, Matlock DK, Speer JG. Quenching and partitioning martensite—A novel steel heat treatment. Mater Sci Eng A 2006;438440:25–34. doi:10.1016/j.msea.2006.02.133.
[44] Tasan CC, Diehl M, Yan D, Bechtold M, Roters F, Schemmann L, et al. An overview of dual phase steels: Advances in microstructure-oriented processing and micromechanically guided design. Annu Rev Mater Res 2015;45:391–431. doi:10.1146/annurev-matsci-070214-021103.
[45] Kim JH, Sung JH, Piao K, Wagoner RH. The shear fracture of dual-phase steel. Int J Plast 2011;27:1658–76. doi:10.1016/j.ijplas.2011.02.009.
[46] Hoefnagels JPM, Tasan CC, Maresca F, Peters FJ, Kouznetsova VG. Retardation of plastic instability via damage-enabled microstrain delocalization. J Mater Sci 2015;50:6882–97. doi:10.1007/s10853-015-9164-0.
[47] Tasan CC, Hoefnagels JPM, ten Horn CHLJ, Geers MGD. Experimental analysis of strain path dependent ductile damage mechanics and forming limits. Mech Mater 2009;41:1264–76. doi:10.1016/j.mechmat.2009.08.003.
[48] Wang W, Li M, He C, Wei X, Wang D, Du H. Experimental study on high strain rate behavior of high strength 600-1000 MPa dual phase steels and 1200 MPa fully martensitic steels. Mater Des 2013;47:510–21. doi:10.1016/j.matdes.2012.12.068.
[49] Koyama M, Tasan CC, Akiyama E, Tsuzaki K, Raabe D. Hydrogen-assisted decohesion and localized plasticity in dual-phase steel. Acta Mater 2014;70:174–87. doi:10.1016/j.actamat.2014.01.048.
[50] Calcagnotto M, Ponge D, Demir E, Raabe D. Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD. Mater Sci Eng A 2010;527:2738–46. doi:10.1016/j.msea.2010.01.004.
[51] Ramazani A, Mukherjee K, Schwedt A, Goravanchi P, Prahl U, Bleck W. Quantification of the effect of transformation-induced geometrically necessary dislocations on the flow-curve modelling of dual-phase steels. Int J Plast 2013;43:128–52. doi:10.1016/j.ijplas.2012.11.003.
[52] Calcagnotto M, Adachi Y, Ponge D, Raabe D. Deformation and fracture mechanisms in fine- and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging. Acta Mater 2011;59:658–70. doi:10.1016/j.actamat.2010.10.002.
[53] Maresca F, Kouznetsova VG, Geers MGD. Deformation behaviour of lath martensite in multi phase steels. Scr Mater 2016;110:74–7. doi:10.1016/j.scriptamat.2015.08.004.
[54] Maresca F, Kouznetsova VG, Geers MGD. Subgrain lath martensite mechanics: A numerical–experimental analysis. J Mech Phys Solids 2014;73:69–83. doi:10.1016/j.jmps.2014.09.002.
[55] Tasan CC, Hoefnagels JPM, Geers MGD. Microstructural banding effects clarified through micrographic digital image correlation. Scr Mater 2010;62:835–8. doi:10.1016/J.SCRIPTAMAT.2010.02.014.
[56] Wang M-M, Hell J-C, Tasan CC. Martensite size effects on damage in quenching and partitioning steels. Scr Mater 2017;138:1–5. doi:10.1016/J.SCRIPTAMAT.2017.05.021.
[57] Haase C, Barrales-Mora LA, Roters F, Molodov DA, Gottstein G. Applying the texture analysis for optimizing thermomechanical treatment of high manganese twinning-induced plasticity steel. Acta Mater 2014;80:327–40. doi:10.1016/j.actamat.2014.07.068.
[58] Li Y, Li W, Hu JC, Song HM, Jin XJ. Compatible strain evolution in two phases due to epsilon martensite transformation in duplex TRIP-assisted stainless steels with high hydrogen embrittlement resistance. Int J Plast 2017;88:53–69. doi:10.1016/j.ijplas.2016.09.012.
[59] Yan D, Tasan CC, Raabe D. High resolution in situ mapping of microstrain and microstructure evolution reveals damage resistance criteria in dual phase steels. Acta Mater 2015;96:399–409. doi:10.1016/j.actamat.2015.05.038.
[60] Maire E, Withers PJ. Quantitative X-ray tomography. Int Mater Rev 2013;59:1–43. doi:10.1179/1743280413Y.0000000023.
[61] Dykeman J, Malcolm S, Yan B, Chintamani J, Huang G, Ramisetti N, et al. Characterization of Edge Fracture in Various Types of Advanced High Strength Steel. SAE Tech. Pap. Ser., 2011. doi:10.4271/2011-01-1058.
[62] Lara A, Picas I, Casellas D. Effect of the cutting process on the fatigue behaviour of press hardened and high strength dual phase steels. J Mater Process Technol 2013. doi:10.1016/j.jmatprotec.2013.05.003.
[63] Ardeljan M, Knezevic M, Nizolek T, Beyerlein IJ, Mara NA, Pollock TM. A study of microstructure-driven strain localizations in two-phase polycrystalline HCP/BCC composites using a multi-scale model. Int J Plast 2015;74:35–57. doi:10.1016/j.ijplas.2015.06.003.
[64] Tasan CC, Hoefnagels JPM, Diehl M, Yan D, Roters F, Raabe D. Strain localization and damage in dual phase steels investigated by coupled in-situ deformation experiments and crystal plasticity simulations. Int J Plast 2014;63:198–210. doi:10.1016/j.ijplas.2014.06.004.
[65] Allwood JM, Cullen JM, Carruth MA, University of Cambridge. Engineering Department. Sustainable materials with both eyes open. UIT Cambridge Ltd; 2012.
[66] Cooper DR, Allwood JM. Reusing steel and aluminum components at end of product life. Environ Sci Technol 2012. doi:10.1021/es301093a.
[67] Cooper DR, Ryan NA, Syndergaard K, Zhu Y. The potential for material circularity and independence in the U.S. steel sector. J Ind Ecol 2020:jiec.12971. doi:10.1111/jiec.12971.
[68] Hiremath AM, Tilwankar AK, Asolekar SR. Significant steps in ship recycling vis-a-vis wastes generated in a cluster of yards in Alang: a case study. J Clean Prod 2015;87:520–32. doi:https://doi.org/10.1016/j.jclepro.2014.09.031.
[69] Mikelis NE. A statistical overview of ship recycling. WMU J Marit Aff 2008;7:227–39. doi:10.1007/BF03195133.
[70] Goodwyn W. When The Ship Comes In To Brownsville, Rip It Up: NPR 2012.
[71] Maroufmashat A, Fowler M. Transition of future energy system infrastructure; through power-to gas pathways. Energies 2017. doi:10.3390/en10081089.
[72] Haeseldonckx D, D’haeseleer W. The use of the natural-gas pipeline infrastructure for hydrogen transport in a changing market structure. Int J Hydrogen Energy 2007. doi:10.1016/j.ijhydene.2006.10.018.
[73] Winsche WE, Hoffman KC, Salzano FJ. Hydrogen: Its future role in the nation’s energy economy. Science (80- ) 1973. doi:10.1126/science.180.4093.1325.
[74] Gutierrez-Urrutia I, Raabe D. Multistage strain hardening through dislocation substructure and twinning in a high strength and ductile weight-reduced Fe-Mn-Al-C steel. Acta Mater 2012;60:5791–802. doi:10.1016/j.actamat.2012.07.018.
[75] Springer H, Raabe D. Rapid alloy prototyping: Compositional and thermo-mechanical high throughput bulk combinatorial design of structural materials based on the example of 30Mn-1.2C xAl triplex steels. Acta Mater 2012;60:4950–9. doi:10.1016/j.actamat.2012.05.017.
[76] Zhang J, Raabe D, Tasan CC. Designing duplex, ultrafine-grained Fe-Mn-Al-C steels by tuning phase transformation and recrystallization kinetics. Acta Mater 2017. doi:10.1016/j.actamat.2017.09.026.
[77] Springer H, Baron C, Szczepaniak A, Uhlenwinkel V, Raabe D. Stiff, light, strong and ductile: nano-structured High Modulus Steel. Sci Rep 2017;7. doi:10.1038/s41598-017-02861-3.
[78] Das Bakshi S, Shipway PH, Bhadeshia HKDH. Three-body abrasive wear of fine pearlite, nanostructured bainite and martensite. Wear 2013;308:46–53. doi:10.1016/j.wear.2013.09.008.
[79] Das Bakshi S, Leiro A, Prakash B, Bhadeshia HKDH. Dry rolling / sliding wear of nanostructured pearlite. Wear 2017;836:70–8. doi:10.1179/1743284714Y.0000000751.
[80] Koyama M, Zhang Z, Wang M, Ponge D, Raabe D, Tsuzaki K, et al. Bone-like crack resistance in hierarchical metastable nanolaminate steels. Science (80- ) 2017. doi:10.1126/science.aal2766.
[81] Ichii K, Koyama M, Tasan CC, Tsuzaki K. Comparative study of hydrogen embrittlement in stable and metastable high-entropy alloys. Scr Mater 2018;150:74–7. doi:https://doi.org/10.1016/j.scriptamat.2018.03.003.
[82] Archard JF. Contact and rubbing of flat surfaces. J Appl Phys 1953;24:981–8. doi:10.1063/1.1721448.
[83] Ojala N, Valtonen K, Heino V, Kallio M, Aaltonen J, Siitonen P, et al. Effects of composition and microstructure on the abrasive wear performance of quenched wear resistant steels. Wear 2014;317:225–32. doi:10.1016/j.wear.2014.06.003.
[84] Xu X, van der Zwaag S, Xu W. A novel multi-pass dual-indenter scratch test to unravel abrasion damage formation in construction steels. Wear 2015;322–323:51–60. doi:10.1016/j.wear.2014.10.011.
[85] Chintha AR. Metallurgical aspects of steels designed to resist abrasion, and impact-abrasion wear. Mater Sci Technol (United Kingdom) 2019;35:1133–48. doi:10.1080/02670836.2019.1615669.
[86] Bhadeshia HKDH. Steels for bearings. Prog Mater Sci 2012. doi:10.1016/j.pmatsci.2011.06.002.
[87] Murakami Y, Nomoto T, Ueda T, Murakami Y. On the mechanism of fatigue failure in the superlong life regime (N>10 7 cycles). Part I: Influence of hydrogen trapped by inclusions. Fatigue Fract Eng Mater Struct 2000. doi:10.1046/j.1460-2695.2000.00328.x.
[88] MURAKAMI Y, YOKOYAMA NN, NAGATA J. Mechanism of fatigue failure in ultralong life regime. Fatigue Fract Eng Mater Struct 2002;25:735–46. doi:10.1046/j.1460-2695.2002.00576.x.
[89] McDowell DL, Dunne FPE. Microstructure-sensitive computational modeling of fatigue crack formation. Int J Fatigue 2010;32:1521–42. doi:10.1016/j.ijfatigue.2010.01.003.
[90] Louthan MR, Caskey GR. Hydrogen transport and embrittlement in structural metals. Int J Hydrogen Energy 1976;1:291–305.
[91] Garrison WM, Moody NR. Hydrogen embrittlement of high strength steels. Gaseous Hydrog Embrittlement Mater Energy Technol Probl Its Characterisation Eff Part Alloy Classes 2012:421–92. doi:10.1533/9780857093899.3.421.
[92] Koyama M, Tasan CC, Akiyama E, Tsuzaki K, Raabe D. Hydrogen-assisted decohesion and localized plasticity in dual-phase steel. Acta Mater 2014;70:174–87.
[93] Robertson IM, Sofronis P, Nagao A, Martin ML, Wang S, Gross DW, et al. Hydrogen embrittlement understood. Metall Mater Trans A Phys Metall Mater Sci 2015;46:2323–41. doi:10.1007/s11661-015-2836-1.
[94] Martin ML, Dadfarnia M, Nagao A, Wang S, Sofronis P. Enumeration of the hydrogen-enhanced localized plasticity mechanism for hydrogen embrittlement in structural materials. Acta Mater 2019;165:734–50. doi:10.1016/j.actamat.2018.12.014.
[95] Wang M, Tasan CC, Koyama M, Ponge D, Raabe D. Enhancing hydrogen embrittlement resistance of lath martensite by introducing nano-films of interlath austenite. Metall Mater Trans A 2015;46:3797–802. doi:10.1007/s11661-015-3009-y.
[96] Zhu X, Zhang K, Li W, Jin X. Effect of retained austenite stability and morphology on the hydrogen embrittlement susceptibility in quenching and partitioning treated steels. Mater Sci Eng A 2016;658:400–8. doi:10.1016/j.msea.2016.02.026.
[97] Bhadeshia HKDH. Prevention of hydrogen embrittlement in steels. ISIJ Int 2016;56:24–36. doi:10.2355/isijinternational.ISIJINT-2015-430.
[98] Bu Y, Li Z, Liu J, Wang H, Raabe D, Yang W. Nonbasal slip systems enable a strong and ductile hexagonal-close-packed high-entropy phase. Phys Rev Lett 2019;122:75502. doi:10.1103/PhysRevLett.122.075502.
[99] Wei S, Kim J, Tasan CC. Boundary micro-cracking in metastable Fe 45 Mn 35 Co 10 Cr 10 high entropy alloys. Acta Mater 2019;168:76–86. doi:10.1016/j.actamat.2019.01.036.
[100] Kuzmina M, Herbig M, Ponge D, Sandlöbes S, Raabe D. Linear complexions: Confined chemical and structural states at dislocations. Science (80- ) 2015;349:1080–3. doi:10.1126/science.aab2633.
[101] Maresca F, Kouznetsova VG, Geers MGD, Curtin WA. Contribution of austenite-martensite transformation to deformability of advanced high strength steels: From atomistic mechanisms to microstructural response. Acta Mater 2018;156:463–78. doi:10.1016/j.actamat.2018.06.028.
[102] IPCC. Climate change 2014: Synthesis report. Contribution of working groups I, II and III to the gifth assessment report of the intergovernmental panel on climate change. Geneva, Switzerland: 2014. doi:10.1017/CBO9781107415324.004.
[103] Mallick PK, editor. Materials, design and manufacturing for lightweight vehicles. 1st ed. Boca Raton, Fla. : Oxford: CRC Press ; Woodhead; 2010.
[104] Knipling KE, Dunand DC, Seidman DN. Criteria for developing castable, creep-resistant aluminum-based alloys – A review. Zeitschrift Für Met 2006;97:246–65. doi:10.3139/146.101249.
[105] Flores FU, Seidman DN, Dunand DC, Vo NQ. Development of high-strength and high-electrical conductivity aluminum alloys for power transmission conductors. Light Met 2018 TMS 2018 2018:247–51. doi:10.1007/978-3-319-72284-9_34.
[106] Shah RK. Advances in science and technology of compact heat exchangers. Heat Transf Eng 2006;27:3–22. doi:10.1080/01457630600559462.
[107] The Aluminum Association. The environmental footprint of semi-finished aluminum products in North America: A life cycle assessment report. 2013.
[108] Torma T, Kovács-Csetényi E, Turmezey T, Ungár T, Kovács I. Hardening mechanisms in Al-Sc alloys. J Mater Sci 1989;24:3924–7. doi:10.1007/BF01168955.
[109] Jo H-H, Fujikawa S-I. Kinetics of precipitation in Al3Sc alloys and low temperature solid solubility of scandium in aluminium studied by electrical resistivity measurements. Mater Sci Eng A 1993;171:151–61. doi:10.1016/0921-5093(93)90401-Y.
[110] Bo H, Liu LB, Hu JL, Jin ZP. Experimental study and thermodynamic modeling of the Al-Sc-Zr system. Comput Mater Sci 2017;133:82–92. doi:10.1016/j.commatsci.2017.02.029.
[111] Toropova LS, Eskinm DG, Kharakterovam ML, Dobatkina T V. Advanced aluminum alloys containing scandium: Structure and properties. 1998.
[112] Davydov VG, Rostova TD, Zakharov V V., Filatov YA, Yelagin VI. Scientific principles of making an alloying addition of scandium to aluminium alloys. Mater Sci Eng A 2000;280:30–6. doi:10.1016/S0921-5093(99)00652-8.
[113] Zakharov V V. Effect of scandium on the structure and properties of aluminum alloys. Met Sci Heat Treat 2003;45:246–53. doi:10.1023/A:1027368032062.
[114] Belov NA, Alabin AN, Eskin DG, Istomin-Kastrovskii V V. Optimization of hardening of Al–Zr–Sc cast alloys. J Mater Sci 2006;41:5890–9. doi:10.1007/s10853-006-0265-7.
[115] Deschamps A, Lae L, Guyot P. In situ small-angle scattering study of the precipitation kinetics in an Al–Zr–Sc alloy. Acta Mater 2007;55:2775–83. doi:10.1016/j.actamat.2006.12.015.
[116] Royset J. Scandium In aluminium alloys: Physical metallurgy, properties and applications. Metall Sci Technol 2013;25.
[117] Riva S, Yusenko K V., Lavery NP, Jarvis DJ, Brown SGR. The scandium effect in multicomponent alloys. Int Mater Rev 2016;61:203–28. doi:10.1080/09506608.2015.1137692.
[118] Yang C, Zhang P, Shao D, Wang RH, Cao LF, Zhang JY, et al. The influence of Sc solute partitioning on the microalloying effect and mechanical properties of Al-Cu alloys with minor Sc addition. Acta Mater 2016;119:68–79. doi:10.1016/j.actamat.2016.08.013.
[119] Marquis EA, Seidman DN. Nanoscale structural evolution of Al3Sc precipitates in Al(Sc) alloys. Acta Mater 2001;49:1909–19. doi:10.1016/S1359-6454(01)00116-1.
[120] Seidman DN, Marquis EA, Dunand DC. Precipitation strengthening at ambient and elevated temperatures of heat-treatable Al(Sc) alloys. Acta Mater 2002;50:4021–35. doi:10.1016/S1359-6454(02)00201-X.
[121] Nes E. Precipitation of the metastable cubic Al3Zr-phase in subperitectic Al-Zr alloys. Acta Metall 1972;20:499–506. doi:10.1016/0001-6160(72)90005-3.
[122] Knipling KE, Dunand DC, Seidman DN. Nucleation and precipitation strengthening in dilute Al Ti and Al-Zr alloys. Metall Mater Trans A 2007;38:2552–63. doi:10.1007/s11661-007-9283-6.
[123] Knipling KE, Dunand DC, Seidman DN. Precipitation evolution in Al–Zr and Al–Zr–Ti alloys during isothermal aging at 375–425°C. Acta Mater 2008;56:114–27. doi:10.1016/j.actamat.2007.09.004.
[124] Knipling KE, Dunand DC, Seidman DN. Precipitation evolution in Al–Zr and Al–Zr–Ti alloys during aging at 450–600°C. Acta Mater 2008;56:1182–95. doi:10.1016/j.actamat.2007.11.011.
[125] Li H, Bin J, Liu J, Gao Z, Lu X. Precipitation evolution and coarsening resistance at 400°C of Al microalloyed with Zr and Er. Scr Mater 2012;67:73–6. doi:10.1016/j.scriptamat.2012.03.026.
[126] Çadirli E, Tecer H, Şahin M, Yilmaz E, Kirindi T, Gündüz M. Effect of heat treatments on the microhardness and tensile strength of Al–0.25wt.% Zr alloy. J Alloys Compd 2015;632:229–37. doi:10.1016/j.jallcom.2015.01.193.
[127] van Dalen ME, Karnesky RA, Cabotaje JR, Dunand DC, Seidman DN. Erbium and ytterbium solubilities and diffusivities in aluminum as determined by nanoscale characterization of precipitates. Acta Mater 2009;57:4081–9. doi:10.1016/j.actamat.2009.05.007.
[128] Zhang Y, Gao K, Wen S, Huang H, Nie Z, Zhou D. The study on the coarsening process and precipitation strengthening of Al3Er precipitate in Al–Er binary alloy. J Alloys Compd 2014;610:27–34. doi:10.1016/j.jallcom.2014.04.093.
[129] Krug ME, Dunand DC. Modeling the creep threshold stress due to climb of a dislocation in the stress field of a misfitting precipitate. Acta Mater 2011;59:5125–34. doi:10.1016/j.actamat.2011.04.044.
[130] Fuller CB, Seidman DN, Dunand DC. Mechanical properties of Al(Sc,Zr) alloys at ambient and elevated temperatures. Acta Mater 2003;51:4803–14. doi:10.1016/S1359-6454(03)00320-3.
[131] Fuller C, Murray J, Seidman D. Temporal evolution of the nanostructure of Al(Sc,Zr) alloys: Part I – Chemical compositions of Al(ScZr) precipitates. Acta Mater 2005;53:5401–13. doi:10.1016/j.actamat.2005.08.016.
[132] Fuller C, Seidman D. Temporal evolution of the nanostructure of Al(Sc,Zr) alloys: Part II coarsening of Al(ScZr) precipitates. Acta Mater 2005;53:5415–28. doi:10.1016/j.actamat.2005.08.015.
[133] Knipling KE, Karnesky RA, Lee CP, Dunand DC, Seidman DN. Precipitation evolution in Al–0.1Sc, Al–0.1Zr and Al–0.1Sc–0.1Zr (at.%) alloys during isochronal aging. Acta Mater 2010;58:5184–95. doi:10.1016/j.actamat.2010.05.054.
[134] Knipling KE, Seidman DN, Dunand DC. Ambient- and high-temperature mechanical properties of isochronally aged Al–0.06Sc, Al–0.06Zr and Al–0.06Sc–0.06Zr (at.%) alloys. Acta Mater 2011;59:943–54. doi:10.1016/j.actamat.2010.10.017.
[135] Karnesky RA, van Dalen ME, Dunand DC, Seidman DN. Effects of substituting rare-earth elements for scandium in a precipitation-strengthened Al–0.08at. %Sc alloy. Scr Mater 2006;55:437–40. doi:10.1016/j.scriptamat.2006.05.021.
[136] Karnesky RA, Seidman DN, Dunand DC. Creep of Al-Sc microalloys with rare-earth element additions. Mater Sci Forum 2006;519–521:1035–40. doi:10.4028/www.scientific.net/MSF.519-521.1035.
[137] Krug ME, Werber A, Dunand DC, Seidman DN. Core–shell nanoscale precipitates in Al–0.06 at.% Sc microalloyed with Tb, Ho, Tm or Lu. Acta Mater 2010;58:134–45. doi:10.1016/j.actamat.2009.08.074.
[138] Booth-Morrison C, Dunand DC, Seidman DN. Coarsening resistance at 400°C of precipitation strengthened Al–Zr–Sc–Er alloys. Acta Mater 2011;59:7029–42. doi:10.1016/j.actamat.2011.07.057.
[139] Booth-Morrison C, Seidman DN, Dunand DC. Effect of Er additions on ambient and high temperature strength of precipitation-strengthened Al–Zr–Sc–Si alloys. Acta Mater 2012;60:3643–54. doi:10.1016/j.actamat.2012.02.030.
[140] Vo NQ, Dunand DC, Seidman DN. Improving aging and creep resistance in a dilute Al–Sc alloy by microalloying with Si, Zr and Er. Acta Mater 2014;63:73–85. doi:10.1016/j.actamat.2013.10.008.
[141] Vo NQ, Dunand DC, Seidman DN. Role of silicon in the precipitation kinetics of dilute Al-Sc-Er Zr alloys. Mater Sci Eng A 2016;677:485–95. doi:10.1016/j.msea.2016.09.065.
[142] Booth-Morrison C, Mao Z, Diaz M, Dunand DC, Wolverton C, Seidman DN. Role of silicon in accelerating the nucleation of Al3(Sc,Zr) precipitates in dilute Al–Sc–Zr alloys. Acta Mater 2012;60:4740–52. doi:10.1016/j.actamat.2012.05.036.
[143] Lin JD, Okle P, Dunand DC, Seidman DN. Effects of Sb micro-alloying on precipitate evolution and mechanical properties of a dilute Al-Sc-Zr alloy. Mater Sci Eng A 2017;680:64–74. doi:10.1016/j.msea.2016.10.067.
[144] Lin JD, Seidman DN, Dunand DC. Improving coarsening resistance of dilute Al-Sc-Zr-Si alloys with Sr or Zn Additions. Mater Sci Eng A 2019;754:447–56.
[145] Okle P, Lin JD, Zhu T, Dunand DC, Seidman DN. Effect of micro-additions of Ge, In or Sn on precipitation in dilute Al-Sc-Zr alloys. Mater Sci Eng A 2019;739:427–36. doi:10.1016/J.MSEA.2018.10.058.
[146] Wen SP, Gao KY, Li Y, Huang H, Nie ZR. Synergetic effect of Er and Zr on the precipitation hardening of Al–Er–Zr alloy. Scr Mater 2011;65:592–5. doi:10.1016/j.scriptamat.2011.06.033.
[147] Wen SP, Gao KY, Huang H, Wang W, Nie ZR. Precipitation evolution in Al–Er–Zr alloys during aging at elevated temperature. J Alloys Compd 2013;574:92–7. doi:10.1016/j.jallcom.2013.03.237.
[148] Vo NQ, Seidman DN, Dunand DC. Aluminum superalloys for use in high temperature applications. US20150259773, 2015.
[149] Wen SP, Gao KY, Huang H, Wang W, Nie ZR. Role of Yb and Si on the precipitation hardening and recrystallization of dilute Al–Zr alloys. J Alloys Compd 2014;599:65–70. doi:10.1016/j.jallcom.2014.02.065.
[150] De Luca A, Dunand DC, Seidman DN. Mechanical properties and optimization of the aging of a dilute Al-Sc-Er-Zr-Si alloy with a high Zr/Sc ratio. Acta Mater 2016;119:35–42. doi:10.1016/j.actamat.2016.08.018.
[151] De Luca A, Dunand DC, Seidman DN. Microstructure and mechanical properties of a precipitation-strengthened Al-Zr-Sc-Er-Si alloy with a very small Sc content. Acta Mater 2018;144:80–91. doi:10.1016/j.actamat.2017.10.040.
[152] Erdeniz D, Nasim W, Malik J, Yost AR, Park S, De Luca A, et al. Effect of vanadium micro alloying on the microstructural evolution and creep behavior of Al-Er-Sc-Zr-Si alloys. Acta Mater 2017;124:501–12. doi:10.1016/j.actamat.2016.11.033.
[153] Erdeniz D, De Luca A, Seidman DN, Dunand DC. Effects of Nb and Ta additions on the strength and coarsening resistance of precipitation-strengthened Al-Zr-Sc-Er-Si alloys. Mater Charact 2018;141:260–6. doi:10.1016/j.matchar.2018.04.051.
[154] Michi RA, De Luca A, Seidman DN, Dunand DC. Effects of Si and Fe micro-additions on the aging response of a dilute Al-0.08Zr-0.08Hf-0.045Er at.% alloy. Mater Charact 2019;147:72–83. doi:10.1016/J.MATCHAR.2018.10.016.
[155] Knipling KE, Dunand DC, Seidman DN. Atom probe tomographic studies of precipitation in Al 0.1Zr-0.1Ti (at.%) alloys. Microsc Microanal 2007;13:503–16. doi:10.1017/S1431927607070882.
[156] Knipling KE, Dunand DC. Creep resistance of cast and aged Al–0.1Zr and Al–0.1Zr–0.1Ti (at.%) alloys at 300–400°C. Scr Mater 2008;59:387–90. doi:10.1016/j.scriptamat.2008.02.059.
[157] Fuller CB, Krause AR, Dunand DC, Seidman DN. Microstructure and mechanical properties of a 5754 aluminum alloy modified by Sc and Zr additions. Mater Sci Eng A 2002;338:8–16. doi:10.1016/s0921-5093(02)00056-4.
[158] Jia Q, Rometsch P, Kürnsteiner P, Chao Q, Huang A, Weyland M, et al. Selective laser melting of a high strength Al Mn Sc alloy: Alloy design and strengthening mechanisms. Acta Mater 2019;171:108–18. doi:10.1016/j.actamat.2019.04.014.
[159] Vlach M, Stulikova I, Smola B, Kekule T, Kudrnova H, Danis S, et al. Precipitation in cold-rolled Al-Sc-Zr and Al-Mn-Sc-Zr alloys prepared by powder metallurgy. Mater Charact 2013;86:59–68. doi:10.1016/j.matchar.2013.09.010.
[160] Marquis EA, Seidman DN, Dunand DC. Effect of Mg addition on the creep and yield behavior of an Al–Sc alloy. Acta Mater 2003;51:4751–60. doi:10.1016/S1359-6454(03)00288-X.
[161] Marquis EA, Seidman DN. Coarsening kinetics of nanoscale Al3Sc precipitates in an Al–Mg–Sc alloy. Acta Mater 2005;53:4259–68. doi:10.1016/j.actamat.2005.05.025.
[162] Krug ME, Dunand DC, Seidman DN. Effects of Li additions on precipitation-strengthened Al–Sc and Al–Sc–Yb alloys. Acta Mater 2011;59:1700–15. doi:10.1016/j.actamat.2010.11.037.
[163] Krug ME, Seidman DN, Dunand DC. Creep properties and precipitate evolution in Al–Li alloys microalloyed with Sc and Yb. Mater Sci Eng A 2012;550:300–11. doi:10.1016/j.msea.2012.04.075.
[164] Karnesky RA, Meng L, Dunand DC. Strengthening mechanisms in aluminum containing coherent Al3Sc precipitates and incoherent Al2O3 dispersoids. Acta Mater 2007;55:1299–308. doi:10.1016/j.actamat.2006.10.004.
[165] Li YJ, Arnberg L. Quantitative study on the precipitation behavior of dispersoids in DC-cast AA3003 alloy during heating and homogenization. Acta Mater 2003;51:3415–28. doi:10.1016/S1359-6454(03)00160-5.
[166] Jia Z, Hu G, Forbord B, Solberg JK. Effect of homogenization and alloying elements on recrystallization resistance of Al–Zr–Mn alloys. Mater Sci Eng A 2007;444:284–90. doi:10.1016/j.msea.2006.08.097.
[167] Li YJ, Zhang WZ, Marthinsen K. Precipitation crystallography of plate-shaped Al6(Mn,Fe) dispersoids in AA5182 alloy. Acta Mater 2012;60:5963–74. doi:10.1016/j.actamat.2012.06.022.
[168] Li YJ, Muggerud AMF, Olsen A, Furu T. Precipitation of partially coherent α-Al(Mn,Fe)Si dispersoids and their strengthening effect in AA 3003 alloy. Acta Mater 2012;60:1004–14. doi:10.1016/j.actamat.2011.11.003.
[169] Farkoosh AR, Grant Chen X, Pekguleryuz M. Dispersoid strengthening of a high temperature Al–Si–Cu–Mg alloy via Mo addition. Mater Sci Eng A 2015;620:181–9. doi:10.1016/j.msea.2014.10.004.
[170] Farkoosh AR, Grant Chen X, Pekguleryuz M. Interaction between molybdenum and manganese to form effective dispersoids in an Al–Si–Cu–Mg alloy and their influence on creep resistance. Mater Sci Eng A 2015;627:127–38. doi:10.1016/j.msea.2014.12.115.
[171] De Luca A, Seidman DN, Dunand DC. Effects of Mo and Mn microadditions on strengthening and over-aging resistance of nanoprecipitation-strengthened Al-Zr-Sc-Er-Si alloys. Acta Mater 2019;165:1–14. doi:10.1016/J.ACTAMAT.2018.11.031.
[172] De Luca A, Seidman DN, Dunand DC. In Preparation.
[173] Qian F, Jin S, Sha G, Li Y. Enhanced dispersoid precipitation and dispersion strengthening in an Al alloy by microalloying with Cd. Acta Mater 2018;157:114–25. doi:10.1016/J.ACTAMAT.2018.07.001.
[174] Suwanpreecha C, Toinin JP, Michi RA, Pandee P, Dunand DC, Limmaneevichitr C. Strengthening mechanisms in Al-Ni-Sc alloys containing Al3Ni microfibers and Al3Sc nanoprecipitates. Acta Mater 2019;164:334–46. doi:10.1016/J.ACTAMAT.2018.10.059.
[175] Pandey P, Makineni SK, Gault B, Chattopadhyay K. On the origin of a remarkable increase in the strength and stability of an Al rich Al-Ni eutectic alloy by Zr addition. Acta Mater 2019;170:205–17. doi:10.1016/j.actamat.2019.03.025.
[176] Michi RA, Toinin JP, Seidman DN, Dunand DC. Ambient- and elevated-temperature strengthening by Al3Zr-Nanoprecipitates and Al3Ni-Microfibers in a cast Al-2.9Ni-0.11Zr 0.02Si-0.005Er (at.%) alloy. Mater Sci Eng A 2019;759:78–89. doi:10.1016/j.msea.2019.05.018.
[177] Belov NA, Naumova EA, Eskin DG. Casting alloys of the Al-Ce-Ni system: Microstructural approach to alloy design. Mater Sci Eng A 1999;271:134–42. doi:10.1016/s0921-5093(99)00343-3.
[178] Stromme ET, Henderson HB, Sims ZC, Kesler MS, Weiss D, Ott RT, et al. Ageless aluminum cerium-based alloys in high-volume die casting for improved energy efficiency. JOM 2018;70:866–71. doi:10.1007/s11837-018-2861-9.
[179] Liu Y, Michi R, Dunand DC. Cast near-eutectic Al-12.5 wt.% Ce Alloy with high coarsening and creep resistance. Mater Sci Eng A 2019;767:138440.
[180] Kroll W. The production of ductile titanium. Trans Electrochem Soc 1940;78:35–47. doi:10.1149/1.3071290.
[181] Chen GZ, Fray DJ, Farthing TW. Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride. Nature 2000;407:361–4. doi:10.1038/35030069.
[182] Choudhury A, Hengsberger E. Electron beam melting and refining of metals and alloys. ISIJ Int 1992;32:673–81.
[183] Kosaka Y, Fox SP, Faller K, Reichman SH. Properties and processing of TIMETAL LCB. J Mater Eng Perform 2005;14:792–8. doi:10.1361/105994905x75637.
[184] Ogawa A, Niikura M, Ouchi C, Minikawa K, Yamada M. Development and applications of titanium alloy SP-700 with high formability. J Test Eval 1996;24:100–9.
[185] Devaraj A, Joshi V V., Srivastava A, Manandhar S, Moxson V, Duz VA, et al. A low-cost hierarchical nanostructured beta-titanium alloy with high strength. Nat Commun 2016;7. doi:10.1038/ncomms11176.
[186] Bache MR. A review of dwell sensitive fatigue in titanium alloys: The role of microstructure, texture and operating conditions. Int J Fatigue 2003;25:1079–87. doi:10.1016/s0142-1123(03)00145-2.
[187] Zou Y, Kuczera P, Sologubenko A, Sumigawa T, Kitamura T, Steurer W, et al. Superior room temperature ductility of typically brittle quasicrystals at small sizes. Nat Commun 2016;7. doi:10.1038/ncomms12261.
[188] Kim Y-W, Kim S-L. Advances in gammalloy materials-processes-application technology: Successes, dilemmas, and future. JOM 2018;70:553–60. doi:10.1007/s11837-018-2747-x.
[189] Sikka SK, Vohra YK, Chidambaram R. Omega phase in materials. Prog Mater Sci 1982;27:245–310. doi:10.1016/0079-6425(82)90002-0.
[190] Williams JC. Critical review. In: Jaffee RI, Burte HM, editors. Titan. Sci. Technol., Springer {US}; 1973, p. 1433–94. doi:10.1007/978-1-4757-1346-6.
[191] Zheng Y, Williams REA, Wang D, Shi R, Nag S, Kami P, et al. Role of ω phase in the formation of extremely refined intragranular α precipitates in metastable β-titanium alloys. Acta Mater 2016;103:850–8. doi:10.1016/j.actamat.2015.11.020.
[192] Zheng Y, Williams REA, Sosa JM, Alam T, Wang Y, Banerjee R, et al. The indirect influence of the ω phase on the degree of refinement of distributions of the α phase in metastable β-titanium alloys. Acta Mater 2016;103:165–73. doi:10.1016/j.actamat.2015.09.053.
[193] Zheng Y, Choudhuri D, Alam T, Williams REA, Banerjee R, Fraser HL. The role of cuboidal ω precipitates on α precipitation in a Ti-20V alloy. Scr Mater 2016;123:81–5. doi:10.1016/j.scriptamat.2016.06.004.
[194] Plancher E, Tasan CC, Sandlöbes S, Raabe D. On dislocation involvement in Ti-Nb gum metal plasticity. Scr Mater 2013;68:805–8. doi:10.1016/j.scriptamat.2013.01.034.
[195] Wu SQ, Ping DH, Yamabe-Mitarai Y, Xiao WL, Yang Y, Hu QM, et al. {112}〈111〉 Twinning during ω to body-centered cubic transition. Acta Mater 2014;62:122–8. doi:10.1016/j.actamat.2013.09.040.
[196] Yang R, Hao Y, Obbard EG, Dong L, Lu B. Orthorhombic phase transformations in titanium alloys and their applications. Acta Metall Sin 2010;46:1443–9. doi:10.3724/sp.j.1037.2010.01443.
[197] Zheng Y, Williams REA, Nag S, Banerjee R, Fraser HL, Banerjee D. The effect of alloy composition on instabilities in the β phase of titanium alloys. Scr Mater 2016;116:49–52. doi:10.1016/j.scriptamat.2016.01.024.
[198] Zheng Y, Williams REA, Fraser HL. Characterization of a previously unidentified ordered orthorhombic metastable phase in Ti-5Al-5Mo-5V-3Cr. Scr Mater 2016;113:202–5. doi:10.1016/j.scriptamat.2015.10.037.
[199] Saito T, Furuta T, Hwang J-H, Kuramoto S, Nishino K, Suzuki N, et al. Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism. Science (80- ) 2003;300:464–7. doi:10.1126/science.1081957.
[200] Hao YL, Li SJ, Sun SY, Zheng CY, Hu QM, Yang R. Super-elastic titanium alloy with unstable plastic deformation. Appl Phys Lett 2005;87:91906. doi:10.1063/1.2037192.
[201] Wang HL, Hao YL, He SY, Li T, Cairney JM, Wang YD, et al. Elastically confined martensitic transformation at the nano-scale in a multifunctional titanium alloy. Acta Mater 2017;135:330–9. doi:10.1016/j.actamat.2017.06.040.
[202] Zhu J, Gao Y, Wang D, Zhang T-Y, Wang Y. Taming martensitic transformation via concentration modulation at nanoscale. Acta Mater 2017;130:196–207.
[203] Kassner ME, Kosaka Y, Hall JS. Low-cycle dwell-time fatigue in Ti-6242. Metall Mater Trans A 1999;30:2383–9. doi:10.1007/s11661-999-0246-y.
[204] Sinha V, Mills MJ, Williams JC, Spowart JE. Observations on the faceted initiation site in the dwell-fatigue tested Ti-6242 alloy: Crystallographic orientation and size effects. Metall Mater Trans A 2006;37:1507–18. doi:10.1007/s11661-006-0095-x.
[205] Pilchak A, Williams J. Observations of facet formation in near-α titanium and comments on the role of hydrogen. Metall Mater Trans A 2011;42:1000–27.
[206] Qiu J, Ma Y, Lei J, Liu Y, Huang A, Rugg D, et al. A comparative study on dwell fatigue of Ti 6Al-2Sn-4Zr-xMo (x = 2 to 6) alloys on a microstructure-normalized basis. Metall Mater Trans A 2014;45:6075–87. doi:10.1007/s11661-014-2541-5.
[207] Ready AJ, Haynes PD, Grabowski B, Rugg D, Sutton AP. The role of molybdenum in suppressing cold dwell fatigue in titanium alloys. Proc R Soc A Math Phys Eng Sci 2017;473:20170189. doi:10.1098/rspa.2017.0189.
[208] Hasija V, Ghosh S, Mills MJ, Joseph DS. Deformation and creep modeling in polycrystalline Ti 6Al alloys. Acta Mater 2003;51:4533–49. doi:10.1016/s1359-6454(03)00289-1.
[209] Zheng Z, Balint DS, Dunne FPE. Dwell fatigue in two Ti alloys: An integrated crystal plasticity and discrete dislocation study. J Mech Phys Solids 2016;96:411–27. doi:10.1016/j.jmps.2016.08.008.
[210] Waheed S, Zheng Z, Balint DS, Dunne FPE. Microstructural effects on strain rate and dwell sensitivity in dual-phase titanium alloys. Acta Mater 2019;162:136–48. doi:10.1016/j.actamat.2018.09.035.
[211] Wang X, Yang J, Song L, Kou H, Li J, Fu H. Evolution of B2 (ω) region in high-Nb containing TiAl alloy in intermediate temperature range. Intermetallics 2017;82:32–9. doi:10.1016/j.intermet.2016.11.007.
[212] Huang ZW. Ordered ω phases in a 4Zr-4Nb-containing TiAl-based alloy. Acta Mater 2008;56:1689–700. doi:10.1016/j.actamat.2007.12.013.
[213] Jiang H, Hu D, Wu X. Thermal stability of the omega phase in Zr-containing TiAl alloys. J Alloys Compd 2009;475:134–8. doi:10.1016/j.jallcom.2008.07.015.
[214] Stark A, Oehring M, Pyczak F, Schreyer A. In situ observation of various phase transformation paths in Nb-rich TiAl alloys during quenching with different rates. Adv Eng Mater 2011;13:700–4. doi:10.1002/adem.201000289.
[215] Hu Q-M, Vitos L, Yang R. Theoretical investigation of the ω-related phases in TiAl-Nb/Mo alloys. Phys Rev B 2014;90. doi:10.1103/physrevb.90.054109.
[216] Banerjee D, Gogia AK, Nandi TK, Joshi VA. A new ordered orthorhombic phase in a Ti3Al-Nb alloy. Acta Metall 1988;36:871–82. doi:10.1016/0001-6160(88)90141-1.
[217] Gabrisch H, Lorenz U, Pyczak F, Rackel M, Stark A. Morphology and stability of orthorhombic and hexagonal phases in a lamellar γ-Ti-42Al-8.5Nb alloy - A transmission electron microscopy study. Acta Mater 2017;135:304–13. doi:10.1016/j.actamat.2017.05.067.
[218] Joost WJ, Krajewski PE. Towards magnesium alloys for high-volume automotive applications. Scr Mater 2017;128:107–12. doi:10.1016/j.scriptamat.2016.07.035.
[219] Magnesium Elektron welcomes new standard on use of magnesium in commercial aircraft seats 2015. doi:10.4271/air6160.
[220] Porsche uses POSCO’s mass-produced magnesium sheets in new model roof 2015.
[221] Wetzel S. Magnesium liftgate cuts weight, adds value. Mod Cast 2016:24–6.
[222] Young S, Dubreuil A, Bushi L, Busel J, Coates G, Ehrenberger S, et al. Life cycle assessment of auto parts - Guidelines for conducting LCA of auto parts incorporating weight changes due to material composition, manufacturing technology, or part geometry. 2014.
[223] Ehrenberger S. Life cycle assessment of the recycling of magnesium components in vehicle construction. 2013. doi:10.1007/s11837-013-0703-3.
[224] Esmaily M, Svensson JE, Fajardo S, Birbilis N, Frankel GS, Virtanen S, et al. Fundamentals and advances in magnesium alloy corrosion. Prog Mater Sci 2017;89:92–193. doi:10.1016/j.pmatsci.2017.04.011.
[225] Zhu Z, Gharghouri MA, Pelton AD. Thermodynamic modelling and in-situ neutron diffraction investigation of the (Nd+Mg+Zn) system. J Chem Thermodyn 2016;94:43–51. doi:10.1016/j.jct.2015.10.012.
[226] Luo AA, Sun W, Zhong W, Zhao J-C. Computational thermodynamics and kinetics for magnesium alloy development. Adv Mater Process 2015;173:26–30.
[227] Huber L, Elfimov I, Rottler J, Militzer M. Ab initiocalculations of rare-earth diffusion in magnesium. Phys Rev B 2012;85. doi:10.1103/physrevb.85.144301.
[228] Berman TD, Pollock TM, Jones JW. Microstructure and Texture Through Thixomolding and Thermomechanical Processing and the Role of Mg17Al12 Particles. Metall Mater Trans A Phys Metall Mater Sci 2016;47:3125–36. doi:10.1007/s11661-016-3450-6.
[229] Guo E, Phillion AB, Cai B, Shuai S, Kazantsev D, Jing T, et al. Dendritic evolution during coarsening of Mg-Zn alloys via 4D synchrotron tomography. Acta Mater 2017;123:373–82. doi:10.1016/j.actamat.2016.10.022.
[230] Wang M, Xu Y, Zheng Q, Wu S, Jing T, Chawla N. Dendritic growth in Mg-based alloys: Phase field simulations and experimental verification by X-ray synchrotron tomography. Metall Mater Trans A 2014;45:2562–74. doi:10.1007/s11661-014-2200-x.
[231] Shang S, Han Z, Sun W, Luo AA. A phase field model coupled with pressure-effect-embedded thermodynamic modeling for describing microstructure and microsegregation in pressurized solidification of a ternary magnesium alloy. Comput Mater Sci 2017;136:264–70. doi:10.1016/j.commatsci.2017.05.015.
[232] Gurevich S, Amoorezaei M, Montiel D, Provatas N. Evolution of microstructural length scales during solidification of magnesium alloys. Acta Mater 2012;60:3287–95. doi:10.1016/j.actamat.2012.02.055.
[233] Hadadzadeh A, Wells MA. Mathematical modeling of thermo-mechanical behavior of strip during twin roll casting of an AZ31 magnesium alloy. J Magnes Alloy 2013;1:101–14. doi:10.1016/j.jma.2013.04.001.
[234] Máthis K, Horváth K, Farkas G, Choe H, Shin K, Vinogradov A. Investigation of the microstructure evolution and deformation mechanisms of a Mg-Zn-Zr-RE twin-roll-cast magnesium sheet by in-situ experimental techniques. Materials (Basel) 2018;11:200. doi:10.3390/ma11020200.
[235] Forsmark JH, Zindel JW, Godlewski L, Zheng J, Allison JE, Li M. Using quality mapping to predict spatial variation in local properties and component performance in Mg alloy thin-walled high-pressure die castings: an ICME approach and case study. Integr Mater Manuf Innov 2015;4. doi:10.1186/s40192-015-0033-0.
[236] Niu XP, Skszek T, Fabischek M, Zak A. Low temperature warm forming of magnesium ZEK 100 sheets for automotive applications. Mater Sci Forum 2014;783–786:431–6. doi:10.4028/www.scientific.net/msf.783-786.431.
[237] Boba M, Butcher C, Panahi N, Worswick MJ, Mishra RK, Carter JT. Warm forming limits of rare earth-magnesium alloy ZEK100 sheet. Int J Mater Form 2015;10:181–91. doi:10.1007/s12289-015-1267-2.
[238] Sandlöbes S, Friák M, Zaefferer S, Dick A, Yi S, Letzig D, et al. The relation between ductility and stacking fault energies in Mg and Mg-Y alloys. Acta Mater 2012;60:3011–21. doi:10.1016/j.actamat.2012.02.006.
[239] Sandlöbes S, Pei Z, Friák M, Zhu L-F, Wang F, Zaefferer S, et al. Ductility improvement of Mg alloys by solid solution: Ab initio modeling, synthesis and mechanical properties. Acta Mater 2014;70:92–104. doi:10.1016/j.actamat.2014.02.011.
[240] Yin B, Wu Z, Curtin WA. First-principles calculations of stacking fault energies in Mg-Y, Mg-Al and Mg-Zn alloys and implications for 〈c+a〉activity. Acta Mater 2017;136:249–61. doi:10.1016/j.actamat.2017.06.062.
[241] Wu Z, Ahmad R, Yin B, Sandlöbes S, Curtin WA. Mechanistic origin and prediction of enhanced ductility in magnesium alloys. Science (80- ) 2018;359:447–52. doi:10.1126/science.aap8716.
[242] Sandlöbes S, Friák M, Korte-Kerzel S, Pei Z, Neugebauer J, Raabe D. A rare-earth free magnesium alloy with improved intrinsic ductility. Sci Rep 2017;7. doi:10.1038/s41598-017-10384-0.
[243] Martin G, Sinclair CW, Lebensohn RA. Microscale plastic strain heterogeneity in slip dominated deformation of magnesium alloy containing rare earth. Mater Sci Eng A 2014;603:37–51. doi:10.1016/j.msea.2014.01.102.
[244] Martin G, Sinclair CW, Poole WJ, Azizi-Alizamini H. Local plastic-strain heterogeneities and their impact on the ductility of Mg. JOM 2015;67:1761–73. doi:10.1007/s11837-015-1449-x.
[245] Nayyeri G, Poole WJ, Sinclair CW, Zaefferer S. The role of indenter radius on spherical indentation of high purity magnesium loaded nearly parallel to the c-axis. Scr Mater 2017;137:119–22. doi:10.1016/j.scriptamat.2017.04.039.
[246] Nayyeri G, Poole WJ, Sinclair CW, Zaefferer S. Measurement of the critical resolved shear stress for basal slip in magnesium alloys using instrumented indentation. Scr Mater 2018;156:37–41. doi:10.1016/j.scriptamat.2018.07.003.
[247] Nayyeri G, Poole WJ, Sinclair CW, Zaefferer S, Konijnenberg PJ, Zambaldi C. An instrumented spherical indentation study on high purity magnesium loaded nearly parallel to the c-axis. Mater Sci Eng A 2016;670:132–45. doi:10.1016/j.msea.2016.05.112.
[248] Orozco-Caballero A, Lunt D, Robson JD, da Fonseca JQ. How magnesium accommodates local deformation incompatibility: A high-resolution digital image correlation study. Acta Mater 2017;133:367–79. doi:10.1016/j.actamat.2017.05.040.
[249] Siska F, Stratil L, Cizek J, Ghaderi A, Barnett M. Numerical analysis of twin thickening process in magnesium alloys. Acta Mater 2017;124:9–16. doi:10.1016/j.actamat.2016.10.068.
[250] Huber L, Rottler J, Militzer M. Atomistic simulations of the interaction of alloying elements with grain boundaries in Mg. Acta Mater 2014;80:194–204. doi:10.1016/j.actamat.2014.07.047.
[251] Robson JD, Haigh SJ, Davis B, Griffiths D. Grain boundary segregation of rare-earth elements in magnesium alloys. Metall Mater Trans A 2015;47:522–30. doi:10.1007/s11661-015-3199-3.
[252] Barrett CD, Imandoust A, Kadiri H El. The effect of rare earth element segregation on grain boundary energy and mobility in magnesium and ensuing texture weakening. Scr Mater 2018;146:46–50. doi:10.1016/j.scriptamat.2017.11.004.
[253] Barrett CD, Imandoust A, Oppedal AL, Inal K, Tschopp MA, Kadiri H El. Effect of grain boundaries on texture formation during dynamic recrystallization of magnesium alloys. Acta Mater 2017;128:270–83. doi:10.1016/j.actamat.2017.01.063.
[254] Imandoust A, Barrett CD, Al-Samman T, Inal KA, Kadiri H El. A review on the effect of rare earth elements on texture evolution during processing of magnesium alloys. J Mater Sci 2016;52:1–29. doi:10.1007/s10853-016-0371-0.
[255] Imandoust A, Barrett CD, Al-Samman T, Tschopp MA, Essadiqi E, Hort N, et al. Unraveling recrystallization mechanisms governing texture development from rare-earth element additions to magnesium. Metall Mater Trans A 2018. doi:10.1007/s11661-018-4520-8.
[256] Guan D, Rainforth WM, Gao J, Sharp J, Wynne B, Ma L. Individual effect of recrystallisation nucleation sites on texture weakening in a magnesium alloy: Part 1- double twins. Acta Mater 2017;135:14–24. doi:10.1016/j.actamat.2017.06.015.
[257] Guan D, Rainforth WM, Ma L, Wynne B, Gao J. Twin recrystallization mechanisms and exceptional contribution to texture evolution during annealing in a magnesium alloy. Acta Mater 2017;126:132–44. doi:10.1016/j.actamat.2016.12.058.
[258] Griffiths D, Davis B, Robson JD. The influence of strain path on rare earth recrystallization textures in a magnesium-zinc-rare earth alloy. Metall Mater Trans A 2017;49:321–32. doi:10.1007/s11661-017-4404-3.
[259] Nakata T, Xu C, Ajima R, Shimizu K, Hanaki S, Sasaki TT, et al. Strong and ductile age hardening Mg-Al-Ca-Mn alloy that can be extruded as fast as aluminum alloys. Acta Mater 2017;130:261–70. doi:10.1016/j.actamat.2017.03.046.
[260] Bian MZ, Sasaki TT, Nakata T, Yoshida Y, Kawabe N, Kamado S, et al. Bake-hardenable Mg Al-Zn-Mn-Ca sheet alloy processed by twin-roll casting. Acta Mater 2018;158:278–88. doi:10.1016/j.actamat.2018.07.057.
[261] Bian MZ, Sasaki TT, Suh BC, Nakata T, Kamado S, Hono K. A heat-treatable Mg-Al-Ca-Mn-Zn sheet alloy with good room temperature formability. Scr Mater 2017;138:151–5. doi:10.1016/j.scriptamat.2017.05.034.
[262] Zhu YM, Weyland M, Medhekar N V., Dwyer C, Mendis CL, Hono K, et al. On the prismatic precipitate plates in Mg-Ca-In alloys. Scr Mater 2015;101:16–9. doi:10.1016/j.scriptamat.2015.01.007.
[263] Pollock TM, Tin S. Nickel-based superalloys for advanced turbine engines: Chemistry, microstructure and properties. J Propuls Power 2006;22:361–74. doi:10.2514/1.18239.
[264] Pollock TM. Alloy design for aircraft engines. Nat Mater 2016;15:809–15. doi:10.1038/nmat4709.
[265] Schafrik RE, Sprague R. Saga of gas turbine materials: Part III. Adv Mater Process 2004;162:29–34.
[266] Naslain R, Christin F. SiC-Matrix Composite Materials for Advanced Jet Engines. MRS Bull 2003;28:654–8. doi:10.1557/mrs2003.193.
[267] Bewlay BP, Jackson MR, Subramanian PR, Zhao J-C. A review of very-high-temperature Nb silicide-based composites. Metall Mater Trans A 2003;34:2043–52. doi:10.1007/s11661-003-0269-8.
[268] Perepezko JH. Surface engineering of Mo-base alloys for elevated-temperature environmental resistance. Annu Rev Mater Res 2015;45:519–42. doi:10.1146/annurev-matsci-070214-020959.
[269] Miracle DB, Senkov ON. A critical review of high entropy alloys and related concepts. Acta Mater 2017;122:448–511. doi:10.1016/j.actamat.2016.08.081.
[270] Sato J, Omori T, Oikawa K, Ohnuma I, Kainuma R, Ishida K. Cobalt-base high temperature alloys. Science (80- ) 2006;312:90–1.
[271] Suzuki A, DeNolf GC, Pollock TM. Flow stress anomalies in γ/γ′ two-phase Co-Al-W-base alloys. Scr Mater 2007;56:385–8. doi:10.1016/j.scriptamat.2006.10.039.
[272] Pollock TM, Dibbern J, Tsunekane M, Zhu J, Suzuki A. New Co-based γ-γ′ high-temperature alloys. JOM 2010;62:58–63. doi:10.1007/s11837-010-0013-y.
[273] Suzuki A, Inui H, Pollock TM. L12-strengthened cobalt-base superalloys. Annu Rev Mater Res 2015;45:345–68. doi:10.1146/annurev-matsci-070214-021043.
[274] Integrated computational materials engineering: A transformational discipline for improved competitiveness and national security. Washington, D.C.: National Academies Press; 2008. doi:10.17226/12199.
[275] Christodoulou JA. Integrated computational materials engineering and materials genome initiative: Accelerating materials innovation. Adv Mater Process 2013;171:28–31.
[276] Feldman K, Agnew S. The Materials Genome Initiative at the National Science Foundation: A status report after the first year of funded research. JOM 2014;66:336–44. doi:10.1007/s11837-014-0888-0.
[277] Spencer PJ. A brief history of CALPHAD. Comput Coupling Phase Diagrams Thermochem 2008;32:1–8.
[278] Schafrik RE. Materials for a non-steady-state world. Metall Mater Trans A 2016;47:2539–49. doi:10.1007/s11661-016-3442-6.
[279] Reed RC, Tao T, Warnken N. Alloys-by-design: Application to nickel-based single crystal superalloys. Acta Mater 2009;57:5898–913. doi:10.1016/j.actamat.2009.08.018.
[280] Jorgensen DJ, Suzuki A, Lipkin DM, Pollock TM. Bond coatings with high rumpling resistance: Design and characterization. Surf Coatings Technol 2016;300:25–34. doi:10.1016/j.surfcoat.2016.05.002.
[281] Titus MS, Eggeler YM, Suzuki A, Pollock TM. Creep-induced planar defects in L12-containing Co- and CoNi-base single-crystal superalloys. Acta Mater 2015;82:530–9. doi:10.1016/j.actamat.2014.08.033.
[282] Eggeler YM, Titus MS, Suzuki A, Pollock TM. Creep deformation-induced antiphase boundaries in L12 -containing single-crystal cobalt-base superalloys. Acta Mater 2014;77:352–9. doi:10.1016/j.actamat.2014.04.037.
[283] Eggeler YM, Müller J, Titus MS, Suzuki A, Pollock TM, Spiecker E. Planar defect formation in the γ′ phase during high temperature creep in single crystal CoNi-base superalloys. Acta Mater 2016;113:335–49. doi:10.1016/j.actamat.2016.03.077.
[284] Pollock TM, Field RD. Dislocations and high-temperature plastic deformation of superalloy single crystals. Dislocations in Solids 2002;11:547–618. doi:10.1016/s1572-4859(02)80014-6.
[285] Titus MS, Mottura A, Viswanathan GB, Suzuki A, Mills MJ, Pollock TM. High resolution energy dispersive spectroscopy mapping of planar defects in L12 -containing Co-base superalloys. Acta Mater 2015;89:423–37. doi:10.1016/j.actamat.2015.01.050.
[286] Barba D, Smith TM, Miao J, Mills MJ, Reed RC. Segregation-assisted plasticity in Ni-based superalloys. Metall Mater Trans A 2018;49:4173–85. doi:10.1007/s11661-018-4567-6.
[287] Mottura A, Janotti A, Pollock TM. Alloying effects in the γ′ phase of Co-based superalloys. Superalloys 2012, Proc. Intl. Conf. on Superalloys, Warrendale, PA: John Wiley & Sons, Inc.; 2012, p. 683–93. doi:10.1002/9781118516430.ch76.
[288] Xue F, Zhou HJ, Shi QY, Chen XH, Chang H, Wang ML, et al. Creep behavior in a γ′ strengthened Co-Al-W-Ta-Ti single-crystal alloy at 1000°C. Scr Mater 2015;97:37–40. doi:10.1016/j.scriptamat.2014.10.015.
[289] Shinagawa K, Omori T, Sato J, Oikawa K, Ohnuma I, Kainuma R, et al. Phase equilibria and microstructure on γ′ phase in Co-Ni-Al-W system. Mater Trans 2008;49:1474–9. doi:10.2320/matertrans.mer2008073.
[290] Nyshadham C, Oses C, Hansen JE, Takeuchi I, Curtarolo S, Hart GLW. A computational high throughput search for new ternary superalloys. Acta Mater 2017;122:438–47. doi:10.1016/j.actamat.2016.09.017.
[291] Tirado FLR, Toinin JP, Dunand DC. γ+γ′ microstructures in the Co-Ta-V and Co-Nb-V ternary systems. Acta Mater 2018;151:137–48. doi:10.1016/j.actamat.2018.03.057.
[292] Tirado FLR, Taylor S, Dunand DC. Effect of Al, Ti and Cr additions on the γ-γ′ microstructure of W-free Co-Ta-V-Based superalloys. Acta Mater 2019;172:44–54. doi:10.1016/j.actamat.2019.04.031.
[293] Makineni SK, Nithin B, Chattopadhyay K. A new tungsten-free γ-γ′ Co-Al-Mo-Nb-based superalloy. Scr Mater 2015;98:36–9. doi:10.1016/j.scriptamat.2014.11.009.
[294] Zenk CH, Povstugar I, Li R, Rinaldi F, Neumeier S, Raabe D, et al. A novel type of Co-Ti-Cr base γ/γ′ superalloys with low mass density. Acta Mater 2017;135:244–51. doi:10.1016/j.actamat.2017.06.024.
[295] Im HJ, Makineni SK, Gault B, Stein F, Raabe D, Choi P-P. Elemental partitioning and site occupancy in γ/γ′ forming Co-Ti-Mo and Co-Ti-Cr alloys. Scr Mater 2018;154:159–62. doi:10.1016/j.scriptamat.2018.05.041.
[296] Ruan JJ, Wang CP, Zhao CC, Yang SY, Yang T, Liu XJ. Experimental investigation of phase equilibria and microstructure in the Co-Ti-V ternary system. Intermetallics 2014;49:121–31. doi:10.1016/j.intermet.2014.01.011.
[297] Chen Y, Wang C, Ruan J, Omori T, Kainuma R, Ishida K, et al. High-strength Co-Al-V-base superalloys strengthened by γ′-Co3(Al,V) with high solvus temperature. Acta Mater 2019;170:62–74. doi:10.1016/j.actamat.2019.03.013.
[298] Koßmann J, Hammerschmidt T, Maisel S, Müller S, Drautz R. Solubility and ordering of Ti, Ta, Mo and W on the Al sublattice in L12-Co3Al. Intermetallics 2015;64:44–50. doi:10.1016/j.intermet.2015.04.009.
[299] Nithin B, Samanta A, Makineni SK, Alam T, Pandey P, Singh AK, et al. Effect of Cr addition on γ-γ′ cobalt-based Co-Mo-Al-Ta class of superalloys: a combined experimental and computational study. J Mater Sci 2017;52:11036–47. doi:10.1007/s10853-017-1159-6.
[300] Makineni SK, Nithin B, Chattopadhyay K. Synthesis of a new tungsten-free γ-γ′ cobalt-based superalloy by tuning alloying additions. Acta Mater 2015;85:85–94. doi:10.1016/j.actamat.2014.11.016.
[301] Makineni SK, Samanta A, Rojhirunsakool T, Alam T, Nithin B, Singh AK, et al. A new class of high strength high temperature Cobalt based γ-γ′ Co-Mo-Al alloys stabilized with Ta addition. Acta Mater 2015;97:29–40. doi:10.1016/j.actamat.2015.06.034.
[302] Cui YF, Zhang X, Xu GL, Zhu WJ, Liu HS, Jin ZP. Thermodynamic assessment of Co-Al-W system and solidification of Co-enriched ternary alloys. J Mater Sci 2010;46:2611–21. doi:10.1007/s10853-010-5115-y.
[303] Zhu J, Titus MS, Pollock TM. Experimental investigation and thermodynamic modeling of the Co-rich region in the Co-Al-Ni-W quaternary system. J Phase Equilibria Diffus 2014;35:595–611. doi:10.1007/s11669-014-0327-5.
[304] Lass EA. Application of computational thermodynamics to the design of a Co-Ni-based γ′-strengthened superalloy. Metall Mater Trans A 2017;48:2443–59. doi:10.1007/s11661-017-4040-y.
[305] Lass EA, Sauza DJ, Dunand DC, Seidman DN. Multicomponent γ′-strengthened Co-based superalloys with increased solvus temperatures and reduced mass densities. Acta Mater 2018;147:284–95. doi:10.1016/j.actamat.2018.01.034.
[306] Rhein RK, Callahan PG, Murray SP, Stinville J-C, Titus MS, Van der Ven A, et al. Creep behavior of quinary γ′-strengthened Co-based superalloys. Metall Mater Trans A 2018;49:4090–8. doi:10.1007/s11661-018-4768-z.
[307] Moon K-W, Campbell CE, Williams ME, Boettinger WJ. Diffusion in FCC Co-rich Co-Al-W alloys at 900 and 1000°C. J Phase Equilibria Diffus 2016;37:402–15. doi:10.1007/s11669-016-0486-7.
[308] Jiang C. First-principles study of Co3(Al,W) alloys using special quasi-random structures. Scr Mater 2008;59:1075–8. doi:10.1016/j.scriptamat.2008.07.021.
[309] Rhein RK, Dodge PC, Chen M-H, Titus MS, Pollock TM, Van der Ven A. Role of vibrational and configurational excitations in stabilizing L12 structure in Co-rich Co-Al-W alloys. Phys Rev B 2015;92:174117. doi:10.1103/physrevb.92.174117.
[310] Tsunekane M, Suzuki A, Pollock TM. Single-crystal solidification of new Co-Al-W-base alloys. Intermetallics 2011;19:636–43. doi:10.1016/j.intermet.2010.12.018.
[311] Stewart CA, Rhein RK, Suzuki A, Pollock TM, Levi CG. Oxide scale formation in novel γ‐ γ′ Cobalt‐ Based Alloys. Superalloys 2016, Proc. Intl. Conf. on Superalloys, Wiley, New York: 2016, p. 991–1000.
[312] Pollock TM, Lipkin DM, Hemker KJ. Multifunctional coating interlayers for thermal-barrier systems. MRS Bull 2012;37:923–31. doi:10.1557/mrs.2012.238.
[313] Stewart CA, Suzuki A, Pollock TM, Levi CG. Rapid assessment of oxidation behavior in Co based γ/γ′ alloys. Oxid Met 2018;90:485–98. doi:10.1007/s11085-018-9849-2.
[314] Jackson RW, Titus MS, Begley MR, Pollock TM. Thermal expansion behavior of new Co-based alloys and implications for coatings. Surf Coatings Technol 2016;289:61–8. doi:10.1016/j.surfcoat.2015.12.083.
[315] Cui Y-W, Xu G, Kato R, Lu X-G, Kainuma R, Ishida K. Interdiffusion and atomic mobility for face-centered cubic (FCC) Co-W alloys. Metall Mater Trans A 2013;44:1621–5. doi:10.1007/s11661-012-1586-6.
[316] Glaessgen E, Stargel D. The digital twin paradigm for future NASA and U.S. Air Force vehicles. 53rd AIAA/ASME/ASCE/AHS/ASC Struct. Struct. Dyn. Mater. Conf., American Institute of Aeronautics and Astronautics; 2012. doi:10.2514/6.2012-1818.
[317] Noebe R, Gaydosh D, Padula II S, Garg A, Biles T, Nathal M. Properties and potential of two (Ni,Pt)Ti alloys for use as high-temperature actuator materials. Smart Struct. Mater. 2005 Act. Mater. Behav. Mech., vol. 5761, 2005, p. 364. doi:10.1117/12.598492.
[318] Motherway B, Dean B, Dulac J, Morgan T, Remme U. The future of cooling: Opportunities for energy-efficient air conditioning. IEA Publications; 2018. doi:10.1787/9789264301993-en.
[319] Qian S, Ling J, Hwang Y, Radermacher R, Takeuchi I. Thermodynamics cycle analysis and numerical modeling of thermoelastic cooling systems. Int J Refrig 2015;56:65–80. doi:10.1016/j.ijrefrig.2015.04.001.
[320] Qian S, Yuan L, Yu J, Yan G. Numerical modeling of an active elastocaloric regenerator refrigerator with phase transformation kinetics and the matching principle for materials selection. Energy 2017;141:744–56. doi:10.1016/j.energy.2017.09.116.
[321] Moya X, Defay E, Heine V, Mathur ND. Too cool to work. Nat Phys 2015;11:202–5. doi:10.1038/nphys3271.
[322] Chauhan A, Patel S, Vaish R, Bowen CR. A review and analysis of the elasto-caloric effect for solid-state refrigeration devices: Challenges and opportunities. MRS Energy Sustain 2015;2:1–18. doi:10.1557/mre.2015.17.
[323] Future energy scenarios. Warwick: 2018.
[324] Shaw JA, Kyriakides S. Thermomechanical aspects of NiTi. J Mech Phys Solids 1995;43:1243–81. doi:10.1016/0022-5096(95)00024-d.
[325] Ossmer H, Wendler F, Gueltig M, Lambrecht F, Miyazaki S, Kohl M. Energy-efficient miniature scale heat pumping based on shape memory alloys. Smart Mater Struct 2016;25:85037. doi:10.1088/0964-1726/25/8/085037.
[326] Li Y, Sun W, Zhao D, Xu H, Liu J. An 8 K elastocaloric temperature change induced by 1.3% transformation strain in Ni44Mn45 - xSn11Cux alloys. Scr Mater 2017;130:278–82. doi:10.1016/j.scriptamat.2016.12.014.
[327] Pataky GJ, Ertekin E, Sehitoglu H. Elastocaloric cooling potential of NiTi, Ni2FeGa, and CoNiAl. Acta Mater 2015;96:420–7. doi:10.1016/j.actamat.2015.06.011.
[328] Jackson BK, Inman D, Jackson M, Dye D, Dashwood RJ. NiTi production via the FFC Cambridge process: Refinement of process parameters. J Electrochem Soc 2010;157:E36–43. doi:10.1149/1.3289996.
[329] Otsuka K, Wayman CM, editors. Shape Memory Materials. New York: Cambridge University Press; 1998.
[330] Rahim M, Frenzel J, Frotscher M, Pfetzing-Micklich J, Steegmüller R, Wohlschlögel M, et al. Impurity levels and fatigue lives of pseudoelastic NiTi shape memory alloys. Acta Mater 2013;61:3667–86. doi:10.1016/j.actamat.2013.02.054.
[331] Jones NG, Raghunathan SL, Dye D. In-situ synchrotron characterization of transformation sequences in TiNi-based shape memory alloys during thermal cycling. Metall Mater Trans A 2010;41:912–21. doi:10.1007/s11661-009-0166-x.
[332] Chluba C, Ge W, de Miranda RL, Strobel J, Kienle L, Quandt E, et al. Ultralow-fatigue shape memory alloy films. Science (80- ) 2015;348:1004–7. doi:10.1126/science.1261164.
[333] Song Y, Chen X, Dabade V, Shield TW, James RD. Enhanced reversibility and unusual microstructure of a phase-transforming material. Nature 2013;502:85–8. doi:10.1038/nature12532.
[334] Zarnetta R, Takahashi R, Young ML, Savan A, Furuya Y, Thienhaus S, et al. Identification of quaternary shape memory alloys with near-zero thermal hysteresis and unprecedented functional stability. Adv Funct Mater 2010;20:1917–23. doi:10.1002/adfm.200902336.
[335] Cui J, Chu YS, Famodu OO, Furuya Y, Hattrick-Simpers J, James RD, et al. Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width. Nat Mater 2006;5:286–90. doi:10.1038/nmat1593.
[336] Zhang Z, James RD, Müller S. Energy barriers and hysteresis in martensitic phase transformations. Acta Mater 2009;57:4332–52. doi:10.1016/j.actamat.2009.05.034.
[337] Bonnot E, Romero R, Mañosa L, Vives E, Planes A. Elastocaloric effect associated with the martensitic transition in shape-memory alloys. Phys Rev Lett 2008;100. doi:10.1103/physrevlett.100.125901.
[338] Mañosa L, Jarque-Farnos S, Vives E, Planes A. Large temperature span and giant refrigerant capacity in elastocaloric Cu-Zn-Al shape memory alloys. Appl Phys Lett 2013;103:211904. doi:10.1063/1.4832339.
[339] Wu Y, Ertekin E, Sehitoglu H. Elastocaloric cooling capacity of shape memory alloys - Role of deformation temperatures, mechanical cycling, stress hysteresis and inhomogeneity of transformation. Acta Mater 2017;135:158–76. doi:10.1016/j.actamat.2017.06.012.
[340] Sehitoglu H, Wu Y, Ertekin E. Elastocaloric effects in the extreme. Scr Mater 2018;148:122–6. doi:10.1016/j.scriptamat.2017.05.017.
[341] Alkan S, Wu Y, Ojha A, Sehitoglu H. Transformation stress of shape memory alloy CuZnAl: Non-Schmid behavior. Acta Mater 2018;149:220–34. doi:10.1016/j.actamat.2018.02.011.
[342] Saburi T, Wayman CM, Takata K, Nenno S. The shape memory mechanism in 18R martensitic alloys. Acta Metall 1980;28:15–32. doi:10.1016/0001-6160(80)90037-1.
[343] Auguet C, Cesari E, Rapacioli R, Mañosa L. Effect of γ precipitates on the martensitic transformation of β Cu-Zn-Al studied by calorimetry. Scr Metall 1989;23:579–83. doi:10.1016/0036-9748(89)90455-9.
[344] Bhuniya AK, Chattopadhyay PP, Datta S, Banerjee MK. On the degradation of shape memory effect in trace Ti-added Cu-Zn-Al alloy. Mater Sci Eng A 2005;393:125–32. doi:10.1016/j.msea.2004.09.068.
[345] Bhuniya AK, Chattopadhyay PP, Datta S, Banerjee MK. Study on the effect of trace zirconium addition on the microstructural evolution in Cu-Zn-Al shape memory alloy. Mater Sci Eng A 2005;391:34–42. doi:10.1016/j.msea.2004.09.063.
[346] Ghosh G, van Humbeeck J. Aluminum - Copper - Zinc. In: Petzow G, Effenburg G, editors. Ternary Alloy. A Compr. Compend. Eval. Const. Data Phase Diagrams, vol. 5, Wiley-VCH; 1992. doi:10.1002/bbpc.19930970429.
[347] Pons J, Sade M, Lovey FC, Cesari E. Pseudoelastic cycling and two-way shape memory effect in β Cu-Zn-Al alloys with γ-precipitates. Mater Trans JIM 1993;34:888–94. doi:10.2320/matertrans1989.34.888.
[348] Gorsse S, Couzinié J-P, Miracle DB. From high-entropy alloys to complex concentrated alloys. Comptes Rendus Phys 2018;19:721–36. doi:10.1016/j.crhy.2018.09.004.
[349] Cantor B, Chang ITH, Knight P, Vincent AJB. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A 2004;375–377:213–8. doi:https://doi.org/10.1016/j.msea.2003.10.257.
[350] Yeh J-W, Lin S-J, Chin T-S, Gan J-Y, Chen S-K, Shun T-T, et al. Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements. Metall Mater Trans A 2004;35:2533–6. doi:10.1007/s11661-006-0234-4.
[351] Miracle DB. Critical Assessment 14: High entropy alloys and their development as structural materials. Mater Sci Technol 2015;31:1142–7. doi:10.1179/1743284714y.0000000749.
[352] Senkov ON, Wilks GB, Miracle DB, Chuang CP, Liaw PK. Refractory high-entropy alloys. Intermetallics 2010;18:1758–65. doi:10.1016/j.intermet.2010.05.014.
[353] Senkov ON, Miracle DB, Chaput KJ, Couzinie J-P. Development and exploration of refractory high entropy alloys — A review. J Mater Res 2018;33:3092–128. doi:10.1557/jmr.2018.153.
[354] Gludovatz B, Hohenwarter A, Thurston KVS, Bei H, Wu Z, George EP, et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nat Commun 2016;7:1–8. doi:10.1038/ncomms10602.
[355] B. Gludovatz D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie AH. A fracture-resistant high entropyalloy for cryogenic applications. Science (80- ) 2014;345:1153–8.
[356] Hammond VH, Atwater MA, Darling KA, Nguyen HQ, Kecskes LJ. Equal-channel angular extrusion of a low-density high-entropy alloy produced by high-energy cryogenic mechanical alloying. JOM 2014;66:2021–9. doi:10.1007/s11837-014-1113-x.
[357] Yang X, Chen SY, Cotton JD, Zhang Y. Phase stability of low-density, multiprincipal component alloys containing aluminum, magnesium, and lithium. JOM 2014;66:2009–20. doi:10.1007/s11837-014-1059-z.
[358] Youssef KM, Zaddach AJ, Niu C, Irving DL, Koch CC. A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures. Mater Res Lett 2014;3:95–9. doi:10.1080/21663831.2014.985855.
[359] Gludovatz B, Hohenwarter A, Thurston KVS, Bei H, Wu Z, George EP, et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nat Commun 2016;7:1–8. doi:10.1038/ncomms10602.
[360] Oh HS, Kim SJ, Odbadrakh K, Ryu WH, Yoon KN, Mu S, et al. Engineering atomic-level complexity in high-entropy and complex concentrated alloys. Nat Commun 2019;10:1–8. doi:10.1038/s41467-019-10012-7.
[361] Maresca F, Curtin WA. Mechanistic origin of high retained strength in refractory BCC high entropy alloys up to 1900K 2019:1–30.
[362] Sheikh S, Shafeie S, Hu Q, Ahlström J, Persson C, Veselý J, et al. Alloy design for intrinsically ductile refractory high-entropy alloys. J Appl Phys 2016;120. doi:10.1063/1.4966659.
[363] George EP, Curtin WA, Tasan CC. High entropy alloys: A focused review of mechanical properties and deformation mechanisms. Acta Mater 2020;188:435–74. doi:10.1016/j.actamat.2019.12.015.
[364] Oh HS, Kim SJ, Odbadrakh K, Ryu WH, Yoon KN, Mu S, et al. Engineering atomic-level complexity in high-entropy and complex concentrated alloys. Nat Commun 2019;10:1–8. doi:10.1038/s41467-019-10012-7.
[365] Yang T, Zhao YL, Tong Y, Jiao ZB, Wei J, Cai JX, et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys. Science (80- ) 2018;362:933–7. doi:10.1126/science.aas8815.
[366] Warren BE. X-ray Diffraction. Dover Publications, Inc; 1990.
[367] Niu C, Zaddach AJ, Oni AA, Sang X, Hurt JW, Lebeau JM, et al. Spin-driven ordering of Cr in the equiatomic high entropy alloy NiFeCrCo. Appl Phys Lett 2015;106. doi:10.1063/1.4918996.
[368] Lei Z, Liu X, Wu Y, Wang H, Jiang S, Wang S, et al. Enhanced strength and ductility in a high entropy alloy via ordered oxygen complexes. Nature 2018;563:546–50. doi:10.1038/s41586-018-0685-y.
[369] Miracle D, Majumdar B, Wertz K, Gorsse S. New strategies and tests to accelerate discovery and development of multi-principal element structural alloys. Scr Mater 2017;127:195–200. doi:10.1016/j.scriptamat.2016.08.001.
[370] Kube SA, Sohn S, Uhl D, Datye A, Mehta A, Schroers J. Phase selection motifs in High Entropy Alloys revealed through combinatorial methods: Large atomic size difference favors BCC over FCC. Acta Mater 2019;166:677–86. doi:10.1016/j.actamat.2019.01.023.
[371] Troparevsky MC, Morris JR, Kent PRC, Lupini AR, Stocks GM. Criteria for predicting the formation of single-phase high-entropy alloys. Phys Rev X 2015;5:1–6. doi:10.1103/PhysRevX.5.011041.
[372] Senkov ON, Miller JD, Miracle DB, Woodward C. Accelerated exploration of multi-principal element alloys with solid solution phases. Nat Commun 2015;6:1–10. doi:10.1038/ncomms7529.
[373] Coury FG, Wilson P, Clarke KD, Kaufman MJ, Clarke AJ. High-throughput solid solution strengthening characterization in high entropy alloys. Acta Mater 2019;167:1–11. doi:10.1016/j.actamat.2019.01.029.
[374] Bishop-Moser J, Miracle D, Andres C, George E, Koch C, Liaw P, et al. Manufacturing High Entropy Alloys: Pathway to Industrial Competitiveness. MFORESIGHT 2018:48.
[375] Xie W, Weidenkaff A, Tang X, Zhang Q, Poon J, Tritt T. Recent advances in nanostructured thermoelectric half-Heusler compounds. Nanomaterials 2012;2:379–412. doi:10.3390/nano2040379.
[376] Yin M, Nash P. Standard enthalpies of formation of selected XYZ half-Heusler compounds. J Chem Thermodyn 2015;91:1–7. doi:10.1016/j.jct.2015.07.016.
[377] Rost CM, Sachet E, Borman T, Moballegh A, Dickey EC, Hou D, et al. Entropy-stabilized oxides. Nat Commun 2015;6. doi:10.1038/ncomms9485.
[378] van der Voet E, Salminen R, Eckelman M, Mudd G, Norgate T, Hischier R, et al. Environmental risks and challenges of anthropogenic metals flows and cycles, A report of the Working Group on the Global Metal Flows to the International Resource Panel. vol. 346. 2013. doi:10.1227/01.NEU.0000108643.94730.21.
[379] De Luca A, Dunand DC, Seidman DN. Scandium-enriched nanoprecipitates in aluminum providing enhanced coarsening and creep resistance. Light Met. 2018, Springer, Cham; 2018, p. 1589–94. doi:10.1007/978-3-319-72284-9_207.
[380] Tušek J, Engelbrecht K, Eriksen D, Dall’Olio S, Tušek J, Pryds N. A regenerative elastocaloric heat pump. Nat Energy 2016;1. doi:10.1038/nenergy.2016.134.
[381] Tušek J, Engelbrecht K, Mikkelsen LP, Pryds N. Elastocaloric effect of Ni-Ti wire for application in a cooling device. J Appl Phys 2015;117:124901. doi:10.1063/1.4913878.
[382] Tušek J, Engelbrecht K, Millán-Solsona R, Mañosa L, Vives E, Mikkelsen LP, et al. The elastocaloric effect: A way to cool efficiently. Adv Energy Mater 2015;5:1500361. doi:10.1002/aenm.201500361.
[383] Bartholomé K, Hess T, Mahlke A, König J. New concept for magnetocaloric heat pumps based on thermal diodes and latent heat transfer. 7th Int. Conf. Magn. Refrig. Room Temp. 2016, Thermag VII, 2016. doi:10.18462/iir.thermag.2016.0079.
[384] Duerig TW, Albrecht J, Richter D, Fischer P. Formation and reversion of stress induced martensite in Ti-10V-2Fe-3Al. Acta Metall 1982;30:2161–72. doi:10.1016/0001-6160(82)90137-7.
[385] Stroh AN. The formation of cracks as a result of plastic flow. Proc R Soc 1954;A223:404–14.
9. Copyright:
- This material is a paper by "Jaclyn L. Cann". Based on "Sustainability through Alloy Design: Challenges and Opportunities".
- Source of the paper: https://www.sciencedirect.com/science/article/pii/S0079642520300864
This material is summarized based on the above paper, and unauthorized use for commercial purposes is prohibited.
Copyright © 2025 CASTMAN. All rights reserved.