Tag Archives: Sand casting

Figure 1. Crank case specimen produced with the HPDC process.

タグチ分析を用いた高圧ダイカストにおける鋳造欠陥の最小化

本紹介資料は、「Scientia Iranica, Transactions B: Mechanical Engineering」に掲載された論文「Minimizing the casting defects in high-pressure die casting using Taguchi analysis」に基づいています。 1. 概要: 2. 抄録 (Abstract): 高圧ダイカスト(HPDC)は自動車産業における主要な生産プロセスの一つであり、幾何学的に複雑な非鉄鋳物を製造するために広く用いられています。HPDCで製造された製品の機械的強度と微細構造は、射出圧力、溶湯温度、1次および2次プランジャー速度、冷却温度などのいくつかのプロセスパラメータの変動によって変化します。これらのプロセスパラメータは鋳造品質に直接影響するため、プロセスの生産性を最大化し、ポロシティ(気孔)、ピンホール、ブローホールなどの鋳造欠陥を最小化するためには、それらの最適な組み合わせが必要です。そこで、この問題に取り組むため、本論文では実験計画法(DOE)とタグチ分析を組み合わせてパラメータを最適化することにより、HPDCプロセスにおける主要な鋳造欠陥であるポロシティを最小化するアプローチを提示します。得られた結果は、冷却時間、射出圧力、および2次プランジャー速度が応答因子(鋳造部品の密度)に大きな影響を与えることを示しました。さらに、178 barの射出圧力、665°Cの溶湯温度、5秒の冷却時間、210°Cの金型温度、0.20 m.s⁻¹の1次プランジャー速度、および6.0 m.s⁻¹の2次プランジャー速度を使用することにより、選択された部品のポロシティによる不良率が61%削減されたと結論付けられました。 3. はじめに (Introduction): 高圧ダイカスト(HPDC)は、自動車、通信、農業などの産業向けに、経済的で複雑な形状かつ寸法精度の高い非鉄金属部品(アルミニウムなど)を製造するために、最も重要かつ広く使用されている製造プロセスの一つです[1, 2]。自動車産業では、クラッチ、ギアボックス、サスペンション、ブレーキ部品、コネクティングロッドなど、幅広い部品の製造に使用されています[3]。一般的にHPDCでは、溶融金属が準備され、高圧下でスリーブを通って金型キャビティに強制的に注入され、凝固が起こるまで高圧下に保持されます。金属の凝固後、金型が解放され、鋳造品が取り出されます[6]。HPDCプロセスは、優れた部品生産、高い寸法精度、部品あたりの製造コスト削減をもたらします[4]。プロセスには多くの利点がありますが、最終的な鋳造品には依然としてポロシティ、ピンホール、ブローホール、収縮、介在物、リングクラックなどの欠陥が存在します[4, 5, 7]。これらの欠陥は、引張強度や疲労強度に直接影響を与えるだけでなく、鋳造部品の被削性や表面仕上げにも悪影響を及ぼします[5, 8-10]。HPDCによって製造される部品の品質は、射出圧力、溶湯温度、1次および2次プランジャー速度、鋳造圧力、冷却温度、金型冷却時間など、様々な制御パラメータに依存します[5, 11-13]。これらのパラメータはそれぞれ、完璧な凝固と鋳造欠陥のない部品を得るために最適値に設定する必要があります。これらの制御パラメータの中で、射出圧力はポロシティの主要な寄与因子であり、ポロシティの変化は金型キャビティ内の負圧と線形関係にあります[14-16]。さらに、不均一な冷却温度は収縮欠陥の形成を引き起こします[17]。注入温度、鋳造圧力、1次および2次プランジャー速度の変動は、鋳造部品の冶金学的特性と機械的強度を変化させます[18]。プランジャー速度とその動きは、ダイカストの最終品質において重要な役割を果たします。1次プランジャー速度は機械内のダイカストチャンバーの充填に関連し、2次プランジャー速度は金型キャビティの充填と相関しています[19]。A380合金を扱う際の冷却温度の変動により、熱処理プロセス中に通常、空気巻き込み欠陥が発生します[20]。充填中の凝固挙動は表面欠陥に非常に大きな影響を与えます。金型内の溶湯温度の低下率は表面欠陥の確率に影響し、固体表面層の厚さが増加するにつれて増加します[21]。同様に、金型温度はHPDCにおける製品の品質に影響を与え、最適範囲からの逸脱は鋳造欠陥を引き起こします[22, 23]。1次および2次プランジャープロファイルと速度は、アルミニウム合金の場合、鋳物の強度特性を低下させる上で重要な役割を果たします[19]。これらの理由から、最小限の欠陥で高品質の鋳物を生産するためには、異なるHPDCプロセス制御パラメータ(射出圧力、溶湯温度、1次および2次プランジャー速度、鋳造圧力、冷却温度、金型冷却時間)の組み合わせを最適化する必要があります。 4. 研究概要: 研究テーマの背景: HPDCは複雑な非鉄部品を大量生産するための重要なプロセスですが、製品の品質と性能を損なうポロシティなどの様々な鋳造欠陥が発生しやすいという課題があります。多数の相互作用するプロセスパラメータを制御することは不可欠ですが困難です。 先行研究の状況: 先行研究では、シミュレーションや実験を通じて個々のHPDCパラメータの影響が調査されてきました。ファジィシステム、ニューラルネットワーク、および「Anycasting」などのソフトウェアシミュレーションを用いた手法が、ポロシティなどの欠陥を予測または最小化するために使用されてきました[25-28]。実験計画法(DOE)と組み合わせたタグチメソッドは、スクイズキャスティングや砂型鋳造など、様々な製造プロセスの最適化に適用されています[35-39]。しかし、実際の産業アプリケーションにおいて、複数の主要なHPDCパラメータを同時に最適化してポロシティ欠陥を最小化することに特化した、DOEとタグチ分析を用いた包括的な実験的アプローチは、あまり検討されていないことが確認されました。鋳造現場で用いられる従来の試行錯誤法は、しばしば非効率的でコストがかかります[29]。 研究目的: 本研究は、特定の自動車部品(バイク用クランクケースLH)の工業的HPDCプロセスにおいて、主要な鋳造欠陥であるポロシティを最小化することを目的としました。これは、実験計画法(DOE)とタグチ分析を組み合わせて、6つの主要な制御可能なプロセスパラメータ(射出圧力、溶湯温度、金型冷却時間、金型温度、1次プランジャー速度、2次プランジャー速度)を最適化することによって達成されました。目標は、鋳造部品の密度を最大化することによりポロシティを低減し、全体的な製品品質と生産歩留まりを向上させる最適なパラメータの組み合わせを見つけることでした。 研究の核心: 研究はバイク製造会社で実施されました。高い生産量と不良率のため、アルミニウムADC 12合金製のクランクケース左側(LH)部品が選定されました(Figure 1, Table 1, Table 2)。生産データ分析とパレート図(Table 3, Figure 3)により、ポロシティ/ピンホールが不良の主な原因として特定されました(Figure 2)。ポロシティの原因となる要因を特定するために特性要因図(Figure

Read More

Fig. 4. Anodized element made from the AC-AlSi9Cu3 aluminium alloy, produced by the Pressure Cast method

鋳造方法の違いにより作製された鋳造アルミニウム合金のアノード酸化

この紹介資料は、「ARCHIVES of FOUNDRY ENGINEERING」に掲載された論文「Anodization of cast aluminium alloys produced by different casting methods」に基づいています。 1. 概要: 2. アブストラクト (Abstract): 本稿では、AlSi12およびAlSi9Cu3アルミニウム鋳造合金のアノード酸化に対する、砂型鋳造と高圧鋳造という2つの鋳造法の有用性を調査した。電解液組成、温度、電流タイプ、電流値などの定義されたアノード酸化パラメータを用いて、陽極酸化アルミナ表面層を生成した。選択したアルミニウム鋳造合金のアノード酸化後の陽極酸化層の品質、寸法、特性を調査した。アルミナ層は光学顕微鏡を用いて観察し、機械的特性も測定し、摩耗試験はABR-8251装置を用いて行った。研究には、アルミニウム鋳物に得られた陽極酸化層の化学組成、形状、粗さの影響分析が含まれた。実施された調査は、今後の研究分野、特にアルミニウム鋳造合金のアノード酸化プロセスの最適化の方向性を示している。例えば、建築構造物、電子部品、航空および自動車産業の構造部品などの過酷な環境での用途を増やすために、元素の耐食性を向上させ、適切な陽極表面層を得る範囲などである。 3. 導入 (Introduction): 環境条件下では、アルミニウム部品の表面は自然に薄いアルミナAl2O3層で覆われる。この層の厚さは、材料、環境、暴露時間に応じて数十ナノメートル程度である。適切なアノード酸化技術を選択することにより、層の厚さを数マイクロメートルの値まで増加させることができる。この方法を用いると、表面は塩水、酸性溶液、外部からの機械的影響などの環境要因に対してより高い耐性を持つようになる。アノード酸化はアルミニウム合金部品の腐食保護に一般的に使用されており、そのため陽極表面層の特性と品質を決定するためのISO 7599やDIN 17611などの国際規格が存在する。材料工学の進歩により、構造材料と工具材料の両方に関して、金属材料の強度に関する問題を満足に解決することが可能になった。近年、様々な産業分野でのアルミニウム合金の使用が継続的に増加しており、アルミニウムおよびその合金、アルミニウムマトリックス複合材料の製造技術の開発が多くの科学機関で観察されている[6-9]。陽極酸化層は、アルミニウム電子部品、家庭用品、器具部品、庭園家具、観光およびスポーツ用品、自動車付属品、アルミニウム建具の要素に適用され、保護的および装飾的な機能を持つ。酸化物層はコンデンサの電極用アルミニウム箔にも生成される。硬質陽極酸化層は航空および自動車産業に適用できる[10-12]。しかし、陰極部位として作用する銅の金属間化合物の存在は、銅含有アルミニウム合金を腐食攻撃に対してより脆弱にする。高い銅含有量は、アルミニウム合金をアノード酸化するのが最も困難な合金の一つにする。厚い陽極酸化皮膜の生成は硬質アノード酸化条件下でのみ可能であるが、この合金は局所的な焼損(バーニング)を起こしやすい。厚い多孔質酸化物が生成される際、Al-Cu合金のアノード酸化プロセス中に酸素発生による皮膜割れも観察される。この合金の特有の特徴は、合金/皮膜界面に比較的狭い銅濃化領域が形成された後、アノード酸化中に銅の酸化が起こることである。これは皮膜形成中の電流効率の低下をもたらす。この低下は、銅リッチ領域上での酸素発生にも起因しており、確立された銅腐食抑制剤が電流効率を改善するために使用されてきた[13-16]。 4. 研究の概要 (Summary of the study): 研究テーマの背景 (Background of the research topic): アノード酸化はアルミニウム合金の重要な表面処理であり、耐食性と耐摩耗性を向上させる。結果として得られる陽極酸化層の特性は、合金組成、その製造プロセス(鋳造法)、およびアノード酸化パラメータに依存する。合金中の銅含有量はアノード酸化プロセスを複雑にする可能性がある。 従来の研究状況 (Status of previous research): アノード酸化は、既存の国際規格と既知の用途を持つ、確立されたプロセスである。これまでの研究では、合金の種類、アノード酸化パラメータ(電解液、電流、温度)の影響、および特定の合金組成(例:高銅含有量)に関連する課題が、結果として得られる陽極酸化層の特性と形成メカニズムに及ぼす影響が調査されてきた[1-16]。 研究の目的 (Purpose of the study): AlSi12およびAlSi9Cu3アルミニウム鋳造合金のアノード酸化に対して、砂型鋳造と高圧ダイカストという2つの異なる鋳造法の有用性を調査すること。本研究は、形成されたアルミナ層の構造と厚さを調べ、鋳造法が結果として得られる陽極酸化層に及ぼす影響を比較することを目的とした。 中核となる研究 (Core study): 2つのアルミニウム合金、EN AC-AlSi12(b)およびEN

Read More

Figure 6. Images showing interior applications of HPDC magnesium alloys: (a) AZ91D automotive audio amplifier cast by Twin City die casting company [44]; (b) AM60 display bracket on 2021 ford explorer; (c) AM60 steering column cast by Meridian lightweight technologies; (d) AM50 center console on Audi A8 and (e) AM60 center stack on JLR defender [45] (courtesy of GF casting solutions).

産業分野における高圧ダイカスト(HPDC)マグネシウム合金の応用

本紹介論文は、「IntechOpen」によって出版された論文「Applications of High-Pressure Die-Casting (HPDC) Magnesium Alloys in Industry」に基づいています。 1. 概要: 2. 抄録: 高圧ダイカスト(HPDC)マグネシウム合金は、主に内燃機関(ICE)自動車の要件によって、自動車産業で多様な応用が見られてきました。自動車産業が電気自動車(EV)アーキテクチャに移行するにつれて、走行距離効率を改善するための新しい応用の大きな可能性があります。さらに、より大型の自動車用ダイカスト部品への傾向と、軽量化による航空宇宙用途への関心の高まりがあります。本章では、ICE自動車における従来の自動車構造用途、ならびにHPDCマグネシウム合金の現在および将来の潜在的なEVおよび航空宇宙用途をレビューしました。従来の自動車でAM50、AM60、AZ91、AE44マグネシウム合金を使用した構造用途は、現代のEVにも適用できます。加えて、より高い熱伝導率、改善された鋳造性、優れた高温特性、および難燃性を様々な程度で持つマグネシウム合金を開発する必要があり、これはバッテリーおよび航空宇宙のキャビン関連構造材料を置き換えて、すべての安全要件を満たすためです。優れた鋳造性を持ついくつかの新しく開発されたマグネシウム合金も、潜在的な自動車および航空宇宙用途のためにレビューされています。 3. 序論: 排出ガスおよび燃費規制により、車両の軽量化の必要性が高まっています。したがって、軽量化は、安全性と性能を維持しながら動力効率を向上させるための非常に重要なトピックとなっています。製品の最適化、材料置換、部品統合などのいくつかの軽量化戦略は、より高密度の構造材料をより低密度の材料に置き換えることによって推進されています。マグネシウムとその合金は、他の自動車用金属と比較していくつかの利点があります。マグネシウムの密度は1.74 g/cm³であり、アルミニウムと鋼の両方よりも著しく低いです[1]。マグネシウム合金は、優れた比強度、優れた自動化可能性と鋳造性特性を持ち、セルフスレッディングファスナーの使用に適していることでよく知られています[2]。一般的に使用されるマグネシウム合金は150°C以上での使用には不適切かもしれませんが[3, 4]、適切な合金元素の添加により、耐熱性[5–7]および耐食性[8, 9]のマグネシウム合金が開発されています。自動車産業は、内燃機関(ICE)から電気自動車(EV)へのパワートレインアーキテクチャの移行を経験しています。マグネシウム合金の熱伝導率向上の開発は、バッテリー関連の応用をサポートしています[7]。一方、難燃性はマグネシウム合金のホットなトピックであり、関連研究は実質的な進歩を遂げており、これは航空宇宙用途にとって非常に価値があります[10–19]。上記の利点により、マグネシウム合金は自動車産業で広範に利用される最も軽量で最も人気のある構造用金属の1つとなっています。産業界のほとんどのマグネシウム合金部品は、Figure 1に示される高圧ダイカスト(HPDC)プロセス[20–21]を通じて製造されます。HPDCプロセスは、設計と製造における魅力的な柔軟性、優れたダイ充填特性、および鋼構造に必要な二次加工削減の高い効率性を提供します。Figure 2は、いくつかの異なるプロセスで製造されたAZ91の降伏強度を比較しています[22–25]。HPDCプロセスで製造されたものの高い強度は、速い冷却速度からの著しく微細な微細構造の結果です。現代のHPDC技術により、マグネシウム合金は、大型、薄肉、複雑な形状を持つニアネットシェイプ製品として製造でき、優れた構造的および機能的性能を示し、特に大量生産のための効率的でコスト削減の方法として広く適用されています。本章では、歴史的および潜在的な自動車および航空宇宙産業におけるHPDCマグネシウム合金の応用をレビューし、成功事例と進行中の開発状況の全体的な理解を提供します。 4. 研究の概要: 研究テーマの背景: 自動車および航空宇宙産業は、燃費/エネルギー効率と性能向上のために車両軽量化への圧力が高まっています(軽量化)。マグネシウム合金は、その低密度により魅力的な候補材料です。内燃機関(ICE)自動車から電気自動車(EV)への移行は、軽量材料、特に特定の熱特性を持つ材料に対する新たな要求と機会を生み出しています。航空宇宙用途も軽量化を要求しますが、厳格な難燃性要件があります。 先行研究の状況: HPDCマグネシウム合金(AM50、AM60、AZ91、AE44など)は、ICE自動車の様々な用途で数十年にわたり成功裏に使用されてきました。これには、内装部品(インストルメントパネル、シートフレーム、ステアリングホイール)、ボディ構造(ラジエーターサポート、リフトゲートインナー、ドアインナー)、パワートレイン部品(オイルコンジットモジュール、ギアボックスハウジング、トランスファーケース)、シャシー部品(エンジンクレードル、サブフレーム)が含まれます。研究は、合金化(例:RE元素、Ca)を通じて、耐食性、耐クリープ性、熱伝導率、難燃性などの特性を改善することに焦点を当ててきました。 研究の目的: 本章は、歴史的および潜在的な自動車(ICEおよびEV)および航空宇宙産業におけるHPDCマグネシウム合金の応用をレビューすることを目的としています。成功事例と進行中の開発状況の全体的な理解を提供し、これらの分野における将来の成長の可能性を強調することを目指しています。 中核研究: 本研究は、さまざまな車両システムにわたるHPDCマグネシウム合金の特定の応用をレビューします: 5. 研究方法論 研究デザイン: 本研究は包括的なレビュー論文です。公開された文献、会議議事録、特許、および業界のケーススタディからの情報を統合しています。 データ収集と分析方法: データは引用された参考文献[1-152]から収集され、これには学術論文、技術報告書、業界出版物、特許が含まれます。分析には、歴史的および現在の応用の要約、異なるマグネシウム合金の特性と性能の比較(例:機械的特性、腐食、熱伝導率、難燃性)、合金開発と応用要件(特にEVおよび航空宇宙向け)のトレンドの特定、HPDCマグネシウム合金使用の利点と課題の議論が含まれます。 研究トピックと範囲: 本研究は高圧ダイカスト(HPDC)マグネシウム合金の応用に焦点を当てています。範囲は以下の通りです: 6. 主要な結果: 主要な結果: 図の名称リスト: 7. 結論: 本レビューは、軽量化の必要性とHPDCプロセスの利点により、自動車産業において内装、ボディ、パワートレイン用途でHPDCマグネシウム合金(延性用のAM50/AM60、強度/耐食性用のAZ91D、高温用のAE44など)が広範かつ成功裏に使用されてきたことを強調しています。これらの構造応用の多くはEVアーキテクチャに移行可能です。さらに、HPDCマグネシウム合金は、オンボードチャージャーハウジングやバッテリートレイなどのEV特有の部品に大きな可能性を示していますが、鋳造性と熱伝導率を最適化するための開発が進行中です。航空宇宙産業も、費用対効果の高い難燃性改善(特にCa合金化が有望)を条件として機会を提供しており、FAA基準を満たす改善された難燃性を持つ合金(例:WE43、Ca含有合金)が開発されています。優れた機械的性能と、高い熱伝導率や難燃性などの応用特有のニーズに合わせて調整された新しいマグネシウム合金の継続的な開発は、自動車および航空宇宙産業の両方においてHPDCマグネシウム合金の強力で明るい未来を示唆しています。 8. 参考文献: 9. 著作権: 本資料は上記の論文に基づいて要約されており、商業目的での無断使用は禁じられています。Copyright © 2025 CASTMAN.

Read More

組織特徴、欠陥および表面品質がAl-Si-Mg鋳造合金の疲労性能に及ぼす影響

本紹介論文は、「Jönköping University, School of Engineering, Dissertation Series No. 084」によって発行された「The Effect of Microstructural Features, Defects and Surface Quality on the Fatigue Performance in Al-Si-Mg Cast Alloys」論文に基づいています。 1. 概要: 2. 抄録: 地球温暖化により、産業界は二酸化炭素(CO2)排出量を削減するために、より軽量な部品を製造する必要に迫られています。これを達成するための有望な候補として、アルミニウム-シリコン(Al-Si)鋳造合金があり、高い重量対強度比、優れた耐食性、良好な鋳造性を提供します。しかし、これらの合金の機械的特性のばらつきを理解することは、重要な用途向けの高性能部品を製造する上で不可欠です。欠陥や酸化物は、機械的特性に悪影響を与えるため、疲労用途において鋳造部品が不合格となる主な理由です。 Al-Si鋳物におけるα-アルミニウム素地、Al-Si共晶、表面粗さ、気孔、水素含有量、酸化物、金属間化合物などのパラメータと疲労性能との相関関係に関する包括的な理解は、まだ達成されていません。 本論文で提示された研究では、最先端の実験技術を用いて、周期的荷重下でのAl-Si-Mg鋳造合金の機械的特性およびき裂発生・進展挙動を調査しました。走査型電子顕微鏡(SEM)と電子後方散乱回折(EBSD)、デジタル画像相関法(DIC)、集束イオンビーム(FIB)加工を組み合わせたその場(In-situ)周期的試験を実施しました。これらの技術により、水素含有量、表面粗さ、酸化物、金属間化合物相を含む、疲労性能に影響を与えるパラメータに関する包括的な研究が可能になりました。具体的には、溶湯品質、銅(Cu)含有量、酸化介在物(oxide bifilms)、表面品質、および気孔率の影響を調査しました。 熱処理されたAl-Si合金におけるCu濃度の増加は、金属間化合物相の量を増加させ、き裂挙動に影響を与えました。さらに、高ひずみ領域から遠く離れた領域であっても、き裂発生サイトで酸化介在物が検出されました。Siリッチおよび鉄(Fe)リッチな金属間化合物が、これらの介在物上に析出していることが観察されました。これらの酸化物は非常に小さいため、一般的に非破壊検査では検出されませんが、比較的低い引張応力で開口するように見えるため、機械的特性に影響を与えます。最後に、Al-Si合金の鋳肌(casting skins)は、疲労性能を向上させるという点で興味深い効果を示し、そのような合金に対する表面研磨の悪影響を浮き彫りにしました。 3. 緒言: 温室効果ガス、特にCO2の排出削減は世界的な主要な焦点であり、自動車などの産業においてアルミニウムのような軽量材料の使用を推進しています[1]。アルミニウム-シリコン(Al-Si)鋳造合金は、高い強度対重量比、費用対効果、耐食性、鋳造性により、主要な候補です[2, 3]。リサイクルアルミニウムの使用が増加しており、一次生産と比較して大幅なエネルギー節約を提供します[4-6]。純アルミニウムは強度が限られていますが、特にSi、Cu、Mgとの合金化は、固溶強化および析出強化を通じて機械的特性を向上させます[7-12]。しかし、鋳造アルミニウム部品の高サイクル疲労(HCF)性能は依然として課題であり、疲労は全破壊の約90%を占めます[13]。酸化膜(bifilms)や気孔などの欠陥は、疲労寿命を大幅に低下させます[14-17]。しばしば部品の潜在的な疲労寿命のわずか1%に制限します[17]。気孔のような一部の欠陥は検出できますが[19]、酸化介在物のような他の欠陥は破壊が発生するまで隠れたままであることが多いです[20, 21]。粗さを含む表面状態も、疲労発生に決定的な影響を与えます[16]。機械加工された試験片に対する標準的な実験室疲労試験は、鋳肌(casting skins)を持つ実際の部品の挙動を完全には表していない可能性があります[22]。したがって、組織特徴、欠陥、および表面品質が、鋳造Al-Si合金の機械的性能、特に疲労にどのように影響するかについてのより良い理解は、要求の厳しい用途向けに部品を最適化するために不可欠です。 4. 研究の概要: 研究トピックの背景: CO2排出削減のための軽量部品の必要性は、様々な産業、特に自動車産業においてAl-Si鋳造合金の使用を推進しています[1, 2]。これらの合金は、高い強度対重量比や良好な鋳造性といった有利な特性を提供します[3]。しかし、特に疲労が重要な部品への適用は、固有の組織特徴や欠陥によってしばしば制限されます。 先行研究の状況: 疲労破壊は、鋳造Al部品における主要な課題です[13]。気孔や酸化介在物のような欠陥、および表面粗さは、疲労性能を著しく低下させることが知られています[14-17, 22]。多くの研究が存在しますが、α-アルミニウム素地、Al-Si共晶、様々な欠陥(気孔、酸化物)、金属間化合物相、水素含有量、および表面粗さ間の複雑な相互作用が疲労寿命に及ぼす影響に関する包括的な理解はまだ不足しています[24]。特に、表面粗さや溶湯状態から生じる欠陥の役割に関しては、文献中に矛盾する結果やギャップが存在します[24]。 研究の目的: 本研究の主な目的は、様々な組織特徴、欠陥(酸化物/介在物、気孔を含む)、溶湯品質パラメータ(水素含有量)、合金添加物(特に銅)、および表面品質(粗さ、鋳肌)が、Al-Si-Mg系鋳造合金の機械的特性、特に疲労性能(き裂発生および進展)に及ぼす影響を調査し、理解することでした[25, 28]。目標は、高性能用途向けにこれらの合金を最適化し、生産におけるエネルギー消費を潜在的に削減するための知識を提供することでした。 コア研究: 本研究は、Al-Si-MgおよびAl-Si-Mg-Cu鋳造合金の疲労性能に影響を与えるいくつかの主要な側面に焦点を当てました: 5.

Read More

Figure 8. The megacasting replaces many stamped parts at the rear of this Volvo's chassis (Carney, 2022)

自動車用途向けアルミニウムダイカスト合金の新動向

本紹介資料は、「[The Eurasia Proceedings of Science, Technology, Engineering & Mathematics (EPSTEM)]」によって発行された論文「[New Trends in Aluminum Die Casting Alloys for Automotive Applications]」に基づいています。 1. 概要: 2. 抄録 (Abstract): 生態系のバランスを保つため、燃料消費を削減するための新しい技術が開発されています。これらの新技術の中で、アルミニウムやマグネシウムなどの軽合金の使用は、自動車用途において非常に重要性を増しています。軽量性、リサイクル性、機械加工性、耐食性といったアルミニウム合金の利点は、これらの合金の適用分野を拡大させました。これらのアルミニウム合金の特性により、燃料節約型の軽量材料選択は自動車部品にとって重要な役割を果たします。アルミニウムの用途は、自動車だけでなく、航空宇宙、スペースシャトル、船舶、防衛用途にも広がっています。製造方法によると、アルミニウム合金は一般的に鋳造、圧延、鍛造、押出に分類されます。アルミニウムダイカスト合金は、一般的にサスペンションシステム、エンジン、ギア部品の製造に使用されます。しかし、アルミニウム鋳造技術の発展に伴い、アルミニウムダイカスト法によって複数のボディ部品を一体で製造することが可能になりました。特に電気自動車においては、アルミニウムダイカスト部品の数が増加すると予測されています。本研究では、自動車産業におけるアルミニウムダイカスト合金使用の重要性を強調します。アルミニウムダイカスト合金開発に関するこれまでの研究と動向も要約します。 3. 序論 (Introduction): 近年、軽量材料の使用による重量削減は、燃費向上と有害排出物削減において重要な役割を果たしています。自動車用途向けの軽量構造設計によるCO2排出削減の重要性は、中強度アルミニウム合金の使用増加につながりました(Taub et al, 2007)。鋼部品を高強度アルミニウム合金に置き換えることは、軽量化のための自動車産業の注目点となりました(Baser, 2012)。アルミニウムは、地球上で供給可能な2番目の金属元素と見なすことができます。今日の産業において鋼鉄に次いで最も使用される材料です。アルミニウム合金は、その軽量性、低密度、良好な成形性、高い耐食性の特性により広く好まれています(Cuniberti et al, 2010)。 過去10年間の省エネルギーに関する研究は、軽量で経済的な車両の生産が燃料消費削減に重要な役割を果たすことを明らかにしています。アルミニウム合金は、乗用車、バス、主に列車、さらには船舶用途の建造物にも広く好まれています(Zeytin, 2000)。実際、アルミニウム合金は航空・防衛産業で長年使用されてきました。航空・防衛用途で見られた利点により、自動車産業へのアルミニウムの適用が始まりました。 4. 研究の要約 (Summary of the study): 研究テーマの背景 (Background of the research topic): 生態系のバランスと燃料消費削減の必要性が、新しい自動車技術の開発を推進し、アルミニウムのような軽合金の使用を強調しています。アルミニウム固有の利点(軽量性、リサイクル性、機械加工性、耐食性)は、自動車部品だけでなく、航空宇宙、船舶、防衛分野における燃料節約型の軽量材料選択にとって重要です。アルミニウム合金は鋳造、圧延、鍛造、押出によって製造され、ダイカストはサスペンションシステム、エンジン、ギア部品に一般的に使用されます。発展する鋳造技術は、特に電気自動車(EV)に関連する大型の一体型ボディ部品の生産を可能にしています。 先行研究の状況 (Status of previous

Read More

Figure 4. 3D scheme of the rolling process and 2D simplification in the FE simulation.

ハイブリッド部品のインターロックのための冷間圧延鋼板上のアンダーカット付き両面表面構造

本紹介論文は、「[Machines]」によって発行された論文「Double-Sided Surface Structures with Undercuts on Cold-Rolled Steel Sheets for Interlocking in Hybrid Components」に基づいています。 1. 概要: 2. 抄録: 輸送部門において温室効果ガス排出量を削減したり、電気自動車の航続距離を延長したりするためには、軽量化戦略が不可欠です。軽量組立戦略の分野では、マルチマテリアル設計が大きな可能性を提供します。自動車分野で一般的に使用されるアルミニウムや鋼などの材料の接合は、溶融溶接などの従来プロセスが不適切であるため、課題をもたらします。したがって、新しい技術が設計オプションを拡張できます。以前の研究では、鋼板上のアンダーカット付き冷間圧延表面構造とダイカストアルミニウム間の機械的インターロックが提示されました。この方法は、今回、両方のシート表面に接合部を持つより複雑な用途向けに、両面構造へと拡張されました。両面構造の製造を調査するために、数値シミュレーションと検証実験が実施されました。さらに、上部構造と下部構造の相互の位置合わせが、結果として得られる構造形状と圧延荷重に及ぼす影響が分析されました。シフト(shifted)配置では、より有利な幾何学的パラメータ(例:24%大きいアンダーカット)と、約24.1%低い成形荷重(20%の高さ減少時)が観察されました。しかし、対応する実験では、構造化ローラーの著しく高い摩耗が発生しました。 3. 緒言: 軽量構造は、部品特性(剛性や衝突安全性など)を維持しつつ、温室効果ガス排出量の削減や電気自動車の航続距離延長の要求に応えるため、輸送部門において不可欠です[1, 2]。特に、低密度のアルミニウムと高強度鋼を組み合わせたマルチマテリアル設計は、魅力的な解決策です[3]。しかし、これらの異種材料を接合する際、溶接のような一般的な技術は脆い金属間化合物(IMP)を生成する可能性があります[4]。そのため、リベット接合やクリンチングのような機械的接合、ハイブリッド成形や鋳造プロセスを含む成形による接合プロセスが代替案として提供されます[5, 6, 7, 8]。特にハイブリッド鋳造は、複雑な部品形状と大量生産を可能にし、冶金的結合[9]または機械的インターロック[7]を達成する可能性があります。機械的インターロックは通常、表面構造化とその後の組立ステップを含みます。広い鋼板表面を構造化する有望な方法の一つは、多パス冷間圧延プロセスを用いてアンダーカット付きのチャネル構造を作成し、その後、例えばダイカストアルミニウムで充填することです[15, 16]。このプロセスは、以前に片面構造について研究され、最大45 MPaの接合強度を達成しました[16]。初期の構造圧延パスとそれに続く平坦化パスによりアンダーカット(Figure 1)が形成されます。本研究は、ルーフクロスビーム断面(Figure 2)に基づくデモンストレーター部品など、より複雑な部品に必要な両面構造へと概念を拡張し、鋼板インサートの両面に構造を製造するプロセスを調査します。 4. 研究概要: 研究テーマの背景: 特に鋼とアルミニウムを組み合わせた軽量マルチマテリアル部品の開発は、自動車産業にとって極めて重要です。溶融溶接で一般的な脆い金属間化合物の形成を回避する効果的な接合方法が必要です。ハイブリッド鋳造(例:高圧ダイカスト – HPDC)前の表面構造化による機械的インターロックは、実行可能な代替手段です。 先行研究の状況: 先行研究では、ダイカストアルミニウムとの機械的インターロックのために、鋼板上にアンダーカット付きの片面表面構造を作成する多パス冷間圧延プロセス(構造圧延後の平坦化圧延)が確立されました[15]。研究では、プロセスパラメータ、結果として得られる形状(アンダーカット Wf-uc、内部ノッチ Wf-no)、接合強度(最大45 MPa)[16]、プロセスのFEモデリング[17]、およびその後の曲げの影響[20]が調査されました。両面構造を必要とするデモンストレーター部品が概念化され、鋳造パラメータに焦点を当てた複合強度が分析されました[21]。しかし、成形プロセス分析は片面構造に限定されていました。 研究目的: 主な目的は、確立された冷間圧延および平坦化技術を使用して両面表面構造を製造する際の材料流動と構造形成を理解することでした。具体的には、両側からの同時圧痕がチャネルとアンダーカットの形成にどのように影響するかを調査し、2つの異なる配置、すなわち「ミラー(mirrored)」配置と「シフト(shifted)」配置(Figure 3)を比較することを目的としました。目標は、この理解を用いて、アンダーカット幅と結果として得られる接合強度に関してプロセスを最適化することでした。 中核研究: 本研究では、DC04鋼板上に両面構造を作成するために、冷間圧延および平坦化法を拡張しました。2つの構成が調査されました:ミラー配置(リブ対リブ、チャネル対チャネル)とシフト配置(リブ対チャネル)。有限要素(FE)シミュレーション(Abaqusを使用)が開発され、物理的な圧延実験によって検証されました。研究では、配置が結果として得られる構造形状(チャネル深さ ∆hs、アンダーカット幅 Wf-uc、内部ノッチ長さ Wf-no)および構造圧延と平坦化圧延の両パス中の必要な圧延荷重に及ぼす影響を分析しました。 5. 研究方法論 研究設計: 本研究では、両面表面構造に対する2つの異なる配置(ミラーおよびシフト)を調査する比較研究設計を採用しました。方法論は、数値シミュレーション(2D FEモデリング)と実験的検証(構造冷間圧延実験)を組み合わせました。 データ収集および分析方法:

Read More

Advances in metal casting technology: A review of state of the art, challenges and trends—Part I: changing markets, changing products

Advances in Metal Casting Technology: A Review of State of the Art, Challenges and Trends—Part I: Changing Markets, Changing Products

This paper summary is based on the article [‘Advances in Metal Casting Technology: A Review of State of the Art, Challenges and Trends—Part I: Changing Markets, Changing Products’] presented at the [‘Metals’] 1. 概要: 2. 研究背景: 研究トピックの背景: 金属鋳造は、人類が知る最も古い一次成形プロセスの一つです。鋳造部品の最初の例は数千年前のもので、主に銅ベースの合金が使用され、加工は通常、二分割の石またはセラミックの鋳型に依存していました。現代のインベストメント鋳造の前身であるロストワックス鋳造は、早くも6000年前に登場し、おそらくインダス文明に起源を持つと考えられています [1,2]。ヨーロッパでは、ギリシャ古代の青銅鋳物が金属鋳造の最初の頂点を画し、再び主にロストワックス法が用いられました [3,4]。 既存研究の状況: 19世紀の変わり目から、自動車の導入が転換点となり、新製品と大量生産を供給できる高い生産性プロセスをもたらしました。鋳造業界にとって、技術的および経済的な発展の組み合わせは、高圧および低圧ダイカストなどの新しいプロセスを促進しました。最初の圧力補助ダイカストマシンは、例えば、19世紀半ばに開発されました [11]。 研究の必要性: 鋳造業界は、他の製造業と同様に、絶え間ない変化にさらされています。最近、スマートマニュファクチャリング、スマートファクトリー、インダストリー4.0などの見出しの下に包含される開発によって、変化の速度と影響は増大しています。技術的なトレンドも状況に加わっています。ICE(内燃機関)を搭載した自動車から電気自動車への移行の影響は依然として不明確であり(セクション3.2.1参照)、大規模な構造鋳造への移行などの相殺効果を活用しているため、さらに不明確です(セクション3.2.2参照)。 3. 研究目的と研究課題: 研究目的: 本稿は、「金属鋳造技術の進歩」に関する Metals の特集号の紹介を提供することを目的としています。そうすることで、金属鋳造における選択された技術開発に焦点を当てるとともに、市場と境界条件における現在のトレンドも考慮に入れています。 主要な研究課題: このレビューは、金属鋳造業界が直面している主要な課題と、それらが業界の将来に与える影響を調査します。特に、以下の分野に焦点を当てています。 研究仮説: この論文はレビュー論文であり、特定の仮説を検証するものではありません。しかし、金属鋳造業界は、技術革新と市場の変化に適応することで、競争力を維持し、新たな機会を創出できるという前提に基づいています。

Read More

Haitian 8,800 tons GIGA PRESS at Haitian Open Day

自動車産業におけるギガキャスティングとギガプレスの市場概要

本資料は、ドイツ・エッセンに拠点を置くanp management consulting GmbHが発行した「自動車産業におけるギガキャスティングとギガプレスの市場概要」に基づき作成されています。最終更新日:2024年1月8日、エッセン。 はじめに 本ドキュメントは、自動車産業におけるギガキャスティングとギガプレスに関する市場の概要を提供します。市場動向、最新ニュース、コストに関する考慮事項、主要企業、および様々な自動車メーカーによる具体的な実装事例を重点的に解説します。 市場動向 最新ニュース(2023/2024) ギガプレスのコスト(中国基準) 出典:6,000トン:LK Machinery、12,000トン:Horizon Insights ギガプレスに関する事実 主要な機械サプライヤー 現在の市場は、アジアのサプライヤーが支配しています。 自動車メーカーの実装事例(例) このドキュメントでは、以下を含む、さまざまな自動車メーカーからの特定のギガキャスティングイニシアチブについて詳しく説明しています。 批判的な声 まとめ 本ドキュメントは、自動車産業におけるギガキャスティングの急速に進化する状況のスナップショットを提供し、潜在的な利点と関連する課題の両方を強調しています。特に電気自動車の生産におけるこの技術の採用の増加と、大規模なダイカスト装置の戦略的重要性を強調しています。 免責事項: この要約は、提供されたドキュメントのみに基づいており、ドキュメントに含まれる情報を反映しています。

Effects of microstructure and casting defects on the fatigue behavior of the high-pressure die-cast AlSi9Cu3(Fe) alloy

高圧ダイカストAlSi9Cu3(Fe)合金の疲労挙動に及ぼすミクロ組織と鋳造欠陥の影響

This paper summary is based on the article [‘Effects of microstructure and casting defects on the fatigue behavior of the high-pressure die-cast AlSi9Cu3(Fe) alloy’] presented at the [‘Procedia Structural Integrity’] 1. Overview: 2. Research Background: Background of the Research Topic: (研究背景) 近年、高圧ダイカスト(HPDC)部品は、「優れた柔軟性と高い生産性」により、自動車産業を中心に大量生産部品への適用が拡大しています。HPDCプロセスは、「金型の急速充填と高い冷却速度」を特徴とするため、本質的に「気孔率や酸化皮膜」、「冷間凝着(cold joints)」など、「PD CEN/TR 16749:2014規格およびFioreseら(2015年)によって定義される」多種多様な鋳造欠陥が発生しやすいという課題があります。これらの鋳造欠陥は、機械的特性に悪影響を及ぼし、「疲労亀裂の起点となり、鋳物の疲労挙動を劣化させる」可能性があります。したがって、自動車部品のような複雑形状の鋳物の性能評価において、ダイカストアルミニウム合金の疲労挙動を理解することは非常に重要です。 Status of Existing Research: (既存研究の状況) ダイカストアルミニウム合金部品の静的機械特性に関する研究は広範囲に実施されていますが、「高圧ダイカスト欠陥が疲労特性に及ぼす影響を調査した研究は非常に少ない」のが現状です。既存研究では、鋳造欠陥が静的強度に及ぼす影響はケースによって異なり、破断伸びにおいては大きな変動が見られることが報告されています。Avalleら(2002年)は、HPDC AlSi9Cu3(Fe) 材の静的特性が気孔率の増加とともに低下することを報告しました。疲労特性に関する研究では、Avalleら(2002年)やMayerら(2003年)の研究で、HPDC AlSi9Cu3(Fe) 合金やMg合金において、気孔や冷間凝着が疲労強度低下の要因となること、亀裂が気孔から発生することが示されています。Huら(2014年)のAlMg5Si2Mn合金の研究では、金型鋳造材と比較してHPDC材の方が疲労限度が高いことが示唆されています。砂型鋳造、金型鋳造、低圧ダイカストに関する研究でも、欠陥を含む材料の疲労強度は低下し、欠陥のサイズや表面からの距離が疲労寿命に影響を与えることが確認されています。これらの研究では主に、破壊表面解析や金属組織学的特性評価によって鋳造欠陥の疲労挙動への影響が調査されています。

Read More

igure 11. A short-shot experiment by using the double PIG-nozzle units for PIG die-casting. (a) Aluminum melt flow into the rectangular die cavity, (b) solidified aluminum melts

PIGダイカストとホットスタンピングによるリサイクル原料からのアルミニウム合金部品の製造

本紹介資料は、[MDPI] が発行した [“Manufacturing of Aluminum Alloy Parts from Recycled Feedstock by PIG Die-Casting and Hot Stamping”] 論文の研究内容です。 1. 概要: 2. 要約 PIG (Pin-Injection-Gate) ダイカストとホットスタンピングは、リサイクル原料から小型および薄肉のアルミニウム合金部品を製造するために開発されました。 純アルミニウムおよびアルミニウム合金顆粒が、リサイクル材料の供給原料モデルとして利用されました。 製品の3D-CAD (Computer Aided Design) から推定された重量で測定された顆粒の質量は、射出前にPIGノズルに投入されました。 PIGノズルユニット内で誘導加熱によって急速に溶融した後、アルミニウム溶湯はPIGノズルを通ってダイキャビティに射出されました。 従来のダイカストシステムとは異なり、溶融アルミニウムストックを保管するための炉やるつぼは必要ありませんでした。 大型のローディングマシンを備えたクランプ機構も必要ないため、鋳造時のエネルギー消費を大幅に削減できました。 これらのプロセスでは、廃棄物が大幅に削減されました。 製品対廃棄物の比率、つまり材料効率はほぼ100%でした。 窒素過飽和とTiAlNコーティングは、アルミニウム溶湯からの激しい付着からPIGノズルとスタンピングダイ表面を保護するために使用されました。 純アルミニウム歯車と薄肉の携帯電話ケースがこのプロセスで製造されました。 X線トモグラフィーにより、両製品とも内部に空洞、気孔、収縮がないことが確認されました。 ホットスタンピングユニットを使用して、微細柱状の純アルミニウムヒートシンクを製造し、微細柱の高さと幅のアスペクト比に対する保持温度の影響を調査しました。 3. 研究背景: 研究テーマの背景: カーボンニュートラルな持続可能な社会において、環境に配慮した製造の必要性が高まっています[1]。 固体リサイクルは、再溶解せずに使用済みアルミニウム合金を再処理する方法を提供します[2]。 先行研究の現状: 以前の研究には、アルミニウム合金スクラップの温間および熱間押出などの固体リサイクル方法が含まれます[3]。 従来のダイカスト[4]は、ネットシェイプ成形に効果的ですが、エネルギーを大量に消費します。 既存のPIGダイカストシステムは、特に小型および薄肉部品について、従来のダイカストのいくつかの制限に対処しています[5-7]。 研究の必要性: 従来のダイカストでは、大型の炉とかなりの型締め力が必要となり、エネルギー消費量と材料の無駄が多くなります。 特にアルミニウムのリサイクルには、より効率的なプロセスが必要です。 4. 研究目的と研究課題: 研究目的: リサイクル原料からアルミニウム合金部品を効率的に生産するために、ホットスタンピングと統合された高度なPIGダイカストシステムを開発すること。

Read More