Analysis of Aluminum–Cerium Based Conductor Die-Casting Alloys for High Performance Electric Vehicle Powertrain Applications

Abstract

Lightweighting of electric vehicles is an important consideration to improve range and potentially reduce the vehicle price by downsizing expensive battery and motor components. Aluminum alloys have a combination of light weight, high electrical conductivity and strength that are required in e-motor applications to achieve high power output and efficiency. In this research, Al–Ce based high pressure die casting alloys were investigated in different heat treatment tempers to maximize mechanical properties while maintaining a high electrical conductivity. Testing of tensile properties and electrical conductivity were performed in the as-cast and heat-treated conditions, while microstructural characterization and solidification analysis were performed using scanning electron microscopy and the universal metallurgical simulator and analyzer, respectively. The results suggest that the Al–Ce–Si–Mg alloy had yield strength (YS) exceeding 110 MPa and electrical conductivity of at least 49 pct IACS (28.5 MS/m) in the T5 and T6 conditions, with elevated Fe levels causing a slight reduction in YS and conductivity. This combination of properties makes this alloy a promising alternative to the near pure Al or Cu-based alloys that are currently used in electric induction motors.

DOI https://doi.org/10.1007/s11661-024-07591-6

References

  1. “Electrification Trends Worldwide,” European Automobile Manufacturers’ Association (ACEA), 2022.
  2. L. Kirkpatrick: Aluminum Electrical Conductor Handbook, 3rd ed., The Aluminum Association, Washington, 1989, pp. 16.1–6.5.
  3. S. Palanivel, C. Kuehmann, J.R. Stucki, E. Filip, and P. Edwards: International Patent WO 2020/028730 A1, 1 August 2019.
  4. “Shape Casting Alloys Data Sheet—Alcan Rotor Alloys,” Rio Tinto Alcan, Montreal, 2004.
  5. “Primary Aluminum Casting Alloys,” Aluminum Reinfelden GmbH, Reinfelden, Germany, 2015.
  6. “NADCA Product Specification Standards for Die Casting,” 9th ed., North American Die Casting Association, Arlington Heights, 2015, pp. 3.6–3.7.
  7. “Aluminum Alloy – 6005A – T6 Extrusion,” Wilsons Ltd., Sawtry, 2018.
  8. “Alloy 6101 - North American Alloy Data Sheets,” Hydro Extrusion North America, Rosemont, 2019.
  9. G. Byczynski, A. Elsayed, and A. Lombardi: European Patent 19182661, 26 June 2019.
  10. Z.C. Sims, D. Weiss, S.K. McCall, M.A. McGuire, R.T. Ott, T. Geer, O. Rios, and P.A.E. Turchi: JOM, 2016, vol. 68, pp. 1940–47.Article CAS Google Scholar 
  11. H.C. Liao, Y. Liu, C.L. Lu, and Q.G. Wang: Int. J. Cast Met. Res., 2015, vol. 28, pp. 213–20.Article CAS Google Scholar 
  12. W. Yuan, Z. Liang, C. Zhang, and L. Wei: Mater. Des., 2012, vol. 34, pp. 788–92.Article CAS Google Scholar 
  13. J.R. Davis: ASM Specialty Handbook: Aluminum and Aluminum Alloys, ASM International, Materials Park, 1993.
  14. X. Gao, Y. Zhao, X. Kai, W. Qian, L. Jin, C. Guan, and P. Sheng: J. Rare Earths, 2022, vol. 40, pp. 153–60.Article Google Scholar 
  15. M.G. Mahmoud, A.O. Mosleh, M.S. Mohamed, M.H. El-Moayed, W. Khalifa, A.V. Pozdniakov, and S. Salem: J. Alloys Compd., 2023, vol. 948, 169805.Article CAS Google Scholar 
  16. E. Aghaie, J. Stroh, D. Sediako, A. Rashidi, and A.S. Milani: Mater. Sci. Eng. A, 2020, vol. 793, 139899.Article CAS Google Scholar 
  17. J. Shin, S. Ko, and K. Kim: J. Alloys Compd., 2015, vol. 644, pp. 673–86.Article CAS Google Scholar 
  18. M. Mujahid and N.N. Engel: Scripta Metall., 1979, vol. 13, pp. 887–93.Article CAS Google Scholar 
  19. W. Yuna, Z. Jianfeng, L. Hengcheng, W. Yongjun, and W. Yuping: J. Mater. Eng. Perform., 2016, vol. 25, pp. 2720–26.Article Google Scholar 
  20. X. Xu, Z. Yang, Y. Ye, G. Wang, and X. He: Mater. Charact., 2016, vol. 119, pp. 114–19.Article CAS Google Scholar 
  21. Q. Zhao, Z. Qian, X. Cui, Y. Wu, and X. Liu: J. Alloys Compd., 2016, vol. 666, pp. 50–57.Article CAS Google Scholar 
  22. Q.G. Wang and C.J. Davidson: J. Mater. Sci., 2001, vol. 36, pp. 739–50.Article CAS Google Scholar 
  23. A. Lombardi, G. Byczynski, B.G. Vidanalage, A. Fatima, and N.C. Kar: SAE Int. J. Adv. Curr. Pract. Mobility, 2023, vol. 5, pp. 2365–72.Article Google Scholar 
  24. S. Shankar and D. Apelian: Int. J. Cast Met. Res., 2002, vol. 15, pp. 103–16.Article CAS Google Scholar 
  25. R.J. Donahue, T.M. Cleary, and K.R. Anderson: European Patent 1683881A1, 2 August 2005.
  26. R.N. Lumley, R.G. Odonnell, D.R. Gunasegaram, and M. Givord: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 2564–74.Article CAS Google Scholar 
  27. M.B. Djurdjevic, W.T. Kierkus, G.E. Byczynski, T.J. Stockwell, and J.H. Sokolowski: AFS Trans., 1999, vol. 14, pp. 173–79.Google Scholar 
  28. M. Hosseinifar and D.V. Malakhov: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 825–33.Article Google Scholar 
  29. M. Hosseinifar and D.V. Malakhov: J. Mater. Sci., 2008, vol. 43, pp. 7157–64.Article CAS Google Scholar 
  30. X. Song, H. Yan, and X. Zhang: J. Rare Earths, 2017, vol. 35, pp. 412–18.Article CAS Google Scholar 
  31. A. Mamala and W. Sciezor: Arch. Metall. Mater., 2014, vol. 59, pp. 413–17.Article CAS Google Scholar 
  32. R.N. Lumley, I.J. Polmear, H. Groot, and J. Ferrier: Scripta Mater., 2008, vol. 58, pp. 1006–09.Article CAS Google Scholar 
  33. B. Smyrak, B. Jurkiewicz, M. Zasadzinska, M. Gnielczyk, and P. Jalowy: Metals, 2020, vol. 10, pp. 1027–36.Article CAS Google Scholar 
  34. A. Polat, M. Avsar, and F. Ozturk: Mater. Technol., 2015, vol. 49, pp. 487–93.Google Scholar 
  35. S. Pogatscher, H. Antrekowitsch, H. Leitner, T. Ebner, and P.J. Uggowitzer: Acta Mater., 2011, vol. 59, pp. 3352–63.Article CAS Google Scholar