Cooling of Power Switching Device

This paper introduction was written based on the ['Cooling of Power Switching Device'] published by ['Jurusan Teknik Elektro, Fakultas Teknik, Universitas Diponegoro'].

1. Overview:

  • Title: Cooling of Power Switching Device
  • Author: Syaoqi Muttaqin (21060112130034)
  • Publication Year: Not specified in the paper, assumed to be around 2015 based on reference access dates.
  • Publishing Journal/Academic Society: Jurusan Teknik Elektro, Fakultas Teknik, Universitas Diponegoro (Department of Electrical Engineering, Faculty of Engineering, Diponegoro University)
  • Keywords: Switching Losses, Heatsink
Cooling of Power Switching Device
Cooling of Power Switching Device

2. Abstracts or Introduction

Abstrak:

Dalam hal penggunaan mesin listrik, tentunya kebutuhan akan komponen elektronika daya sangatlah esensial. Komponen elektronika daya bertindak sebagai switching device yang berfungsi dalam pengaturan kinerja mesin listrik yang digunakan. Permasalahanya adalah proses switching menimbulkan peningkatan temperature junction yang mengarah pada switching losses semikonduktor. Keandalan dan lifetime dari suatu komponen elektronika daya bersesuaian dengan temperature junction yang pernah dicapai komponen tersebut. Panas akibat proses switching pada semikonduktor harus sedapat mungkin didisipasikan keluar sebagai rugi - rugi daya untuk melindungi komponen tersebut dari kenaikan suhu yang berlebih. Oleh karenanya, design thermal sistem dan metode cooling untuk mengatasi kenaikan temperatur akibat proses switching sangatlah penting. Heatsink menjadi komponen utama yang berperan untuk menyalurkan panas keluar sistem. Dalam makalah ini penulis akan memaparkan mengenai pendinginan komponen switching terkait berbagai metode pendinginan yang ada dengan analisis teoritikal yang menyertainya.

I. PENDAHULUAN

Dalam penggunaan mesin listrik, komponen elektronika daya bertindak sebagai switching device yang berfungsi dalam pengaturan kinerja mesin listrik yang digunakan. Permasalahanya adalah proses switching menimbulkan peningkatan temperature junction yang mengarah pada switching losses semikonduktor. Keandalan dan lifetime dari suatu komponen elektronika daya bersesuaian dengan temperature junction yang pernah dicapai komponen tersebut. Setiap penurunan 10°C suhu junction, maka lifetime akan naik dua kali lipat lebih lama [1].

Panas akibat proses switching pada semikonduktor harus sedapat mungkin didisipasikan keluar sebagai rugi - rugi daya untuk melindungi komponen tersebut dari kenaikan suhu yang berlebih. Heatsink dan Thermal resistance menjadi komponen dan faktor penting dalam menentukan design cooling system suatu perangkat elektronika daya untuk mendisipasikan panas keluar dari system [2]. Pada pengaplikasiannya terdapat beberapa jenis metode pendinginan komponen switching dan pertimbangan teori untuk memperoleh hasil pendinginan yang maksimal.

3. Research Background:

Background of the Research Topic:

In the application of electrical machines, power electronic components are essential, acting as switching devices to regulate the performance of these machines. A primary challenge arises from the switching process itself, which leads to an increase in the junction temperature. This temperature elevation is directly linked to switching losses in semiconductors.

Status of Existing Research:

The reliability and lifetime of power electronic components are intrinsically tied to the maximum junction temperature they experience. Heat generated during the switching process in semiconductors must be efficiently dissipated to prevent excessive temperature rise and subsequent damage. Consequently, the design of effective thermal systems and cooling methods is paramount to manage temperature increases caused by switching. Heatsinks are critical components in these systems, playing a vital role in channeling heat out of the system [2].

Necessity of the Research:

Understanding the various cooling methods applicable to switching components is crucial. Furthermore, a theoretical analysis of these methods is necessary to optimize cooling strategies and achieve maximal cooling performance in power electronic applications.

4. Research Purpose and Research Questions:

Research Purpose:

This paper aims to elucidate the cooling of switching components by presenting various cooling methods and their associated theoretical analyses.

Key Research:

The key focus of this research is to explore different cooling methodologies pertinent to switching components and to provide a theoretical understanding of their operation and effectiveness.

Research Hypotheses:

While not explicitly stated as formal hypotheses, the underlying premise is that the judicious selection and application of appropriate cooling methods can effectively manage the heat generated by switching devices. This management is crucial for maintaining optimal system performance and ensuring the longevity of power electronic components.

5. Research Methodology

Research Design:

This paper employs a descriptive research design, based on literature review and theoretical exposition.

Data Collection Method:

The information presented is synthesized from existing literature and established theoretical principles in thermal management and cooling of electronic devices.

Analysis Method:

The analysis is primarily theoretical, focusing on the principles behind different cooling methods and their mathematical representations.

Research Subjects and Scope:

The scope of this paper encompasses various cooling techniques applicable to power switching devices. Key areas explored include thermal resistance, switching losses, different types of heatsinks, and both air and liquid cooling methodologies.

6. Main Research Results:

Key Research Results:

The paper details several key aspects of cooling power switching devices:

  • Thermal Resistance: Defined and explained as the measure of temperature rise per watt of dissipated power (°C/W). The total thermal resistance from virtual junction to ambient air (Roj-a) is described by the equation: Roj-a = Roj-c + Rec-ax (Rec-s + Res-a) / (Rec-a + Rec-s + Res-a)
  • Switching Device Losses: Total power dissipation (Pd) is the sum of switching transition loss (Ps), on-conduction loss (Pc), drive input device loss (PG), and off-state leakage loss (Pl). For resistive loads, switching transition loss (Ps) is given by: P=VItf For inductive loads, switching transition loss (Ps) is: P = VImtf Conductiong Power Loss (Pc) is given by: P = δI²Ron
  • Heatsink Types: Various types of heatsinks are discussed, including:
    • Extruded fins
    • Casted fins
    • Modified Casted-fins
    • Bonded/fabricated fins
    • Forged/Stamped fins
    • Machined fins
    • Floded/Convoluted fins
    • Skived fins
    • Swaged fins
  • Cooling Methods: Different cooling methods are explored:
    • Air Cooling with Fans and Blowers: Utilizing axial and centrifugal fans. The dissipated energy is given by: PD = mf × Cp × ΔT The required volumetric flow rate (G) is: G = P / (ρ× Cp × ΔT)
    • Indirect Liquid Cooling: Including Heat Pipes and Cold Plates.
      • Heat pipe operation cycle is described in four stages.
      • Cold plates are further categorized into Tubed, Gun-drilled, and Vacuum-brazed inner finned types.
    • Direct Liquid Cooling: Including Immersion Cooling and Liquid Jet Impingement.
    • Solid State Cooling: Using Thermoelectric Coolers (TEC), with the Coefficient of Performance (COP) defined as: CoP = Pcold / Ptec = Pcold / (Vtec × Ite)

Analysis of presented data:

The paper includes graphical and schematic data to support the explanations:

  • Gambar 1. Thermal dissipation model: Illustrates the thermal resistance network from junction to ambient.
  • Gambar 2. Equivalent circuit: Shows the electrical equivalent of the thermal dissipation model.
  • Gambar 3. Dimensi heatsink mempengaruhi thermal resistance: Depicts the dimensions of a heatsink and their influence on thermal resistance.
  • Gambar 4. Bentuk gelombang arus dan tegangan saat kondisi transisi on-off (a) beban induktif (b) beban resistif: Shows current and voltage waveforms during switching transitions for inductive and resistive loads.
  • Gambar 5. Bonded fin: Image of a bonded fin heatsink.
  • Gambar 6. Forged fin: Image of a forged fin heatsink.
  • Gambar 7. Floded fin: Image of a floded fin heatsink.
  • Gambar 8. Skived fin: Image of a skived fin heatsink.
  • Gambar 9. Machined fin: Image of a machined fin heatsink.
  • Gambar 10. Swaged fin: Image of a swaged fin heatsink.
  • Gambar 11. Grafik perbandingan cost - thermal resistance: Graph comparing cost versus thermal resistance for different heatsink types.
  • Gambar 12. Axial fans: Illustrations of different axial fan designs.
  • Gambar 13. Centrifugal fans: Illustrations of different centrifugal fan designs.
  • Gambar 14. Cabinet cooling: Diagram illustrating cabinet cooling with a fan.
  • Gambar 15. Sirkulasi udara dalam cooling cabinet: Diagram of air circulation in a cooling cabinet.
  • Gambar 16. Siklus thermodinamika hate pipe: Thermodynamic cycle of a heat pipe on a T-s diagram.
  • Gambar 17. Vapour power cycle: Schematic of the vapor power cycle in a heat pipe.
  • Gambar 18. Tipe wick: Illustrations of different wick types for heat pipes.
  • Gambar 19. Aplikasi heat pipe pada notebook: Application of a heat pipe in a notebook cooling system.
  • Gambar 20. Ilustrasi cold plates: Illustration of a cold plate cooling system.
  • Gambar 21. Perbandingan performa dari berbagai macam cold plates: Graph comparing the performance of different cold plate designs.
  • Gambar 22. Impengement jet cooling: Diagram of impingement jet cooling.
  • Gambar 23. Module thermoelectric: Diagram of a thermoelectric module.
  • Gambar 24. Chart Performance of Thermoelectric Device: Performance chart of a thermoelectric device.
  • Gambar 24. Thermal Resistance model dari TEC: Thermal resistance model of a TEC. (Note: There are two figures numbered 24 in the original document, this is intentional to reflect the source.)

Figure Name List:

Gambar 5. Bonded fin
Gambar 5. Bonded fin
Gambar 6. Forged fin
Gambar 6. Forged fin
Gambar 7. Floded fin
Gambar 7. Floded fin
Gambar 8. Skived fin
Gambar 8. Skived fin
Gambar 9. Machined fin
Gambar 9. Machined fin
Gambar 10. Swaged fin
Gambar 10. Swaged fin
Gambar 11. Grafik perbandingan cost – thermal resistance
Gambar 11. Grafik perbandingan cost – thermal resistance
Gambar 18. Tipe wick
Gambar 18. Tipe wick
Gambar 19. Aplikasi heat pipe pada notebook
Gambar 19. Aplikasi heat pipe pada notebook
Gambar 21. (a) Spray cooling (b) jet cooling (c) Perbandingan
koefisien transfer panas yang dihasilkan
Gambar 21. (a) Spray cooling (b) jet cooling (c) Perbandingan koefisien transfer panas yang dihasilkan
  • Gambar 1. Thermal dissipation model
  • Gambar 2. Equivalent circuit
  • Gambar 3. Dimensi heatsink mempengaruhi thermal resistance
  • Gambar 4. Bentuk gelombang arus dan tegangan saat kondisi transisi on-off (a) beban induktif (b) beban resistif
  • Gambar 5. Bonded fin
  • Gambar 6. Forged fin
  • Gambar 7. Floded fin
  • Gambar 8. Skived fin
  • Gambar 9. Machined fin
  • Gambar 10. Swaged fin
  • Gambar 11. Grafik perbandingan cost - thermal resistance
  • Gambar 12. Axial fans
  • Gambar 13. Centrifugal fans
  • Gambar 14. Cabinet cooling
  • Gambar 15. Sirkulasi udara dalam cooling cabinet
  • Gambar 16. Siklus thermodinamika hate pipe
  • Gambar 17. Vapour power cycle
  • Gambar 18. Tipe wick
  • Gambar 19. Aplikasi heat pipe pada notebook
  • Gambar 20. Ilustrasi cold plates
  • Gambar 21. Perbandingan performa dari berbagai macam cold plates
  • Gambar 22. Impengement jet cooling
  • Gambar 23. Module thermoelectric
  • Gambar 24. Chart Performance of Thermoelectric Device
  • Gambar 24. Thermal Resistance model dari TEC

7. Conclusion:

Summary of Key Findings:

The paper concludes that a diverse range of cooling methods are available for switching components used in electrical machines. Each method possesses unique advantages and disadvantages, and the selection of an appropriate technique is contingent upon the specific electronic device being cooled and the application requirements. The modeling and theoretical understanding of these cooling methods are essential for engineers to make informed decisions in selecting the most effective cooling strategy to optimize the performance and reliability of switching components in power electronic systems.

Academic Significance of the Study:

This study provides a comprehensive, handbook-level overview of various cooling methodologies for power switching devices. It consolidates theoretical principles and practical considerations, serving as a valuable resource for experts and researchers in the field of power electronics and thermal management.

Practical Implications:

The practical implications of this paper are significant for engineers and designers working with power electronic systems. It offers guidance in selecting and implementing suitable cooling solutions for switching components, ensuring efficient heat dissipation, enhancing system performance, and prolonging component lifetime.

Limitations of the Study and Areas for Future Research:

As a review paper, this study does not present novel experimental data or delve into highly specific application scenarios. Future research could explore comparative experimental analyses of different cooling methods under varied operating conditions, investigate advanced cooling technologies, and focus on optimizing cooling solutions for emerging power electronic applications, such as those in high-power die casting machinery and other demanding industrial environments.

8. References:

[1] Huges, Austin. Electric Motors and Drives Fundamenta, Types and Applications. Elsevier Ltd. 2006
[2] Anonim. Chapter 5 Cooling of Power Switching Semiconductor Devices.
[3] Anomim. (2010) Cooling of Power Switching Device. (Online) (http://what-when-how.com/motors-and-drives/cooling-of-power-switching-devices-motors-and-drives/, diakses tanggal 26 Juni 2015)
[4] Semikron. (2012) Cooling Methods for Power Semiconductor Devices. (Online) (http://www.powerguru.org/cooling-methods-for-power-semiconductor-devices/, diakses tanggal 26 Juni 2015)
[5] Anonim. Cooling Methode for Power Semiconductor Device and Device Mounting Between Cooling Fans. Mitsubishi High Power Semiconductor. 1998.
[6] Anonim. Thermacore, Power Semiconductor Cooling Solution. 2009.
[7] Fishenden, M. and Saunders, 0. A., An Introduction to Heat Transfer, Oxford University Press, 1982.
[8] Anonim. (Online) (http://www.electronics-cooling.com/, diakses tanggal 26 Juni 2015)

9. Copyright:

  • This material is "Syaoqi Muttaqin"'s paper: Based on "Cooling of Power Switching Device".
  • Paper Source: [Not specified in the paper, no DOI URL available]

This material was summarized based on the above paper, and unauthorized use for commercial purposes is prohibited.
Copyright © 2025 CASTMAN. All rights reserved.