Tag Archives: High pressure die casting (HPDC)

Fig. 4 - Porosity identify by a) X-ray on components from the first experimental activity, b) FEM simulations, c) X-ray on components from the final experimental activity (optimization of process parameters)

高圧ダイカストにおける新しいレオキャスティングアプローチ:HPDCエンジニアとR&Dマネージャーのための品質向上とコスト削減

この技術概要は、[Giovanni Cecchel, Antonio Fabrizi, Paolo F. Bariani]による学術論文「[High Pressure Die Casting of Rheocast Aluminium Alloys using a New Industrial Approach]」([La Metallurgia Italiana])に掲載されたものです。本論文はCASTMANがAIの支援を受け、技術専門家向けに分析・要約しました。 Keywords Executive Summary 多忙なプロフェッショナル向け30秒概観 The Challenge: Why This Research Matters for HPDC Professionals 高圧ダイカスト(HPDC)は、大量生産される自動車部品やエレクトロニクス部品の製造において、高い生産効率とコスト優位性から広く利用されています。しかし、従来のHPDCプロセスでは、高速な金型充填によって引き起こされる激しい乱流と高い熱勾配が、空気の巻き込みによるガス欠陥や酸化物の介在物を引き起こすという固有の課題を抱えていました。これらの欠陥は、鋳造部品の機械的特性を損ない、特に溶接や熱処理といった二次加工の適用を困難にしていました。その結果、HPDC部品は構造部品や熱処理を必要とする高性能アプリケーションでの使用が制限され、特定の設計要件を満たすためには砂型鋳造や低圧鋳造などの代替プロセスに頼らざるを得ない状況でした。この研究は、HPDCの生産効率を維持しつつ、これらの内在する欠陥を克服し、より高品質で機能性の高いHPDC部品を製造するための革新的なアプローチを模索するものです。これは、HPDCの適用範囲を拡大し、より demanding な業界ニーズに応える上で極めて重要です。 The Approach: Unpacking the Methodology 本研究では、従来の溶融金属ではなく、半溶融状態のアルミニウム合金スラリーを使用する新しいレオキャスティングHPDCアプローチを採用しました。使用された合金は、標準的なEN AB 46100アルミニウム合金でした。このプロセスは、まず、射出チャンバーに導入される前に、誘導炉で溶融金属を半溶融状態のスラリーに変換することから始まります。このスラリーは、液相率が約50〜70%の範囲に制御され、球状化した固体粒子が液相中に均一に分散した非デンドライト組織を特徴とします。 実験は、主に自動車産業で使用されるクラッチハウジング部品の製造を通じて行われました。この部品は、冷却速度が高く、非常に薄い壁を持つ複雑な形状をしており、従来のHPDCでは欠陥が生じやすい典型的なケースです。レオキャスティングHPDCでは、スラリーの温度、射出速度、加圧プロファイルなどのプロセスパラメータが、欠陥の発生を最小限に抑え、均一な微細構造を確保するために最適化されました。 鋳造された部品は、非破壊検査(X線検査)によって内部欠陥の有無が評価され、引張試験によって機械的特性(引張強度、降伏強度、伸び)が測定されました。さらに、熱処理および溶接後の部品の挙動も評価され、従来のHPDC部品との比較が行われました。この徹底的なアプローチにより、新しいレオキャスティングプロセスの有効性が多角的に検証され、その産業的応用可能性が裏付けられました。 The Breakthrough: Key Findings & Data 本研究で最も重要な発見は、新しいレオキャスティングHPDCアプローチが、従来のHPDCと比較して、鋳造部品の内部品質と機械的特性を大幅に向上させることを実証した点です。 [H3]

Read More

Fig.1 – (a) The rotating furnace-sonication system; (b) Impeller with nitrogen degassing, (c) Shock tower.

回転脱ガス-超音波技術でHPDCを革新:気孔の削減と品質向上

この技術要約は、R. HaghayeghiがLa Metallurgia Italiana(2022年)に発表した論文「An investigation on effect of rotary degassing-ultrasonic method on high pressure die casting products」を基に作成されました。CASTMANの専門家がGemini、ChatGPT、GrokなどのLLM AIの支援を受けて、HPDC専門家向けに分析・要約しました。 キーワード エグゼクティブサマリー 課題:HPDC専門家にとってこの研究が重要な理由 Al-Si-Cu合金の気孔は、自動車部品(例:ラダーフレーム、エンジンブロック)を生産するHPDC製造業者にとって持続的な課題です。論文の序論によると、気孔はAl-Fe相による供給チャネルの閉塞、合金元素の偏析、凝固の最終段階での金属間化合物の析出により発生し、この段階では透過性が最も低くなります[1]。Fe-Cuの相互作用は気孔をさらに悪化させ、部品の構造的完全性と機械的性能を損ないます。プロセスエンジニアや品質管理者にとって、気孔と不純物を減らすことは、厳格な業界基準を満たし、信頼性の高い高性能部品を確保するために不可欠です。 アプローチ:研究方法論の解明 この研究では、Al-9 wt.% Si-3 wt.% Cu-1.3 wt.% Feの400kg溶湯を対象に、新しい回転脱ガス-超音波システムと従来のインペラー脱ガス(インペラー-Nと呼ばれる)を比較しました。論文の実験セクションに記載された方法論は以下の通りです: 目標は、HPDCプロセスにおける水素除去、不純物削減、全体的な溶湯品質に対するこれらの処理の影響を評価することでした。 進展:主要な発見とデータ 論文の結果セクションでは、回転脱ガス-超音波システムによる顕著な改善が確認されました: HPDC製品への実際的影響 この研究は、論文の結果に基づいたHPDC運用への実際的な洞察を提供します: 論文の詳細 1. 概要: 2. 抄録: 新しい回転脱ガス-超音波システムを導入し、インペラー-Nと比較しました。結果、インペラー-Nに比べ1/3の時間で溶湯からの水素除去が向上し、ガス除去は回転インペラーに比べ20%増加しました。不純物はインペラー-Nに比べ3倍、未処理溶湯に比べ6倍削減されました。より優れたキャビテーション分散、バブル表面積の増加、ドロス形成の減少、浮揚率の向上により、脱ガスと不純物除去が改善されました。初めて、超音波溶湯処理が400kgの溶湯に実施され、従来の最大処理量は200kgでした。 3. 序論: Al-Si-Cu合金は自動車HPDC用途で広く使用されていますが、供給チャネルの閉塞、合金偏析、金属間化合物の析出による気孔問題が発生します[1]。Fe-Cuの相互作用は気孔を増加させ、高度な溶湯処理技術が必要です。この研究は、400kgの溶湯における回転脱ガス-超音波方法の気孔および不純物への影響を、イン�ペラー脱ガスと比較します。 4. 研究の概要: 研究テーマの背景: Al-Si-Cu合金の気孔と不純物は、エンジンブロックなどの自動車部品の品質を損ないます。 従来の研究状況: 以前の研究[1-3]は、Fe-Cuの相互作用が気孔の主要な原因であることを確認し、大規模な溶湯処理では限定的な成功を収めました[4,5]。 研究の目的: 400kgのAl-Si-Cu溶湯における回転脱ガス-超音波システムの水素除去と不純物削減効果を評価します。 核心研究: 回転脱ガス-超音波方法とインペラー-Nを比較し、水素除去、不純物削減、機械的特性の改善に焦点を当てました。 5.

Read More

Figure 1. Schematic diagram of a typical HPDC process.

冷却効率158%向上:銅合金チルベントが高圧ダイカストのサイクルタイムを劇的に短縮する理由

この技術概要は、Duoc T Phan氏らが執筆し、International Journal of Mechanical Engineering and Robotics Research Vol. 9, No. 7, July 2020で発表された学術論文「Development of High Performance Copper Alloy Chill Vent for High Pressure Die Casting」に基づいています。高圧ダイカスト(HPDC)の専門家のために、CASTMANの専門家がGemini、ChatGPT、GrokなどのLLM AIの支援を受けて分析・要約しました。 キーワード エグゼクティブサマリー 課題:なぜこの研究がHPDC専門家にとって重要なのか 高圧ダイカスト(HPDC)は、自動車産業をはじめとする多くの分野で、軽量なアルミニウム合金部品を製造するために不可欠な技術です。このプロセスでは、溶融金属を高速・高圧で金型キャビティに射出しますが、その際にキャビティ内に残留する空気やガスを効率的に排出することが、高品質な製品を製造する上での長年の課題でした(Ref. [1], [2])。 このガス排出のために一般的に使用されるのが「チルベント」です。チルベントは、ガスは通すが溶融金属は通さないように設計された部品で、鋳造欠陥、特にポロシティを減少させる重要な役割を担います(Ref. [3])。しかし、従来から使用されてきた工具鋼(H13鋼など)製のチルベントは、熱伝導率が低いという根本的な問題を抱えています。このため、チルベントを通過しようとする溶湯が凝固しにくく、ガス排出経路を塞いでしまう「バリ」が発生しやすいという問題がありました。 この研究は、チルベントの材質そのものを見直すことで、この根本的な課題を解決し、HPDCプロセスの生産性と品質を飛躍的に向上させることを目指しています。 アプローチ:研究方法の解明 この課題を解決するため、研究チームは従来とは異なるアプローチを取りました。彼らは、工具鋼よりも約6倍高い熱伝導率と優れた強度を併せ持つベリリウム銅合金「MoldMAX」に着目しました(Ref. [4])。 研究の核心は、有限要素解析(FEA)ソフトウェアANSYS® Workbenchを用いた数値熱伝達モデルの開発です。 この体系的なアプローチにより、チルベントの材質変更が冷却時間、冷却速度、金型内温度分布に与える影響を正確に評価することが可能になりました。 ブレークスルー:主要な研究結果とデータ 本研究のシミュレーションと実験により、チルベントの材質を銅合金に変更することが、冷却性能に劇的な改善をもたらすことが明らかになりました。 HPDC製品への実践的な影響 この研究結果は、実際のHPDC製造現場に直接的な利益をもたらす可能性を秘めています。 論文詳細 Development of High Performance Copper Alloy

Read More

Figure 0.2: (a) The geometrical dimensions and (b) the thickness distribution (mm) of the 2020 Ford explorer aluminium shock tower.

薄肉構造アルミニウム車体鋳物の大量生産のための費用対効果の高いプロセスルート

この記事では、[RWTHアーヘン大学]が発行した論文「A cost-efficient process route for the mass production of thin-walled structural aluminum body castings」を紹介します。 1. 概要: A cost-efficient process route for the mass production of thin-walled structural aluminum body castings 本記事では RWTH Aachen University で発行された論文 「A cost-efficient process route for the mass production of thin-walled structural aluminum body castings」を紹介します。 1. 概要: 2. 概要または序論 In order

Read More

Figure 2.1: Porsche 911- rear Longitudinal rail (Magna BDW technologies Soest GmbH).

薄肉構造アルミニウムボディ鋳物の大量生産のための費用効率の高いプロセスルート

本入門論文は、[‘Ergebnisse aus Forschung und Entwicklung, Band 28’]が発行した論文【”薄肉構造アルミニウムボディ鋳物の大量生産のための費用効率の高いプロセスルート”】の研究内容を紹介するものです。 1. 概要: 2. Abstract (要約) 自動車分野におけるCO2排出量削減の継続的な要求に応えるため、いくつかの方法が研究され、現在も活発に研究されています。自動車業界で採用されているアプローチの1つは、車両の軽量化であり、重い鋼板部品をより軽量で機能的に統合されたアルミニウム鋳造品に置き換えることです。しかし、薄肉構造ボディ鋳物の大量生産にこのアプローチを適用すると、主に高価な原材料(アルミニウム合金)の使用により、部品コストが上昇し、経済的でなくなる可能性があります。したがって、本論文では、この提案を費用効率の高い方法で実行するための可能な手段を調査することが重要であると考えました。2020年型フォードエクスプローラーショックタワーの生産における主要なコスト要因を決定するために、最初にコスト計算調査が実施されました。続いて、この調査結果に対する詳細な調査が行われました。HPDCおよびRheoMetalプロセスに関する調査。 3. 研究背景: 研究テーマの背景: 自動車分野におけるCO2排出量削減の継続的な要求は、車両の軽量化を必要としています。重い鋼製部品を、より軽量で機能的に統合されたアルミニウム鋳造品に置き換えることが重要なアプローチです。(要約および導入部より) 先行研究の状況: 先行研究では、アルミニウム鋳造の使用を含む、車両の軽量化と燃費向上を目的としたさまざまなアプローチが検討されてきました。本文書では、高圧ダイカスト(HPDC)、半凝固鋳造(チクソキャスティングおよびレオキャスティングを含む)、自動車構造用アルミニウム合金、および鋳造品質に対するプロセスパラメータの影響に関する多数の研究が参照されています。(導入部および理論的背景より) 研究の必要性: 薄肉構造アルミニウムボディ鋳物の大量生産は、アルミニウム合金のコストが高いため、経済的ではない可能性があります。したがって、これらの鋳物を製造するための費用効率の高いプロセスルートを調査するための研究が必要です。(要約および論文の目的より) 4. 研究目的と研究課題: 研究目的: 薄肉構造アルミニウムボディ鋳物の大量生産(1,000,000〜2,000,000個)のための費用効率の高いプロセスルートを開発すること。(論文の目的より) 主要研究内容: 5. 研究方法論 研究デザイン: コスト分析、プロセス最適化、材料特性評価、機械的試験を含む比較実験研究。 データ収集: 分析方法: 研究範囲: 薄肉構造アルミニウムボディ鋳物の製造におけるHPDCおよびRheoMetalTMプロセスの調査。費用効率、機械的特性、耐衝撃性、およびリベット接合性に焦点を当てています。2020年型フォードエクスプローラーショックタワーをケーススタディとして使用します。 6. 主要研究結果: 主要研究結果と提示されたデータ分析: List of figure names: 7. 結論: 研究結果の概要: 1. コスト分析: 2. HPDCプロセスと材料評価: 3. RheoMetal™プロセスと材料評価: 4. 新合金開発 (MYFORD): 5. HPDCとRheoMetal™の比較

Read More

Fig. 1. Filling of differential cover with the molten metal coloured by speed with blue being slow and red being fast. The casting is shown in top view on the left and bottom view on the right. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

ショートショットと実例研究:高圧ダイカストにおける湯流れと凝固の理解

なぜシミュレーションと実験は初期充填で一致しないのか?HPDCにおける「スキン破裂」仮説が解き明かす、予測精度の新たな鍵 この技術概要は、Paul W. Cleary氏らによって執筆され、Applied Mathematical Modelling誌(2010年)に掲載された学術論文「Short shots and industrial case studies: Understanding fluid flow and solidification in high pressure die casting」に基づいています。高圧ダイカスト(HPDC)の専門家向けに、株式会社STI C&Dのエキスパートが要約・分析しました。 Fig. 1. Filling of differential cover with the molten metal coloured by speed with blue being slow and red being fast. The casting is shown in top view on the left and bottom

Read More

Figure 1. Thermogenerator: (a) view from the structured side, (b) view through the transparent BSG-substrate.

マイクロマシン加工された熱電発電機の金属部品への直接統合:埋め込みプロセスの技術的側面

鋳造プロセス中に半導体デバイスを直接統合する技術:歩留まり28%を達成した画期的なアプローチ この技術概要は、A. Ibragimov氏らによって執筆され、「1st Joint International Symposium on System-Integrated Intelligence 2012: New Challenges for Product and Production Engineering」で発表された学術論文「Micromachined Thermogenerator Directly Integrated into Metal Parts: Technological Aspects of the Embedding Process」(2012年)に基づいています。ハイプレッシャーダイカスト(HPDC)の専門家のために、CASTMANの専門家が要約・分析したものです。 キーワード エグゼクティブサマリー 課題:なぜこの研究がHPDC専門家にとって重要なのか 金属部品にセンサーや電子部品などの機能要素を直接統合することは、製品のインテリジェント化や高機能化に向けた重要な技術です。これにより、センサーは測定対象と直接接触して感度が向上し、電子部品は堅牢な金属ケーシングによって外部環境から保護されます。しかし、特にアルミニウムのような高融点金属の鋳造プロセスは700°C以上にも達するため、繊細な半導体デバイスをその過酷な環境下で生き残らせることは極めて困難な課題でした。 これまでの試みとして、厚い保護層で覆ったRFIDチップの埋め込み(Ref. [1-2])や、鋼製基板上に形成した薄膜ひずみセンサー(Ref. [3-4])などがありましたが、前者はセンサーとしての感度が低く、後者は一般的な半導体技術との互換性がないという制約がありました。本研究は、これらのギャップを埋め、一般的な半導体デバイスを溶融金属から成形される部品に直接埋め込む可能性を実証することを目的としています。 アプローチ:研究方法の解明 この課題を克服するため、研究者らはSeebeck効果を利用した熱電発電機(TG)を実証デバイスとして選択しました(Figure 1)。このTGは、主にホウケイ酸ガラス(BSG)の基板とその表面に形成されたSi-金属熱電対で構成されています。BSG基板の非晶質構造と熱電対の波状形状が、鋳造プロセスに伴う熱機械的ストレスを緩和する役割を果たします。 研究は段階的に進められました。 ブレークスルー:主要な発見とデータ この綿密なアプローチにより、研究者らはいくつかの重要な発見をしました。 HPDCオペレーションへの実践的な示唆 この研究成果は、実際の製造現場における「スマート鋳造」の実現に向けた貴重な知見を提供します。 論文詳細 Micromachined Thermogenerator Directly Integrated into Metal Parts: Technological Aspects of

Read More

Fig. 1: Schematic of the rheo pressure die casting system, showing its functional parts

A356 Al合金のダイ充填およびレオ圧力ダイカストシステムを用いたステアリングナックル部品の開発に関する研究

この紹介論文は、「Journal of Materials Processing Technology」によって発行された論文「Studies on Die Filling of A356 Al alloy and Development of a Steering Knuckle Component using Rheo Pressure Die Casting System」に基づいています。 1. 概要: 2. 抄録: 本研究では、レオ圧力ダイカスト (RPDC) システムの一部として、半凝固スラリーのダイ充填を調査するために、数値流体力学 (CFD) モデルを開発する。ダイ充填キャビティは自動車のステアリングナックルのものに対応し、スラリーはA356アルミニウム合金で作られる。CFDシミュレーションで使用されるレオロジーモデルは実験的に決定される。現在の数値モデルから得られた結果には、ダイキャビティ内のスラリーの流動場、粘度変化、固相率分布、ダイ充填段階中のキャビティ内凝固中の温度および圧力分布が含まれる。本研究の主な目的は、開発された部品の望ましい微細構造および機械的特性のためのゲーティング配置、注入温度、および射出条件を決定することである。当該合金スラリーのダイ充填能力に対する射出条件の影響を研究するために、最終射出速度を2~3.2 m/sの間で変化させて5つの射出プロファイルを研究する。本研究の知見を裏付けるために、凝固した部品の異なる位置からサンプルを取得することにより、主に光学顕微鏡およびマクロ硬度測定の形で、微細構造形態および構造特性相関を研究した。 3. はじめに: 自動車産業における燃費向上のための要求は、自動車部品の軽量化、特に他の軽量自動車部品と比較して優れた強度対重量比および伸び値を必要とするサスペンション部品の軽量化に向けた努力を動機付けている。アルミニウムおよびマグネシウム合金の鍛造や従来のダイカストなどの伝統的な製造プロセスは、多段階の処理ステップ、一貫性のない機械的特性、デンドライト微細構造、および液体偏析などの課題を提示する。半凝固ダイカスト、特にレオダイカスト (RDC) およびその変形であるレオ圧力ダイカスト (RPDC) は、改善された構造的完全性と費用対効果を備えた、健全でニアネットシェイプの部品を製造するための有望なワンステップソリューションとして浮上している。これらのプロセスの成功は、複雑なダイキャビティの適切な充填を保証するために、ほぼ球状の初晶粒子を持つ半凝固スラリーの調製に大きく依存する。多くの研究がチクソダイカスト (TDC) およびRDCを調査してきたが、RPDCにおけるダイ充填のCFDシミュレーション、特に実験的検証を伴うものは比較的少ない。本研究は、CFDシミュレーションを用いてA356 Al合金ステアリングナックルのRPDCプロセスパラメータを最適化し、実験作業によって検証することにより、このギャップを埋めることを目的とする。 4. 研究の概要: 研究トピックの背景: 主な動機は、燃費を向上させるための軽量自動車部品の必要性である。伝統的に鋼鉄または鋳鉄で作られていた自動車のサスペンション部品は、アルミニウムおよびマグネシウム合金を使用して開発されている。しかし、これらの軽合金の従来の製造方法では、しばしば欠陥や特性のばらつきが生じる。 従来の研究状況: 従来の研究では、従来のグラビティダイカスト (GDC)、高圧ダイカスト (HPDC)、スクイズキャスティング、およびチクソダイカスト (TDC) やレオダイカスト

Read More

Figure 1: Filling of an engine rocker cover with fluid coloured by speed.

SPH法による複雑形状鋳造品のシミュレーション

新次元の湯流れ解析:SPH法が実現する欠陥予測とダイカストプロセスの革新 本テクニカルブリーフは、[P.W. Cleary氏、J. Ha氏、M. Prakash氏、T. Nguyen氏]によって執筆され、[Shape Casting: The John Campbell Symposium, TMS (The Minerals, Metals, & Materials Society)]([2005年])で発表された学術論文「[Simulation of casting complex shaped objects using SPH]」に基づいています。HPDCの専門家であるCASTMANが、業界関係者の皆様のために要約・分析しました。 キーワード エグゼクティブサマリー 課題:なぜこの研究がHPDC専門家にとって重要なのか ハイプレッシャーダイカスト(HPDC)は、自動車、家電、電子機器産業において、大量かつ低コストの部品を製造するための重要なプロセスです。しかし、30~100 m/sという高速で溶湯を複雑な形状の金型キャビティに射出するため、湯流れは激しく三次元的になり、溶湯の著しい分裂(フラグメンテーション)や飛散(スプラッシング)を伴います。 これにより、空気の巻き込みによるポロシティ(巣)や、湯流れの合流不良によるコールドシャットといった鋳造欠陥が発生しやすくなります。どの部分が先に充填され、どこが最後に充るか、そしてエアベンドの配置が適切かどうかが、健全な鋳造品を得るための鍵となります。これらの複雑な現象を正確に予測し、ゲートシステムや金型設計を最適化することは、長年の課題でした。本研究で紹介されるSPH法は、この困難な課題に対する効果的な解決策を提示します。 アプローチ:SPH法の解明 本研究で用いられた平滑化粒子流体力学(SPH)法は、従来のグリッドベースの解析手法とは一線を画す、粒子ベースのラグランジュ的アプローチです(Ref. [1])。 この手法では、流体を固定されたメッシュやグリッドで計算するのではなく、物理的特性(質量、温度、密度など)を持つ多数の「粒子」の集合体としてモデル化します。これらの粒子は、ナビエ・ストークス方程式に従って互いに相互作用しながら自由に動き回ります。SPH法の最大の利点は、溶湯の飛散や分裂といった複雑な自由表面の挙動を、特別な処理を必要とせず、自然かつ容易にモデル化できる点にあります。本研究では、このSPH法を用いて、複数の工業用部品の充填プロセスを3次元でシミュレーションしました。 ブレークスルー:主要な研究結果とデータ 本論文では、SPHシミュレーションが実際のHPDCプロセスをいかに詳細に予測できるかを示す、4つの工業用部品の事例と熱解析の検証結果が提示されています。 あなたのHPDC業務への実践的な示唆 本研究の結果は、理論的な興味に留まらず、現場の製造プロセス改善に直結する多くの実践的な知見を提供します。 論文詳細 Simulation of casting complex shaped objects using SPH 1. 概要: 2. 抄録: ハイプレッシャーダイカスト(HPDC)における幾何学的複雑性と高流速は、著しい自由表面の分裂と飛散を伴う強力な三次元流動を引き起こす。HPDCのモデル化に特に適したラグランジュ的シミュレーション技術が、平滑化粒子流体力学(SPH)である。材料は固定グリッドではなく自由に動き回る粒子で近似され、複雑な自由表面運動を伴う流動の正確な予測を可能にする。本稿では、ドアロックプレートの亜鉛鋳造からエンジンロッカーカバーのアルミニウム鋳造まで、4つのSPHシミュレーション事例を示す。これらは流体自由表面、特に分裂とボイド形成の範囲において前例のない詳細さを示す。SPHは収縮、供給、一部のポロシティ生成、表面酸化物形成の予測など、鋳造予測に他の魅力的な特徴も持つ。熱伝達と凝固を組み合わせた流動予測は、ショートショットを用いて検証される。最終的な凝固鋳造品の全体的特徴は予測と良好に一致する。これらの結果は、SPHモデリングが、大規模な自動車鋳造品に対して妥当な計算時間で等温および熱シミュレーションの両方を実行でき、高い予測精度を提供するレベルに達したことを示している。 3. 序論の要約:

Read More

Figure 2: Filling of a short rectangular die for Re=500.

SPHを用いた高圧ダイカストプロセスのモデリング

この紹介論文は、「CSIRO Mathematical and Information Sciences, Victoria, Australia.」によって発行された論文「Modelling the High Pressure Die Casting Process Using SPH」に基づいています。 1. 概要: 2. 抄録: 本論文では、このCAST資金提供プロジェクトの過去4年間にわたるHPDCのSPHモデリングの進捗状況をレビューします。2次元の単純な金型の充填の初期の例は、流れパターンの複雑さ、特に自由表面挙動と分裂の役割を示しています。これらの単純な金型の充填における熱伝達の組み込みの影響、特に金型内部の熱境界条件の影響と金型自体への結合伝導モデリングの重要性が示されています。SPH予測の精度を実証するために、水アナログ実験を用いた2つの検証例が示されています。3Dへのモデリングの拡張と、複雑な3次元金型形状を表現するために使用される方法論について説明します。現実的な工業部品の充填をモデル化するためのこのSPHシステムの使用が提示されます。金型充填順序の重要性、および角部や緩やかに湾曲した表面からの流れの剥離の役割が示されています。表面の断片化の程度、液滴形成、およびボイドの強い過渡的な性質も示されています。最後に、実際の自動車用ピストンヘッドのランナー、ゲート、および金型の充填が示され、このような大規模計算に固有の困難について議論されます。 3. 緒言: 高圧ダイカスト(HPDC)は、特に自動車産業におけるトランスミッションハウジング、ピストンヘッド、ギアボックス部品などの大量生産、低コスト部品の製造にとって重要なプロセスです。このプロセスでは、液体金属(一般的にはアルミニウム合金)が高速(約50~100 m/s)かつ非常に高い圧力で複雑なゲートおよびランナーシステムを通って金型に射出されます。金型の幾何学的複雑さは、著しい自由表面の断片化を伴う強力な三次元流体流動をもたらします。最小限の巻き込みボイドを持つ均質な鋳造部品を形成するためには、金型の様々な部分が充填される順序とガス出口の位置が重要です。これは、ゲーティングシステムの設計と金型の幾何形状によって決定されます。 製品品質とプロセス生産性の両方の改善は、改良された金型設計を通じて達成できます。これには、金型充填のより効果的な制御と金型熱性能の開発が含まれます。数値シミュレーションは、さまざまな金型設計と充填プロセスの有効性を研究するための強力かつ費用効果の高い方法を提供します。 4. 研究の概要: 研究トピックの背景: HPDCは、溶融金属を高速・高圧で複雑な金型に射出することを特徴とする重要な工業プロセスです。複雑な流動パターン、自由表面の断片化、およびボイド巻き込みの可能性は、高品質な鋳物の実現に大きな課題をもたらします。金型充填プロセスを理解し制御することは、欠陥を最小限に抑えるために不可欠です。 先行研究の状況: 界面流をモデル化するためのオイラー法として、マーカーアンドセル(MAC)法やVOF(Volume of Fluid)法が用いられてきました。これらの手法の基本的な背景は、HwangとStoehr(1988)によるASM Metals HandbookやKotheら(1998)によって提示されています。VOF法は、MAGMAsoftやFlow-3Dなどのいくつかの商用ソフトウェアパッケージで使用されており、依然として金型充填シミュレーションで最も一般的で広く使用されている方法です。しかし、これらの手法は、複雑な界面現象の断片化や合体、数値拡散に課題を抱えることがあります。SPH(Smoothed Particle Hydrodynamics)は、流体を表現するために粒子のみを使用する特殊な数値手法であり、HPDCで見られるような液滴形成、飛沫、複雑な自由表面運動を伴う流体流動に特に適しています。SPHは、複雑な自由表面や材料界面の挙動(断片化を含む)を容易かつ自然にモデル化でき、ラグランジュフレームワークは運動量支配の流れを非常によく処理し、多相、状態方程式、凝固などの複雑な物理現象を容易に実装できるという利点があります。Clearyら(2000)およびHaとCleary(2000)による最近の研究では、2次元における高圧ダイカストへのSPHの適用と、これらのSPH結果と水アナログ実験との良好な比較が報告されています。 研究の目的: 本稿では、SPHを用いた高圧ダイカストプロセスのモデリングにおいてなされた進捗をレビューし、実際のHPDC例における詳細な流体流動のシミュレーションに関する新しい結果を提示します。 核心研究: 本研究は、HPDCシミュレーションのためのSPH法の適用と開発に焦点を当てています。これには以下が含まれます。 5. 研究方法論 研究設計: 本研究では、流体流動をシミュレーションするための特殊な数値手法であるSPH(Smoothed Particle Hydrodynamics)を採用しています。SPHは、流体を表現するために粒子のみを使用し、これらは流体方程式が解かれる計算フレームワークです。SPHは複雑な流れを自動的に追跡し、HPDCで見られるような液滴形成、飛沫、複雑な自由表面運動を伴う流体流動に特に適しています。材料は固定グリッドやメッシュではなく、自由に動き回る粒子によって近似されます。支配的な偏微分方程式は、これらの粒子の運動方程式に変換されます。 データ収集および分析方法: SPHの定式化には以下が含まれます。 様々なシナリオでシミュレーションが実施され、結果は速度、温度、または粘性によって色分けされた粒子プロット、および3D流れの場合はレンダリングされた表面メッシュを通じて可視化されました。検証のため、SPHの結果は水アナログ実験の実験データと比較されました。 研究トピックと範囲: 本研究はHPDCモデリングのいくつかの側面をカバーしています。 6. 主な結果: 主な結果:

Read More