Fabrication and Characterization of High-strength Water-soluble Composite Salt Cores via Layered Extrusion Forming

International Journal of Metalcasting (2022)Cite this article

Abstract

This paper presents a novel process for preparing high-strength water-soluble salt cores with complex structure via layered extrusion forming using K2SO4 and KCl as the base salt materials, which is suitable for manufacturing hollow complex-shaped castings. The effects of fortifiers including alumina powder, sericite powder and silica powder on properties and microstructures of K2SO4–KCl composite salt cores were systematically investigated, and the strengthening mechanisms of the composite salt cores are discussed. The results indicate that the effect of alumina powder on the bending strength of K2SO4–KCl composite salt cores is significantly better than that of sericite powder and silica powder. When the content of alumina powder is 20 wt.%, the composite salt cores possess excellent comprehensive properties, and their bending strength, linear shrinkage, water-solubility rate, and moisture rate are 23.34 MPa, 13.86%, 76.73 g/(min·m2), and 0.11%, respectively. The proper content of alumina powder can refine the size of KCl grain and obtain a denser microstructure. Finally, the composite salt core components with high strength and complex structure were fabricated by using the optimized process parameters.

Korea Abstract

본 논문은 중공 복합형 주물 제조에 적합한 K2SO4와 KCl을 기본염 재료로 사용하여 층상 압출 성형을 통해 복합 구조의 고강도 수용성 염심을 제조하는 새로운 공정을 제시한다. 알루미나 분말, 견운모 분말 및 실리카 분말을 포함한 강화제가 K2SO4-KCl 복합염 코어의 특성 및 미세 구조에 미치는 영향을 체계적으로 조사하고 복합 염 코어의 강화 메커니즘을 논의하였다. 결과는 K2SO4-KCl 복합염 코어의 굽힘 강도에 대한 알루미나 분말의 효과가 견운모 분말 및 실리카 분말보다 훨씬 우수함을 나타냅니다. 알루미나 분말의 함량이 20wt.%일 때 복합염심은 우수한 종합특성을 가지며 굽힘강도, 선수축율, 수용성율 및 수분율은 23.34MPa, 13.86%, 76.73g/(min· m2) 및 0.11%입니다. 알루미나 분말의 적절한 함량은 KCl 입자의 크기를 미세화하고 더 조밀한 미세 조직을 얻을 수 있습니다. 마지막으로 최적화된 공정 매개변수를 사용하여 고강도 및 복잡한 구조의 복합 염심 부품을 제작했습니다.

References

  1. F.C. Liu, S. Tu, X.L. Gong et al., Comparative study on performance and microstructure of composite water-soluble salt core material for manufacturing hollow zinc alloy castings. Mater. Chem. Phys. 252, 123257 (2020)CAS Article Google Scholar 
  2. X.T. Wang, W.H. Liu, X.Y. Liu et al., First-principles calculation and mechanical properties of NaCl–Na2SO4 composite water-soluble salt core. Int. Metalcast. (2022). https://doi.org/10.1007/s40962-022-00769-xArticle Google Scholar 
  3. Z. Xiao, L.T. Harper, A.R. Kennedy et al., A water-soluble core material for manufacturing hollow composite sections. Compos. Struct. 182, 380–390 (2017)Article Google Scholar 
  4. X.Y. Liu, W.H. Liu, X.H. Wang et al., Composition optimization and strengthening mechanism of high-strength composite water-soluble salt core for foundry. Int. Metalcast. (2021). https://doi.org/10.1007/s40962-021-00725-1Article Google Scholar 
  5. S. Tu, F.C. Liu, G. Li et al., Fabrication and characterization of high-strength water-soluble composite salt core for zinc alloy die castings. Int. J. Adv. Manuf. Technol. 95, 505–512 (2018)Article Google Scholar 
  6. X.L. Gong, W.M. Jiang, F.C. Liu et al., Effects of glass fiber size and content on microstructures and properties of KNO3-based water-soluble salt core for high pressure die casting. Int. Metalcast. 15, 520–529 (2021). https://doi.org/10.1007/s40962-020-00480-9CAS Article Google Scholar 
  7. K. Oikawa, K. Sakakibara, Y. Yamada et al., High-temperature mechanical properties of NaCl–Na2CO3 salt-mixture removable cores for aluminum die-casting. Mater. Trans. 60(1), 19–27 (2018)Article Google Scholar 
  8. D. Grözinger, Water-soluble salt cores for die casting, EP, EP1715970 A2 (2005).
  9. P. Jelínek, E. Adámková, Lost cores for high-pressure die casting. Arch. Foundry Eng. 14, 101–104 (2014)Article Google Scholar 
  10. J.P. Weiler, A review of magnesium die-castings for closure applications. J. Magnes. Alloys. 7, 297–304 (2019)CAS Article Google Scholar 
  11. T. Wang, J. Zha, J. Qian, Y. Chen, Application of low-melting alloy in the fixture for machining aeronautical thin-walled component. Int. J. Adv. Manuf. Tech. 87, 2797–2807 (2016)Article Google Scholar 
  12. J. Kuo, P. Huang, H. Lai et al., Design of casting systems for stainless steel exhaust manifold based on defective prediction model and experimental verification. Int. J. Adv. Manuf. Technol. 100, 529–540 (2019)Article Google Scholar 
  13. E. Kim, H. Choi, Y. Jung, Fabrication of a ceramic core for an impeller blade using a 3D printing technique and inorganic binder. J. Manuf. Process. 53, 43–47 (2020)Article Google Scholar 
  14. A. Tanwir, A.H. Akhter, Review on aluminium and its alloys for automotive applications. Int. J. Adv. Technol. Eng. Sci. 5, 278–294 (2017)Google Scholar 
  15. F.C. Liu, P. Jiang, Y. Huang et al., A water-soluble magnesium sulfate bonded sand core material for manufacturing hollow composite castings. Compos. Struct. 201, 553–560 (2018)Article Google Scholar 
  16. C. Cantas, B. Baksan, Effects of composition on the physical properties of water-soluble salt cores. Int. Metalcast. 15, 839–851 (2021). https://doi.org/10.1007/s40962-020-00511-5CAS Article Google Scholar 
  17. X.Y. Liu, W.H. Liu, Y.M. Li et al., Study on a high strength composite water soluble salt cores for die casting. China Foundry 67, 118–121 (2018)Google Scholar 
  18. P. Lima, A. Zocca, W. Acchar et al., 3D printing of porcelain by layerwise slurry deposition. J. Eur. Ceram. Soc. 38, 3395–3400 (2018)CAS Article Google Scholar 
  19. S.Y. Tang, L. Yang, G.J. Li, et al. Fabrication of ceramic cores via layered extrusion forming using graphite as pore-forming agent. IOP Conference Series: Mat. Sci. Eng. R. 423, 012065 (2018).
  20. L. Qian, L. Yang, G.J. Li et al., Effect of nano-TiO2 on properties of 3 mol% yttria-stabilized zirconia ceramic via layered extrusion forming. J. Eur. Ceram. Soc. 40, 4539–4546 (2020)CAS Article Google Scholar 
  21. N. Kleger, M. Cihova, K. Masania et al., 3D printing of salt as a template for magnesium with structured porosity. Adv. Mat. 31, 1903783 (2019)Article Google Scholar 
  22. G.J. Li, L. Yang, S.Y. Tang, et al., Fabrication of soluble salt-based support for suspended ceramic structure by layered extrusion forming method, Mater. Design, 108173 (2019).
  23. A.E. Jakus, N.R. Geisendorfer, P.L. Lewis et al., 3D-printing porosity: a new approach to creating elevated porosity materials and structures. Acta Biomater. 72, 94–109 (2018)CAS Article Google Scholar 
  24. Y.M. Zhang, H.P. Shao, T. Lin et al., Effect of Ca/P ratios on porous calcium phosphate salt bioceramic scaffolds for bone engineering by 3D gel-printing method. Ceram. Int. 45, 20493–20500 (2019)CAS Article Google Scholar 
  25. https://www.crct.polymtl.ca/FACT/phase_diagram.php?file=K2SO4-KCl.jpg&dir=FTpulp.
  26. S.Y. Tang, Z.T. Fan, H.P. Zhao et al., Layered extrusion forming—a simple and green method for additive manufacturing ceramic core. Int. J. Adv. Manuf. Technol. 96, 3809–3819 (2018)Article Google Scholar 
  27. R.J. Ackermann, C.A. Sorrell, Thermal expansion and the high–low transformation in quartz. I. High-temperature X-ray studies. J. Appl. Crystallogr. 7, 461–467 (2010).
  28. H.J. Zhang, S.L. Sun, H.J. Liu et al., Characteristic and mechanism of nugget performance evolution with rotation speed for high-rotation-speed friction stir welded 6061 aluminum alloy. J. Manuf. Process. 60, 544–552 (2020)Article Google Scholar