On determining lost core viability in high-pressure die casting using Computational Continuum Mechanics

개요:

  • 제목: On determining lost core viability in high-pressure die casting using Computational Continuum Mechanics
  • 저자: Sebastian Kohlstädt
  • 발행 연도: 2019
  • 발행 학술지/학회: Doctoral thesis, KTH Royal Institute of Technology
  • Keywords:
    • high-pressure die casting
    • lost salt cores
    • computational continuum mechanics
    • two-phase compressible flow
    • OpenFOAM
    • CFD
    • fluid-structure interaction
    • volume-of-fluid method

연구 배경:

  • 연구 주제의 사회적/학문적 맥락:
    • 고압 다이캐스팅은 자동차 및 관련 산업에서 중요한 공정입니다.
    • 로스트 코어 기술은 냉각 또는 오일 흐름을 위한 내부 형상을 생성하여 기능성을 향상시킬 수 있습니다.
  • 기존 연구의 한계점:
    • 2019년 봄 기준으로 고압 다이캐스팅에서 로스트 코어의 양산 적용 사례가 알려져 있지 않습니다.
    • 이는 공정 및 주조 개념의 타당성을 사전에 판단할 수 있는 엔지니어링 도구의 부재 때문이라고 여겨집니다.
  • 연구의 필요성:
    • 로스트 코어를 사용한 하우징 설계가 허용 가능한 불량률과 원하는 냉각 성능으로 제조 가능한지 여부를 사전에 결정하는 도구가 필요합니다.

연구 목적 및 연구 질문:

  • 연구 목적:
    • 전산 연속체 역학(CCM)이 주조 엔지니어가 로스트 코어를 사용한 하우징 개념의 타당성을 사전에 결정하는 데 유용한 도구 역할을 할 수 있는지 조사합니다.
  • 핵심 연구 질문:
    • OpenFOAM의 CCM 모델은 로스트 코어를 사용한 하우징 설계의 제조 가능성을 사전에 판단할 수 있는가?
  • 연구 가설:
    • OpenFOAM 툴박스 내의 CCM 모델은 로스트 코어를 사용한 하우징 설계의 제조 가능성을 사전에 결정할 수 있습니다.

연구 방법론

  • 연구 설계:
    • OpenFOAM 툴박스 내에 CCM 모델을 제시, 구현 및 테스트합니다.
  • 데이터 수집 방법:
    • 검증을 위해 고압 다이캐스팅 실험을 수행했습니다.
  • 분석 방법:
    • 공기 및 용융물의 2상 흐름은 VOF(Volume of Fluid) 개념으로 모델링되었습니다.
    • 난류 모델링은 RANS(Reynolds-Averaged-Navier-Stokes) 접근 방식을 통해 수행되었으며, 주로 Menter SST k-ω 모델을 사용했습니다.
    • 고체 역학에는 등방성 선형 탄성 모델이 가정되었습니다.
    • 실험 결과 및 기존 연구 결과와 비교 분석했습니다.
  • 연구 대상 및 범위:
    • 로스트 염 코어를 사용한 고압 다이캐스팅의 내부 형상을 가진 하우징 개념을 연구 대상으로 합니다.
    • 다이캐스팅 공정 중 다이캐스팅 충전 단계에 초점을 맞추었습니다.

주요 연구 결과:

  • 핵심 연구 결과:
    • CCM 모델은 각 설정을 개별적으로 테스트할 수 있습니다.
    • 로스트 코어로 제작된 하우징은 주조품의 열 전달 능력을 향상시킬 수 있습니다.
    • 최대 30 ms⁻¹의 충격 속도에서 코어를 사용하여 주조품을 생산할 수 있었습니다.
    • 충격 속도가 가장 결정적인 매개변수임을 확인했습니다.
    • 균열 없는 코어를 사용하면 용융물의 첫 번째 충격 시 슬래밍 이벤트가 파손에 결정적이지 않다는 것을 발견했습니다.
    • 피크 힘만 평가하는 접근 방식은 충분하지 않다는 것을 발견했습니다.
    • 충전 시간이 0.1초 미만이라도 용융물에서 코어로 전달되는 열을 무시할 수 없습니다.
  • 통계적/정성적 분석 결과:
    • 실험 및 기존 연구 결과와 비교했을 때 최대 5-10%의 편차를 보였습니다.
    • 정확한 슬래밍 계수를 얻기 위해서는 0.3mm 이하의 메쉬 세분화가 필요합니다.
    • 난류 모델 선택은 결과에 미미한 영향을 미칩니다.
  • 데이터 해석:
    • CCM 모델은 주조 또는 CAD 엔지니어가 주조 개념의 생산 가능성을 사례별로 결정하는 데 강력한 도구를 제공할 수 있습니다.
    • 도구는 제한된 CFD 접근 방식부터 완전 결합된 FSI 방법론까지 다양합니다.
  • Figure Name List:
    • Figure 1: The layout and components of a high-pressure die casting machine according to DIN 24480
    • Figure 2: Process steps during high-pressure die casting (HPDC)
    • Figure 3: Conceivable applications of lost core technology for creating inlying channels in cast housings in the automotive industry
    • Figure 4: Illustration of the volume-of-fluid method of distinguishing between the phases via an indicator function assigning a value between 0 and 1 to each cell
    • Figure 5: Solving process scheme of fsiFoam Solver
    • Figure 6: PISO algorithm before and after the adjustments
    • Figure 7: Mechanism of transferring the field data at the fluid-solid interface
    • Figure 8: The tool concept for validation of the simulations in high-pressure die casting experiments. There is always a pair of inserts for the moving side (ms) and the fixed side (fs); (a) is the setup for the straight ingate, (b) represents the tooling parts for the fork ingate
    • Figure 9: An engineering drawing of the salt core geometry of the ultimately selected shape: a rectangular cross-section with 10 mm in width and 3, 5 and 7 mm in thickness.
    • Figure 10: The geometry for investigating the slamming on a salt core in a channel; all dimensions in mm
    • Figure 11: Mesh study of the slamming factor in comparison with models by von Karman [118] and Wagner [121]
    • Figure 12: Comparison of the computed result with reference studies in previously published articles
    • Figure 13: Influence of the selected turbulence model on the computed result of the slamming factor
    • Figure 14: Different strategies for calculating the turbulence in the Navier-Stokes equations
    • Figure 15: The flow pattern on the 2D-mesh at three different time steps, illustrating the influence of the selected turbulence model on the morphology of the melt-air interface: (a) k-ɛ; (b) k-w-SST; (c) Spalart-Allmaras. Red areas characterise the melt, blue areas the air and the mixed colours (white/orange) regions are the interface between melt and air
    • Figure 16: Comparison of the effective mean pressure force in the x-direction when using different turbulence models; the vertical bars show the standard deviation
    • Figure 17: Comparison of the necessary computational time in minutes when doing the simulations with the particular turbulence model
    • Figure 18: Benchmarking of the presented OpenFOAM model with previously published data by Korti and Aboudi [71]; the figure shows the interface positions at various time steps
    • Figure 19: The fraction occupied by air after the melt-front has propagated into the ingate; the numerical values represent the different piston velocities in ms-1
    • Figure 20: The deformation of the salt core in a casting experiment; Uin = 30 ms-1
    • Figure 21: The deformation of a cracked salt core in a casting experiment; Uin = 50 ms-1
    • Figure 22: The deformation of the salt core after 0.016 s, as predicted by the CFD simulation; Uin = 30 ms-1
    • Figure 23: The filling pattern of the melt and core displacement at a fill fraction of 95 %; Uin = 30 ms-1
    • Figure 24: The displacement of the salt core centre in the x-direction over time
    • Figure 25: Sketch of the simplified simulation; note that the entire domain is filled with melt as this is a single-phase flow model
    • Figure 26: Result of the mesh independency study
    • Figure 27: Temperature in salt core at times t=(0.1s, 0.5s, 1s, 1.5s, 2s) from left to right
    • Figure 28: Spatial temperature distribution in x-direction through the middle of the core
    • Figure 29: Dimensionless temperature distribution through the salt core at time t=1 s
    • Figure 30: Dimensionless temperature distribution through the salt core at time t=2 s
    • Figure 31: A strategy proposal for designing castings with lost cores and the corresponding manufacturing process
    • Figure 32: The impossible triangle of computational continuum mechanics in high-pressure die casting

결론 및 논의:

  • 주요 결과 요약:
    • CCM은 로스트 코어를 사용한 고품질 주조품 설계를 위한 강력한 도구입니다.
    • 완전 통합 모델보다 분리된 접근 방식이 더 유용합니다.
    • 잉게이트 속도, 코어 직경 및 다이 단면이 주요 결정 요인입니다.
    • 코어로의 열 전달이 중요합니다.
  • 연구의 학술적 의의:
    • HPDC에서 로스트 코어의 타당성을 위한 검증된 CCM 모델을 제시했습니다.
    • FSI 및 열 전달의 중요성을 입증했습니다.
  • 실무적 시사점:
    • 로스트 코어를 사용한 주조품 설계를 위한 엔지니어링 전략을 제공했습니다.
    • CCM은 타당성을 평가하고 공정을 최적화하는 데 도움이 될 수 있습니다.
  • 연구의 한계점:
    • 모델의 가역성, FSI 모델의 소성 변형 및 열 전달 부족, 산업 형상에 대한 안정성 문제, 솔루션 시간 등이 있습니다.

향후 후속 연구:

  • 후속 연구 방향:
    • CCM 모델 안정성 개선, 염 코어용 고체 모델 확장(소성, 파괴), FSI 모델에 열 전달 포함, 염 코어 생산 기술 발전, 슬래밍 힘 실험적으로 측정, 산업 형상에 적용.
  • 추가 탐구가 필요한 영역:
    • 소성 변형, 코어 강도에 대한 열 전달 효과, 샷 슬리브 매개변수 최적화, CCM의 견고하고 효율적인 산업적 적용.

참고문헌:

  • [1] foam-extend github repository. https://sourceforge.net/p/foam-extend/foam-extend-4.0/ci/master/tree/. Accessed: 2019-04-03.
  • [2] MS Windows NT kernel description. https://www.industr.com/en/advancements-in-die-casting-technology-2330650. Accessed: 2019-03-13.
  • [3] Gloom and boom – special report cars. Economist, 17/2013:43-52, 2013.
  • [4] S. Abrate. Hull slamming. Applied Mechanics Reviews, 64(6):060803, 2011.
  • [5] M. Adam, A. Gebauer-Teichmann, and M. Fehlbier. Entwicklung eines Oberflächenkonzepts für Aluminiumdruckgussformen mittels Verschleißschutzschichten zur Reduzierung von Trennmittelauftrag und Sprühkühlung auf ein Nullniveau. In Wissenschaftssymposium Komponente, pages 17–31. Springer, 2017.
  • [6] F. Adames. Electric motor housings with integrated heat removal facilities, April 24 2001. US Patent 6,222,289.
  • [7] J. Aguilar, M. Fehlbier, T. Grimmig, H. Bramann, C. Afrath, and A. Bührig-Polaczek. Semi-solid processing of metal alloys. Steel Research International, 75(8-9):492-505, 2004.
  • [8] M. Ariff, S.M. Salim, and S.C. Cheah. Wall y+ approach for dealing with turbulent flow over a surface mounted cube: Part 1-Low Reynolds number. In Seventh International Conference on CFD in the Minerals and Process Industries, pages 1-6, 2009.
  • [9] J. Arman and R. Cointe. Hydrodynamic impact analysis of a cylinder. pages 609-634, 1987.
  • [10] M.J. Assael, K. Kakosimos, R.M. Banish, J. Brillo, I. Egry, R. Brooks, P.N. Quested, K.C. Mills, A. Nagashima, Y. Sato, et al. Reference data for the density and viscosity of liquid aluminum and liquid iron. Journal of physical and chemical reference data, 35(1):285–300, 2006.
  • [11] W. Beitz, M.J. Shields, H. Dubbel, B.J. Davies, and K.H. Küttner. DUBBEL - Handbook of Mechanical Engineering. Springer London, 2013.
  • [12] C. Biscarini, S. D. Francesco, and P. Manciola. CFD modelling approach for dam break flow studies. Hydrology and Earth System Sciences, 14(4):705–718, 2010.
  • [13] W. Bo and J. W. Grove. A volume of fluid method based ghost fluid method for compressible multi-fluid flows. Computers & Fluids, 90:113-122, 2014.
  • [14] P. Böckh and T. Wetzel. Wärmeübertragung: Grundlagen und Praxis. Springer Berlin Heidelberg, 2015.
  • [15] J.U. Brackbill, D.B. Kothe, and C. Zemach. A continuum method for modeling surface tension. 100(2):335-354, 1992.
  • [16] E. Brunnhuber. Praxis der Druckgussfertigung. Schiele und Schoen, Berlin, 1991.
  • [17] J. Campbell. Complete Casting Handbook: Metal Casting Processes, Metallurgy, Techniques and Design. Elsevier Science, 2015.
  • [18] T. Campbell and P. Weynberg. An investigation into wave slamming loads on cylinders. Wolfson Marine Craft Unit Report No. 317 - University of Southampton, 1977.
  • [19] T. Campbell and P. Weynberg. Measurement of parameters affecting slamming - final report. Wolfson Marine Craft Unit Report No. 440 - University of Southampton., 1980.
  • [20] P. Cardiff, Ž. Tuković, H. Jasak, and A. Ivanković. A block-coupled finite volume methodology for linear elasticity and unstructured meshes. Computers & Structures, 175:100-122, 2016.
  • [21] G. Chen, Q. Xiong, P.J. Morris, E.G. Paterson, A. Sergeev, and Y. Wang. Openfoam for computational fluid dynamics. Not. AMS, 61(4):354-363, 2014.
  • [22] R. Courant et al. Variational methods for the solution of problems of equilibrium and vibrations. Verlag nicht ermittelbar, 1943.
  • [23] R. Courant, K. Friedrichs, and H. Lewy. On the partial difference equations of mathematical physics. IBM Journal of Research and Development, 11(2):215-234, 1967.
  • [24] C.T. Crowe, J.D. Schwarzkopf, M. Sommerfeld, and Y. Tsuji. Multiphase Flows with Droplets and Particles, Second Edition. Taylor & Francis, 2011.
  • [25] C.T. Crowe, T.R. Troutt, and J.N. Chung. Numerical models for two-phase turbulent flows. Ann. Rev. Fluid Mech., 28(1):11–43, 1996.
  • [26] F. Czerwinski, M. Mir, and W. Kasprzak. Application of cores and binders in metalcasting. International Journal of Cast Metals Research, 28(3):129-139, 2015.
  • [27] A.K. Dahle and L. Arnberg. The rheological properties of solidifying aluminum foundry alloys. JOM, 48(3):34–37, 1996.
  • [28] Din en iso 7438: Metallic materials - bend test, 2012.
  • [29] A.S. Dorfman. Conjugate Problems in Convective Heat Transfer. Taylor & Francis, 2009.
  • [30] J. Droniou. Finite volume schemes for diffusion equations: introduction to and review of modern methods. Mathematical Models and Methods in Applied Sciences, 24(08):1575–1619, 2014.
  • [31] G.F.D. Duff and D. Naylor. Differential Equations of Applied Mathematics. Jwang Yuan Publishing Company, 1970.
  • [32] F. Faura, J. López, and J. Hernández. On the optimum plunger acceleration law in the slow shot phase of pressure die casting machines. International Journal of Machine Tools and Manufacture, 41(2):173-191, 2001.
  • [33] R.P. Fedkiw, T. Aslam, B. Merriman, and S. Osher. A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). Journal of Computational Physics, 152(2):457–492, 1999.
  • [34] P.J.M. Ferrer, D.M. Causon, L. Qian, C.G. Mingham, and Z.H. Ma. A multi-region coupling scheme for compressible and incompressible
  • [35] P. Fickel. Hohl-und Verbundguss von Druckgussbauteilen-numerische Auslegungsmethoden und experimentelle Verifikation. 2017.
  • [36] J.B.J. Fourier. Théorie analytique de la chaleur. Chez Firmin Didot, père et fils, 1822.
  • [37] B. Fuchs. Salzkerntechnologie für Hohlgussbauteile im Druckguss. Cuvillier Verlag, 2014.
  • [38] B. Fuchs, H. Eibisch, and C. Körner. Core viability simulation for salt core technology in high-pressure die casting. Int. J. Metalcasting, 7:39-45, 2013.
  • [39] B. Fuchs and C. Körner. Mesh resolution consideration for the viability prediction of lost salt cores in the high pressure die casting process. Prog. Comp. Fluid Dyn., 14:24–30, 2014.
  • [40] V. Fuchs. Numerische Modellierung von Fluid-Struktur-Wechselwirkungen an wellenbeaufschlagten Strukturen. Kassel University Press GmbH, 2014.
  • [41] L.W. Garber. Theoretical analysis and experimental observation of air entrapment during cold chamber filling. Die Casting Engineer, 26(3):14-15, 1982.
  • [42] P. Ghadimi, A. Dashtimanesh, and S.R. Djeddi. Study of water entry of circular cylinder by using analytical and numerical solutions. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 34(3):225-232, 2012.
  • [43] H. Gjestland and H. Westengen. Advancements in high pressure die casting of magnesium. Advanced engineering materials, 9(9):769–776, 2007.
  • [44] E. Graf and G. Soell. Vorrichtung zur Herstellung eines Druckgussbauteils mit einem Kern und einem Einlegeteil, 2003. DE Patent DE2,001,145,876.
  • [45] E.D.I. Graf and G.D.I. Söll. Verfahren zur Herstellung eines Zylinderkurbelgehäuses, 2008. DE Patent DE200,710,023,060.
  • [46] D. Griggs, M. Stafford-Smith, O. Gaffney, J. Rockström, P. Öhman, M.C.and Shyamsundar, W. Steffen, G. Glaser, N. Kanie, and I. Noble. Policy: Sustainable development goals for people and planet. Nature, 495(7441):305, 2013.
  • [47] D. Groezinger. Water-soluble salt cores, March 26 2013. US Patent 8,403,028.
  • [48] D. C. Haworth. A review of turbulent combustion modeling for multidimensional in-cylinder CFD. SAE transactions, pages 899-928, 2005.
  • [49] P. Higuera, J.L. Lara, and I.J. Losada. Simulating coastal engineering processes with OpenFOAM®. Coastal Engineering, 71:119-134, 2013.
  • [50] C.W. Hirt and B.D. Nichols. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comp. Phys., 39:201–225, 1981.
  • [51] P. Homayonifar, R. Babaei, E. Attar, S. Shahinfar, and P. Davami. Numerical modeling of splashing and air entrapment in high-pressure die casting. The International Journal of Advanced Manufacturing Technology, 39(3-4):219-228, 2008.
  • [52] G. Hou, J. Wang, and A. Layton. Numerical methods for fluid-structure interaction—a review. Communications in Computational Physics, 12(2):337-377, 2012.
  • [53] R.I. Issa. Solution of the implicitly discretised fluid flow equations by operator-splitting. Journal of Computational Physics, 62(1):40-65, 1986.
  • [54] D. Jacqmin. Calculation of two-phase Navier-Stokes flows using phase-field modeling. Journal of Computational Physics, 155(1):96–127, 1999.
  • [55] H. Jasak. Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London), 1996.
  • [56] H. Jasak. OpenFOAM: open source CFD in research and industry. International Journal of Naval Architecture and Ocean Engineering, 1(2):89-94, 2009.
  • [57] H. Jasak and A.D. Gosman. Element residual error estimate for the finite volume method. Computers & fluids, 32(2):223–248, 2003.
  • [58] H. Jasak, A. Jemcov, and Z. Tukovic. OpenFOAM: A C++ Library for Complex Physics Simulations. In International Workshop on Coupled Methods in Numerical Dynamics IUC, 2007.
  • [59] P. Jelínek and E. Adámková. Lost cores for high-pressure die casting. Archives of Foundry Engineering, 14(2):101–104, 2014.
  • [60] U. Jordi, S. Padovan, and H.J. Roos. Verfahren zur Herstellung von Salzkernen, 2013. WO Patent PCT/EP2012/068,345.
  • [61] J. Jorstad and D. Apelian. Hypereutectic Al-Si alloys: practical casting considerations. International Journal of Metalcasting, 3(3):13-36, 2009.
  • [62] L. Kallien. Salzkerne im druckguss. GIESSEREI-SPECIAL, (1):32–43, 2016.
  • [63] H. Kaufmann and P.J. Uggowitzer. Metallurgy and processing of high-integrity light metal pressure castings. Fachverlag Schiele & Schön, 2014.
  • [64] C. Kleeberg. Latest advancements in modelling and simulation for high pressure die castings. Alucast India 2010, pages 1-18, 2010.
  • [65] F. Kley, C. Lerch, and D. Dallinger. New business models for electric cars--a holistic approach. Energy policy, 39(6):3392-3403, 2011.
  • [66] M. Koch, C. Lechner, F. Reuter, K. Köhler, R. Mettin, and W. Lauterborn. Numerical modeling of laser generated cavitation bubbles with the finite volume and volume of fluid method, using OpenFOAM. Computers & Fluids, 126:71–90, 2016.
  • [67] S. Kohlstädt, U. Rabus, S. Goeke, and S. Kuckenburg. Verfahren zur Herstellung eines metallischen Druckgussbauteils unter Verwendung
  • [68] S. Kohlstädt, M. Vynnycky, and A. Gebauer-Teichmann. Experimental and numerical CHT-investigations of cooling structures formed by lost cores in cast housings for optimal heat transfer. Heat Mass Trans., 54:3445-3459, 2018.
  • [69] S. Kohlstädt, M. Vynnycky, and J. Jäckel. Towards the modelling of fluid-structure interactive lost core deformation in high-pressure die casting. Submitted to Ocean Engineering, 2019.
  • [70] S. Kohlstädt, M. Vynnycky, A. Neubauer, and A. Gebauer-Teichmann. Comparative RANS turbulence modelling of lost salt core viability in high pressure die casting. Accepted for publication in Prog. Comp. Fluid Dyn., 2018.
  • [71] A.I.N. Korti and S. Abboudi. Numerical simulation of the interface molten metal air in the shot sleeve chambre and mold cavity of a die casting machine. Heat and Mass Transfer, 47(11):1465–1478, 2011.
  • [72] S. Koshizuka, Y. Oka, and H. Tamako. A particle method for calculating splashing of incompressible viscous fluid. Technical report, American Nuclear Society, Inc., La Grange Park, IL (United States), 1995.
  • [73] C. Kunkelmann and P. Stephan. CFD simulation of boiling flows using the volume-of-fluid method within OpenFOAM. Numerical Heat Transfer, Part A: Applications, 56(8):631–646, 2009.
  • [74] W.M. Lai, D.H. Rubin, E. Krempl, and D. Rubin. Introduction to Continuum Mechanics. Elsevier Science, 2009.
  • [75] R. Laouar. Analyse und numerische Simulation von freien Oberflächenwellen in der Gießkammer eines Druckgießprozesses. Kassel University Press GmbH, 2015.
  • [76] B. E. Launder and D. B. Spalding. The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 3(2):269-289, 1974.
  • [77] S. Lecheler. Numerische Strömungsberechnung: Schneller Einstieg durch anschauliche Beispiele (German Edition). Vieweg + Teubner Verlag, 2011.
  • [78] P.D. Lee, A. Chirazi, and D. See. Modeling microporosity in aluminum-silicon alloys: a review. Journal of Light Metals, 1(1):15–30, 2001.
  • [79] G Logvinovich. Gidrodinamika teÄ [U+008D] enij so svobodnymi granicami - (hydrodynamics of free-boundary flows). 1969.
  • [80] J. López, J. Hernández, F. Faura, and G. Trapaga. Shot sleeve wave dynamics in the slow phase of die casting injection. Journal of fluids engineering, 122(2):349-356, 2000.
  • [81] A. V. Luikov, T. L. Perelman, R. S. Levitin, and L. B. Gdalevich. Heat transfer from a plate in a compressible gas flow. Int. J. Heat Mass Transfer, 13:1261–1270, 1971.
  • [82] T. Maric, J. Höpken, and K. Mooney. The OpenFOAM Technology Primer. Stan Mott, 2014.
  • [83] R. Mayon, Z. Sabeur, M.-Y. Tan, and K. Djidjeli. Free surface flow and wave impact at complex solid structures. In 12th International Conference on Hydrodynamics, Egmond aan Zee, NL, 18-23 September, page 10pp., 2016.
  • [84] F.R. Menter. 2-equation eddy-viscosity turbulence models for engineering applications. AIAA J., 32:1598–1605, 1994.
  • [85] F.R. Menter. Review of the shear-stress transport turbulence model experience from an industrial perspective. International Journal of Computational Fluid Dynamics, 23(4):305–316, 2009.
  • [86] F.R. Menter, M. Kuntz, and R. Langtry. Ten years of industrial experience with the SST turbulence model. Turbulence, Heat and Mass Transfer, 4(1):625-632, 2003.
  • [87] S.T. Miller, H. Jasak, D.A. Boger, E.G. Paterson, and A. Nedungadi. A pressure-based, compressible, two-phase flow finite volume method for underwater explosions. Computers & Fluids, 87:132–143, 2013.
  • [88] B. Nogowizin. Theorie und Praxis des Druckgusses. Schiele und Schoen, Berlin, 1st edition, 2010.
  • [89] B. Nykvist and M. Nilsson. Rapidly falling costs of battery packs for electric vehicles. Nature Climate Change, 5(4):329, 2015.
  • [90] S.V. Patankar and D.B. Spalding. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. In Numerical Prediction of Flow, Heat Transfer, Turbulence and Combustion, pages 54-73. Elsevier, 1983.
  • [91] T. L. Perelman. On conjugated problems of heat transfer. Int. J. Heat Mass Transfer, 3:293–303, 1961.
  • [92] F. Peti, L. Grama, and I. Solovăstru. Technico-economical aspects of the high pressure diecasting process profitability in the automotive brackets manufacturing. In 2nd International Conference Economics and Management-Based on New Technologies EMoNT, pages 14–17, 2012.
  • [93] S.B. Pope. Turbulent Flows. IOP Publishing, 2001.
  • [94] M. Popovac and K. Hanjalic. Compound wall treatment for rans computation of complex turbulent flows and heat transfer. Flow, turbulence and combustion, 78(2):177, 2007.
  • [95] A. Reikher and M.R. Barkhudarov. Casting: an analytical approach. Springer Science & Business Media, 2007.
  • [96] A. Ries, S. Kohlstädt, C. Wohlfeld, and M. Rauchschwalbe. Gehäuse, elektrische Maschine mit einem derartigen Gehäuse sowie Fahrzeug, 2016. DE Patent DE102,014,226,303.
  • [97] E. Robertson, V. Choudhury, S. Bhushan, and D.K. Walters. Validation of OpenFOAM numerical methods and turbulence models for incompressible bluff body flows. Computers & Fluids, 123:122–145, 2015.
  • [98] J. Roenby, H. Bredmose, and H. Jasak. A computational method for sharp interface advection. Royal Society Open Science, 3(11):160405, 2016.
  • [99] H. Rusche. Computational fluid dynamics of dispersed two-phase flows at high phase fractions. PhD thesis, Imperial College London (University of London), 2003.
  • [100] J.D. Sachs. From millennium development goals to sustainable development goals. The Lancet, 379(9832):2206-2211, 2012.
  • [101] J. Salencon and S. Lyle. Handbook of Continuum Mechanics: General Concepts - Thermoelasticity. Physics and astronomy online library. Springer, 2001.
  • [102] R.R. Schaller. Moore's law: past, present and future. IEEE spectrum, 34(6):52-59, 1997.
  • [103] T. Schneider, S. Kohlstädt, and U. Rabus. Gehäuse mit Druckgussbauteil zur Anordnung eines elektrischen Fahrmotors in einem Kraftfahrzeug und Verfahren zur Herstellung eines Druckgussbauteils, 2016. DE Patent DE201,410,221,358.
  • [104] R. Schwarze. CFD Modellierung: Grundlagen und Andwendungen bei Strömungsprozessen (German Edition). Springer Vieweg, 2013.
  • [105] I.H. Shames. Mechanics of Fluids McGraw-Hill Series in Mechanical Engineering. McGraw-Hill, 2003.
  • [106] P. R. Spalart and S. R. Allmaras. A one-equation turbulence model for aerodynamic flows. Recherche Aerospatiale, (1):5–21, 1994.
  • [107] C. Speziale. Turbulence modeling for time-dependent RANS and VLES: a review. AIAA journal, 36(2):173–184, 1998.
  • [108] H.B. Stewart and B. Wendroff. Two-phase flow: models and methods. Journal of Computational Physics, 56(3):363-409, 1984.
  • [109] W. Sumelka, T. Blaszczyk, and C. Liebold. Fractional euler-bernoulli beams: Theory, numerical study and experimental validation. European Journal of Mechanics-A/Solids, 54:243-251, 2015.
  • [110] T. Takahashi, T. Miyahara, and H. Mochizuki. Fundamental study of bubble formation in dissolved air pressure flotation. Journal of Chemical Engineering of Japan, 12(4):275–280, 1979.
  • [111] Ε.Ρ.Α.Ε.Η. Tennekes, H. Tennekes, J.L. Lumley, J.L. Lumley, and Massachusetts Institute of Technology. A First Course in Turbulence. The MIT Press. Pe Men Book Company, 1972.
  • [112] G. Timelli and A. Fabrizi. The effects of microstructure heterogeneities and casting defects on the mechanical properties of high-pressure die-cast alsi9cu3 (fe) alloys. Metallurgical and Materials Transactions A, 45(12):5486-5498, 2014.
  • [113] J. Tollefson. Car industry: charging up the future. Nature news, 456(7221):436-440, 2008.
  • [114] Ž. Tuković, A. Karač, P. Cardiff, H. Jasak, and A. Ivanković. OpenFOAM Finite Volume Solver for fluid-solid interaction. Trans. FAMENA, 42:1–31, 2018.
  • [115] E.H. van Brummelen and B. Koren. A pressure-invariant conservative godunov-type method for barotropic two-fluid flows. Journal of Computational Physics, 185(1):289 – 308, 2003.
  • [116] H.K. Versteeg and W. Malalasekera. An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Pearson Education Limited, 2007.
  • [117] K. Vollrath. Herstellung hochwertiger salzkerne durch warmkammerdruckgießen. GIESSEREI, 103(1):32–37, 2017.
  • [118] T.H. Von Karman. The impact on seaplane floats during landing. National Advisory Committee on Aeronautics, 1929.
  • [119] V. Vukčević. Numerical modelling of coupled potential and viscous flow for marine applications. PhD thesis, Fakultet strojarstva i brodogradnje, Sveučilište u Zagrebu, 2016.
  • [120] M. Vynnycky, S. Kimura, K. Kanev, and I. Pop. Forced convection heat transfer from a flat plate: the conjugate problem. International Journal of Heat and Mass Transfer, 41(1):45–59, 1998.
  • [121] H. Wagner. Über stoß-und gleitvorgänge an der oberfläche von flüssigkeiten. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 12(4):193–215, 1932.
  • [122] H.G. Weller, G. Tabor, H. Jasak, and C. Fureby. A tensorial approach to computational continuum mechanics using object orientated techniques. Computers in Physics, 12(6):620–631, 1998.
  • [123] F.M. White. Fluid mechanics, in SI units. McGraw-Hill, 2011.
  • [124] J. Wienke. Druckschlagbelastung auf schlanke zylindrische Bauwerke durch brechende Wellen: theoretische und großmaßstäbliche Laboruntersuchungen. PhD thesis, 2001.
  • [125] J. Wienke, U. Sparboom, and H. Oumeraci. Breaking wave impact on a slender cylinder. In Coastal Engineering 2000, pages 1787-1798. 2001.
  • [126] D.C. Wilcox. Reassessment of the scale-determining equation for advanced turbulence models. AIAA J., 26(11):1299–1310, 1988.
  • [127] D.C. Wilcox et al. Turbulence modeling for CFD, volume 2. DCW industries La Canada, CA, 1998.
  • [128] S.H. Wüst. Zum Temperaturwechselverhalten von Werkzeugstählen für das Druckgießen, volume 18. Kassel University Press GmbH, 2015.
  • [129] S.H. Wüst, A. Gebauer-Teichmann, and B. Scholtes. Charakterisierung des Oberlächenzustands metallischer Dauerformen für das Druckgießen im Produktionsprozess. HTM Journal of Heat Treatment and Materials, 68(3):150-159, 2013.
  • [130] V. Yakhot, S. A. Orszag, S. Thangam, T. B. Gatski, and C. G. Speziale. Development of turbulence models for shear flows by a double expansion technique. Physics of Fluids A: Fluid Dynamics, 4:1510–1520, 1992.
  • [131] M. Ziegler. Diesel in the city center challenges for the engine of the future. MTZ worldwide, 80(1):10–15, 2019.

Copyright:

  • 본 자료는 [논문 작성자]의 논문: [논문 제목]을 기반으로 작성되었습니다.
    • Sebastian Kohlstädt, On determining lost core viability in high-pressure die casting using Computational Continuum Mechanics
  • 논문 출처: DOI URL이 문서에 명시되어 있지 않으므로 생략함

본 자료는 위 논문을 바탕으로 요약 작성되었으며, 상업적 목적으로 무단 사용이 금지됩니다.
Copyright © 2025 CASTMAN. All rights reserved.