A predictive model for the evolution of the thermal conductance at the casting–die interfaces in high pressure die casting

A.HamasaiidaG.DouraT.LouloucM.S.DarguschbaUniversité de Toulouse, INSA, UPS, Mines Albi, ISAE, ICA (Institut Clément Ader), CROMeP, Campus Jarlard, F-81013 Albi Cedex 09, FrancebCAST Cooperative Research Centre, School of Engineering, The University of Queensland, St. Lucia, Brisbane QLD 4072, AustraliacUniversité de Bretagne-Sud, LIMAT B, rue de Saint-Maudé, 56321 Lorient, France

Abstract

An analytical model is proposed to predict the time varying thermal conductance at the casting–die interface during solidification of light alloys during High pressure Die Casting. Details of the topography of the interface between the casting and the die are included in the model through the inclusion of solid surface roughness parameters and the mean trapped air layer at the interface. The transitory phase of the interfacial thermal conductance has been related to the degradation of contact as solidification progresses through the casting thickness. The modelled time varying thermal conductance showed very good agreement with experimentally determined values for different alloy compositions and casting geometries. The analysis shows that the parameters that govern the thermal conductance are different for the first stage of contact compared to the second stage of contact when the alloy begins to solidify.

A predictive model for the evolution of the thermal conductance at the casting–die interfaces in high pressure die casting
A predictive model for the evolution of the thermal conductance at the casting–die interfaces in high pressure die casting
Fig. 2. Normalised surface profile equivalent to the real surface profile and the equivalent distribution function as compared to the Gaussian distribution function
Fig. 2. Normalised surface profile equivalent to the real surface profile and the equivalent distribution function as compared to the Gaussian distribution function

Keywords

Thermal contact resistance

Heat transfer coefficient

Thermal conductance

High pressure die casting

Solidification

Cited by (40)