Mesh resolution consideration for the viability prediction of lost salt cores in the high pressure die casting process

B. Fuchs and C. KörnerPublished Online:February 10, 2014pp 24-30


High pressure die casting is limited in its geometry since a lost core technology as with sand or low pressure casting is not state-of-the art. Using lost cores made from sodium chloride may be a solution for high pressure die casting. Due to the high dynamical forces during the casting process, core failure is still a problem, especially for high ingate velocities. In this contribution the possibilities of numerical simulation are investigated to predict core failure during the casting process. Numerical results are created with different mesh resolutions and compared to evaluate the simulation results with according mechanical characterisation. In this way an objective approach to find process parameters based on the mechanical properties of the salt cores without costly and time consuming trial-and-error-testing could be established. Furthermore, a critical mesh resolution could be determined.

고압 다이캐스팅 공정에서 손실된 염심의 생존 가능성 예측을 위한 메쉬 해상도 고려


고압 다이캐스팅은 모래나 저압 주조와 같이 핵심 기술을 상실한 기술이 최신 기술이 아니기 때문에 기하학적 구조가 제한적입니다. 염화나트륨으로 만든 로스트 코어를 사용하면 고압 다이캐스팅 솔루션이 될 수 있습니다. 주조 공정 중 높은 역학적 힘으로 인해 코어 파손은 특히 높은 인게이트 속도에서 여전히 문제입니다. 이 기여에서 수치 시뮬레이션의 가능성은 주조 공정 중 코어 파손을 예측하기 위해 조사됩니다. 수치적 결과는 다른 메쉬 해상도로 생성되고 기계적 특성에 따라 시뮬레이션 결과를 평가하기 위해 비교됩니다. 이러한 방식으로 비용이 많이 들고 시간이 많이 소요되는 시행착오 테스트 없이 염심 코어의 기계적 특성을 기반으로 공정 매개변수를 찾는 객관적인 접근 방식이 확립될 수 있습니다.

high pressure die castingHPDClost coresalt coreundercuts in HPDChollow parts in HPDCcasting simulationfluid-structure-interactionFSIfinite difference methodFDM


고압 다이캐스팅 , HPDC , 로스트 코어 , 솔트코어, HPDC 의 언더컷 , HPDC 의 중공 부품 , 주조 시뮬레이션 , 유체 구조 상호 작용 , FSI , 유한 차분법 , FDM


  • 1. Ahuett-Garza, H , Miller, R.A. (2009). ‘The effects of heat released during fill on the deflections of die casting dies’. J. Mater. Process. Technol.. 142, 648-658 Google Scholar
  • 2. Anderko, K , Stark, M. (1969). ‘Kern für Gießereizwecke’. Gießerei56, 540-545 Google Scholar
  • 3. Brethour, J.M , Isfahani, A.H.G. (2011). The Fluid-Structure Interaction and Thermal Stress Evolution Models in Flow-3D. Santa Fe, NM, USA:Flow Science, Inc. Google Scholar
  • 4. Carter, M.C. , Palit, S , Littler, M. (2010). ‘Characterizing flow losses occurring in air vents and ejector pins in high pressure die castings’. Proceedings of the NADCA Cast ExpoGoogle Scholar
  • 5. DIN EN 843-1 (2006). ‘Hochleistungskeramik – Mechanische Eigenschaften monolithischer Keramik bei, Raumtemperatur – Teil 1: Bestimmung der Biegefestigkeit’. Google Scholar
  • 6. Domkin, K. , Hattel, J.H , Thorborg, J. (2009). ‘Modeling of high temperature- and diffusion-controlled die soldering in aluminium high pressure die casting’. J. Mater. Sci. Process. Technol.. 209, 4051-4061 Google Scholar
  • 7. Fuchs, B. , Körner, C , Eibisch, H. (2013). ‘Core viability prediction for the salt core technology in high pressure die casting’. International Journal of Metalcasting (IJMC)7, 2, 39-45 Google Scholar
  • 8. Graf, E. , Izquierdo, P. , Lingl, P. , Ludwig, P. , Schwarz, C , Söll, G. DE Patent. 10 2008 013 813, 2008, 03, 12 Google Scholar
  • 9. Grötzinger, D. DE Patent. 10 359 547, 2005, 03, 03 Google Scholar
  • 10. Helenius, R. , Lohne, O. , Arnberg, L , Laukli, H. (2005). ‘The heat transfer during filling of a high-pressure die-casting shot sleeve’. Mater. Sci. Eng., A. 413–414, 52-55 Google Scholar
  • 11. Hilbinger, M. , Köpf, J. , Rübner, M , Singer, R.F. (2011). ‘Computational optimization of plunger movement during slow shot phase in high pressure die casting’. International Foundry Research. 63, 44-50 Google Scholar
  • 12. Hirt, C.W , Nichols, B.D. (1981). ‘Volume of fluid (VOF) method for the dynamics of freei boundaries’. J. Comput. Phys.. 39, 201-225 Google Scholar
  • 13. Hojjat, M. , Stavropoulou, E. , Gallinger, T. , Israel, U. , Wüchner, R , Bletzinger, K.U. , Bungartz, H-J. Mehl, M Schäfer, M. (2010). ‘Fluid-structure interaction in the context of shape optimization and computational wind engineering’. Fluid Structure Interaction II. Berlin Heidelberg:Springer , 351-381 Google Scholar
  • 14. Hur, D-S. , Mizutani, N , Kim, D-S. (2004). ‘Direct 3-D numerical simulation of wave forces on asymmetric structures’. Coastal Engineering. 51, 407-420 Google Scholar
  • 15. Lee, B. , Baek, U , Han, J. (2012). ‘Optimization of gating system design for die casting of thin magnesium alloy-based multi-cavity LCD housings’. J. Mater., Eng. Perform.. 16, 1-11 Google Scholar
  • 16. Lohkämper, T. (2003). ‘Phasenverschiebungs-Interferenzmikroskopie von lastinduzierten Lösungs-/Fällungsprozessen an Grenzflächen von Halit und NaCl-Lösung’. Ruhr-Universität BochumGoogle Scholar
  • 17. Roebben, G. , Bollen, B. , Brebels, A. , Van Humbeeck, J , Van der Biest, O. (1997). ‘Impulse excitation apparatus to measure resonant frequencies, elastic moduli and internal friction at room and high temperature’. Review of Scientific Instruments. 68, 4511-4515 Google Scholar
  • 18. Rosindale, I , Davey, K. (1998). ‘Steady state thermal model for the hot chamber injection system in the pressure die casting process’. J. Mater. Process. Technol.. 82, 27-45 Google Scholar
  • 19. Takizawa, K. , Moorman, C. , Wright, S. , Spielman, T , Tezduyar, T.E. (2011). ‘Fluid-structure interaction modeling and performance analysis of the Orion spacecraft parachutes’. Int. J. Numer. Methods Fluids. 65, 271-285 Google Scholar
  • 20. Verran, G.Q. , Mendes, R.P.K , Rossi, M.A. (2006). ‘Influence of injection parameters on defects formation in die casting Al12Si1, 3Cu alloy: experimental results and, numeric simulation’. J. Mater. Process. Technol.. 179, 190-195 Google Scholar
  • 21. Wang, C.M , Tay, Z.Y. , Bungartz, H-J. , Mehl, M , Schäfer, M. (2010). ‘Hydroelastic analysis and response of pontoon-type very large floating structures’. Fluid Structure Interaction II. Berlin Heidelberg:Springer , 103-130 Google Scholar
  • 22. Yamada, Y. , Yaokawa, J. , Yoshii, H , Anzai, K. (2007). Developments and Application of Expendable Salt Core Materials for High Pressure Die Casting to Apply Closed-deck Type Cylinder Block. 1-5, JSAE-Report Google Scholar
  • 23. Yarlagadda, P.K.D.V , Chiang, E.C.W. (1999). ‘A neural network system for the prediction of process parameters in pressure die casting’. J. Mater. Process. Technol.. 89–90, 583-590 Google Scholar