Tag Archives: Quality Control

Figure 5. Cause-effect Diagram Flowline Defect

PT. ABにおけるダイカスト製造プロセス改善のためのシックスシグマとデータマイニングの実装

この紹介論文は、Proceeding 7th International Seminar on Industrial Engineering and Managementに掲載された論文「Implementation Six Sigma and Data Mining to Improve Die Casting Production Process at PT. AB」の研究内容です。 1. 概要: 2. 概要 PT. ABは、品質測定が重要なオートバイ産業の製造業者です。この研究は、シックスシグマ(DMAIC)手法を使用して品質管理を改善し、ダイカスト製造プロセスにおける欠陥率を削減することを目的としています。定義段階では、KYZシリンダーコンポーネントの欠陥率が最も高い(5.06%対3.36%の制限)ことが確認されました。測定段階では、15,356のDPMO値と3.66のシグマレベルを計算しました。分析段階では、特性要因図、FMEA(故障モード影響解析)、およびデータマイニング(決定木)を使用して、主な問題をフローライン欠陥として特定しました。改善段階には、オペレーターのトレーニング、SOP(標準作業手順)の実装、およびデータマイニングを使用したQC PASSの標準化が含まれていました。制御段階では、実装後のDPMO(13,221)とシグマレベル(3.71)を計算し、シグマレベルが0.05増加したことを示しました。 3. 研究背景: 研究テーマの背景: インドネシアのオートバイメーカーであるPT. ABは、ダイカスト製造プロセス、特にKYZシリンダーコンポーネントで高い欠陥率を示しています。 先行研究の状況: シックスシグマは、プロセス改善と変動削減のための方法論です。(Pande,2002)。Jang (2009)は、シックスシグマ内でのデータマイニングの使用を提案しています。FMEAは、潜在的な故障を体系的に特定し、評価します。(Manggala, 2005)。データマイニングは、大規模データから有用な情報を自動的に発見することです。(Tan, 2006)。エントロピーとゲインの公式は、(Kusrini, 2009)によって導入されました。 研究の必要性: KYZシリンダーコンポーネントの製造における高い欠陥率(実際には16.8%対標準3.36%)は、再作業の削減、製造コストの削減、および品質向上のために改善が必要です。 4. 研究目的と研究課題: 研究目的: 改善の実装前後の会社のシグマレベルを決定し、データマイニングを使用して改善策を提案すること。 主要な研究: シックスシグマとデータマイニング技術を使用して、PT. ABのKYZシリンダーコンポーネントのダイカストプロセスの品質を改善し、欠陥を削減すること。 5. 研究方法論 この研究では、シックスシグマDMAIC方法論を使用しました。 研究デザイン: この研究は、DMAIC(定義、測定、分析、改善、制御)方法論の5つの段階に従いました。

Read More

ダイカスト部品のキャビティおよび複合鋳造 – 数値設計手法と実験的検証

本紹介論文は、[Publisher]によって出版された論文「Hohl- und Verbundguss von Druckgussbauteilen – Numerische Auslegungsmethoden und experimentelle Verifikation」の研究内容です。 1. 概要 (Overview): 2. 概要 (Abstract) 最新技術によると、アンダーカットを持つアルミニウム高圧ダイカスト(HPDC)部品の製造プロセスは、HPDCツールに統合された複雑なスライダーを使用することによってのみ可能です。サンドコア、流体噴射、ガラスコア、金属溶融コア、または圧縮ソルトコアなどの既知のシステムは、HPDCプロセスで制限付きでのみ使用可能です。したがって、現在、液相から製造されたソルトコアと金属インサートのみが、HPDCでうまく使用される可能性があります。鋳造ソルトコアは、高レベルの曲げおよび圧縮強度を達成し、アルミニウム鋳造プロセスの後、例えばウォータージェット切断によって残留物なしで除去することができます。アルミニウム鋳造品に残る鋼インサートは、部品を補強します。この作業は、鋳造ソルトコアの製造を可能にするためのいくつかの基礎研究を提示します。予備調査では、塩化ナトリウム-炭酸ナトリウム相図内の塩合金が、さらなる調査のために選択されます。主要な試験片に基づいて、プロセスパラメータの依存性と、結果として生じる強度および高温割れ傾向が実証されます。機械的特性評価のために、曲げ、引張、および圧縮試験が室温および最大500°Cの温度で実行されます。ソルトコア鋳造プロセスの数値シミュレーションへのアプローチが提示され、実験結果によって検証されます。ソルトコアに加えて、鋼インサートが調査され、アルミニウム-鋼複合構造が特徴付けられました。力-、形状-、および化学的結合が考慮されました。鋼インサートとアルミニウム鋳造間のより良い化学結合のために、さまざまなコーティングが適用され、等級分けされました。機械的引張、押出し、剪断、および接着引張試験、ならびに光学および走査型電子顕微鏡調査が、結合品質を特徴付けるために実行されました。これに基づいて、数値シミュレーション手法が開発されました。HPDCプロセス中のソルトコアと鋼インサートの生存可能性と破壊挙動が調査されました。したがって、コアの生存可能性を予測するための数値的手法が導入され、実験結果によって検証されました。両方の技術が応用例に転用されました。 3. 研究背景 (Research Background): 研究テーマの背景 (Background of the research topic): アンダーカットを持つアルミニウム構造部品の製造は、スライダー、砂型システム、ガス噴射プロセス、ガラスコア、金属溶融コア、または圧縮ソルトコアを使用するダイカストプロセスにおいて制約があります。現在、液相から製造されたソルトコアと永久金属インサートのみがダイカストで使用できる可能性があります。 先行研究の状況 (Status of previous research): 第2章で詳述されている先行研究では、以下を含む、ダイカストでアンダーカットを作成するためのさまざまな方法を調査しました。 研究の必要性 (Need for research): 軽量構造を可能にするために、現在の鋳造プロセスと材料を開発する必要があります。特に、耐圧消失性中子 (セラミックまたはソルト) の開発と、高強度金属インサートを使用したダイカストプロセスの最適化が必要です。 4. 研究目的と研究課題 (Research purpose and research question): 研究目的 (Research purpose): 本研究の全体的な目的は、鋳造ソルトコアを用いて、力-適合、形状-適合、および一体結合された鋼-アルミニウム結合と、複雑な中空鋳造部品を数値的に設計するために必要なデータを開発することです。この研究では、鋼-アルミニウム複合鋳造(St-Al-Verbundguss)とソルトコア(Salzkerne)の使用を調査します。 主要研究課題 (Core

Read More

Figure 1: In a high-speed, automatic helix in-line CT unit the gantry, which accommodates the x-ray tube and the multi-line detector arranged opposite, rotates about the specimens on the conveyor belt [6]

高速コンピュータ断層撮影を用いた圧⼒ダイカスト

この紹介資料は、Giesserei-Verlag が発行した「High-speed computer tomography employed in pressure die casting」という論文の研究内容をまとめたものです。 1. 概要: 2. 概要 自動車産業は、燃費向上と環境負荷低減のために継続的な努力を続けており、これはアルミニウム合金ダイカストにも影響を与えています。この論文は、世界で初めて圧⼒ダイカストに⾼速コンピュータ断層撮影(CT)を適⽤し、量産準備のための特定のケースを⽰し、その結果と経験を紹介します。 3. 研究背景: 研究テーマの背景: 先行研究の現状: 研究の必要性: 4. 研究目的と研究課題: 研究目的: 主要な研究: この論文の主要な研究は以下の通りです。 5. 研究⽅法 6. 主要な研究結果: 主要な研究結果と提示されたデータ分析: 図のリスト: 7. 結論: 主要な結果の要約: 研究結果の要約、研究の学術的意義および実用的意義: 今後の拡張研究の可能性のある分野: 8. 参考文献: 9. 著作権: 本資料は上記論文を紹介する⽬的で作成されており、商業⽬的での無断使⽤を禁じます。Copyright © 2025 CASTMAN. All rights reserved.

Fig. 20 Waveforms obtained in RQTS for various rotor faults

ダイカスト銅ローター用ローター品質試験システムの設計と開発

本紹介内容はIEEEで発行された論文 “Design and Development of Rotor Quality Test System for Die-Cast Copper Rotors” の研究内容を紹介するものです。 1. 概要: 2. 概要 / 導入 概要 – 銅ローターモーターは、最新のモーターと同等の優れた効率を発揮し、電気自動車用途に適格となる高い温度に対応できることが市場で周知されています。重金属であるダイカスト銅ローターの製造には、信頼性の高いローター生産のために絶対的な注意が必要です。本論文では、銅ダイカスト加工における一般的な欠陥を特定し、3段階検査における十分な監視方法を提案します。最終段階は、銅ダイカストローターに見られるほとんどの問題を検出するローター品質試験システムで構成されています。このローター品質試験システム分析は、ローター製造プロセスを最適化し、不良ローターをモーターアセンブリに取り付ける状況を回避するのに役立ちます。 I. 導入 電気自動車(EV)への世界的な関心が拡大するにつれて、自動車エンジニアは、材料使用量の削減、サイズの小型化、重量の軽減によって利点を得ることができるモーター製造のための特殊材料を探しています。近年、希土類材料の希少性と、永久磁石モーターにおける高温での磁石性能への懸念から、ダイカスト銅ローターモーターへの関心が高まっています。銅ローター誘導モーターは、小型化、高出力密度、システム全体、効率、耐久性の点で、パラレルハイブリッド電気自動車にとって実行可能な選択肢であると思われます[1]。高圧ダイカストは、ダイカストローターの製造において最も経済的なプロセスであり、1930年代からアルミニウムが選択材料となっています。銅の高い導電率を利用して、ローターにアルミニウムの代わりに銅を使用することは、EV用途向けのエネルギー効率の高いモーターを開発するための確固たる戦略であることが証明されています。かご形誘導電動機のダイカストローターバーでアルミニウムを銅に置き換えることは、ローターI²R損失の低減という点で大きな利点があり、最終的には効率と省エネが向上します。ローターI²R損失の低減は、モーターの動作温度を低下させます。銅ダイカストプロセスはアルミニウムダイカストプロセスと同一ですが、温度と圧力の増加による追加の製造上の課題により、銅ダイカストローターの製造は困難になります。銅の溶融コストと溶融銅の取り扱い費用は、アルミニウムの約3倍高いと推定されています。ダイカスト銅ローターモーターの製造にかかる高コストは、入力電力消費量の削減、メンテナンス費用の削減、長寿命化による省エネによって相殺されます[2]-[7]。新しいダイカストローターの構造には、モーターの動作を危険にさらす可能性のあるさまざまな欠陥があります。ローターの欠陥は、異常な発熱、追加の高調波の存在、アークの発生、振動や騒音の発生、モーターの速度やトルクの変動を引き起こします。ダイカスト銅ローターの問題は、モーターの望ましくない性能につながり、信頼性が低下し、頻繁なサービスが必要になります。ローターの欠陥による誘導電動機の全故障は、約10%と推定されています[8]。銅で製造されたダイカストローターは、製造時にさまざまな欠陥を引き起こす可能性があります。問題の中には、肉眼では検出できないほど見えないものもあれば、特定されていない問題もあります。 3. 研究背景: 研究テーマの背景: 電気自動車(EV)への世界的な関心が高まるにつれて、自動車エンジニアは、材料の使用量、サイズ、重量を削減できるモーター製造用の特殊材料を模索しています。ダイカスト銅ローターモーターは、希土類材料の入手可能性の低さと、永久磁石モーターにおける高温での磁石性能への懸念から、近年注目を集めています。銅ローター誘導モーターは、小型、高出力密度、効率、耐久性の点で、ハイブリッドEVにとって実行可能な選択肢です。高圧ダイカストは、従来アルミニウムを使用してきたローター製造において経済的です。高い導電率を持つ銅は、エネルギー効率の高いEVモーターにとって確固たる代替材料です。ダイカストローターバーでアルミニウムを銅に置き換えることは、ローターI²R損失を大幅に削減し、効率と省エネを向上させ、モーターの動作温度を低下させます。しかし、銅ダイカストはアルミニウムダイカストと類似していますが、より高い温度と圧力のため、製造上の課題があります。溶融銅を溶融および処理するコストは、アルミニウムよりも約3倍高くなります。製造コストは高くなりますが、ダイカスト銅ローターモーターは、省エネ、メンテナンスの削減、長寿命化により費用対効果が高くなります。 既存研究の現状: ダイカストローターの欠陥は、モーターの動作を損ない、異常な発熱、高調波、アーク、振動、騒音、速度/トルク変動などの問題を引き起こす可能性があります。これらの問題は、モーターの信頼性を低下させ、サービス要求を増加させます。ローターの欠陥は、誘導電動機の故障の約10%を引き起こすと推定されています。銅ダイカストローターは、さまざまな製造上の欠陥が発生しやすく、その一部は目に見えません。既存のローター品質監視方法には、固定子電流周波数成分を分析することにより、破損したバーや偏心などの欠陥を検出するオンライン手法である電流シグネチャ分析(MCSA)が含まれます。ただし、MCSAは複数の欠陥が存在する場合に使用が難しく、モーターが組み立てられて動作している必要があります。結果は他のモーターコンポーネントの影響を受け、専門家の解釈が必要です。これらの方法は、ダイカスト銅ローターの定量的な品質評価を提供せず、完全な組み立て前の製造中に適用することはできません。グラウラーテスト、タップテスト、浸透探傷試験、超音波探傷試験、抵抗試験などの分解されたモーター検出方法が存在しますが、特に内部欠陥などのすべてのタイプの欠陥を検出する上で限界があり、大量生産中の包括的な品質評価には適していません。 研究の必要性: 製造現場でのローター品質評価には、モーターコンポーネントに依存しない直接的な試験方法が必要です。RMFA、グラウラーテスト、超音波探傷試験などの現在の分解された検出方法は、すべての欠陥タイプを検出すること、および電気的、磁気的、絶縁性、構造的特性を含む完全なロータースタック評価を提供することに限界があります。高圧および高温を伴うダイカスト銅ローターの製造プロセスは、電気的、磁気的、絶縁性、構造的な変動を引き起こし、多孔性、ラミネーション短絡、スキュー角度偏差、導電率低下などの問題につながる可能性があります。これらの問題は、銅ローターの利点を打ち消し、モーターの効率と性能を低下させる可能性があります。既存の試験手順は、ダイカスト銅ローターのすべての問題を詳細に評価するには不十分です。これらの問題に対処し、製造を最適化し、不良ローターがモーターアセンブリに取り付けられるのを防ぐには、包括的な3段階検査プロセスが必要です。 4. 研究目的と研究課題: 研究目的: 本研究の目的は、ダイカスト銅ローター用のローター品質試験システム(RQTS)を設計および開発することです。このシステムは、製造中に発生する銅ダイカストローターの一般的な欠陥を検出し、それによってローター製造プロセスを最適化し、不良ローターを使用したモーターの組み立てを防ぐことを目的としています。RQTSは、さまざまな欠陥タイプを検出する際の限界に対処し、生産ラインでの品質管理を可能にすることにより、既存の方法と比較して、ローター品質のより直接的かつ包括的な評価を提供することを目的としています。 主要な研究課題: 5. 研究方法 研究デザイン: 本研究では、ローター品質試験システム(RQTS)を作成するために、設計および開発アプローチを採用しました。これには、電磁誘導原理に基づくシステムの概念化、ハードウェアコンポーネント(電磁センサー、ローター駆動システム、データ収集システム)の設計、および信号分析と品質評価のためのソフトウェアの開発が含まれていました。このシステムは、重量試験、超音波試験を使用したエンドリングの欠陥検出、および最終RQTS試験を含む3段階検査プロセス用に設計されました。RQTSを検証するために、意図的に欠陥が導入されたプロトタイプローターが製作されました。 データ収集方法: RQTSは、電磁センサーを使用して、磁場内で回転するときにローターバーに電圧を誘導します。ローターバーの物理的状態を反映する誘導電圧波形は、センサーのピックアップコイルによってキャプチャされます。NI PCI-5922デジタイザーボードを備えたデータ収集システム(DAQ)は、センサーコイルからのアナログ信号を取得および調整するために使用されます。近接センサーは、周波数分析用の速度入力を提供します。取得した波形は、NI LabVIEWで開発されたカスタムソフトウェアを使用して処理および分析されます。 分析方法: 取得した波形は、NI LabVIEWで開発されたソフトウェアを使用して、時間領域と周波数領域の両方で分析されます。最初に、高周波ノイズを除去するために、バターワースローパスデジタルフィルターが適用されます。FFTを使用した周波数分析は、ローターバー通過周波数を特定し、欠落しているバーを検出するために実行されます。FFTスペクトルの振幅分析は、ローター欠陥の重症度を評価するために使用されます。統計的比較は、事前定義された基準に対してローター品質を評価するために実装されています。ソフトウェアは、ローター品質パーセンテージを計算し、設定された基準に基づいて合格/不合格の判定を提供します。欠陥のあるローターからの波形パターンは、特定の欠陥タイプを識別するために基準波形チャートと比較されます。 研究対象と範囲: 本研究は、誘導電動機用のダイカスト銅ローターに焦点を当てています。開発されたRQTSは、調整可能なチャックおよびテールストックアセンブリ、および適応可能な電磁センサー設定を通じて、さまざまなローターサイズと重量に適用できるように設計されています。一般的なダイカスト銅ローターの欠陥をシミュレートするために製造されたプロトタイプローターは、RQTSのテストと検証のための主要な対象として機能します。研究の範囲には、RQTSハードウェアおよびソフトウェアの設計、開発、検証、およびダイカスト銅ローター製造に関連するさまざまなローター欠陥を検出する能力の実証が含まれます。 6. 主な研究成果: 主要な研究成果:

Read More

Figure-4. Cause and effect diagram undercut cylinder components

Corrective and preventive actions of motor cycle cylinder component leak problem on casting process

この記事では、[ARPN Journal of Engineering and Applied Sciences]が発行した論文「Corrective and preventive actions of motor cycle cylinder component leak problem on casting process」を紹介します。 1. 概要: 2. 概要またははじめに 不良品は、製造プロセスにおける望ましくない品質逸脱です。オートバイのシリンダー部品の鋳造プロセスにおいて、不良品問題は主要な問題の一つであり、その発生率は4.47%です。本研究は、目標値を3.6%に設定し、この問題を低減することを目的としています。問題分析と是正処置の開発には、品質補助ツールとしてのセブンツールを用いたPlan Do Check Action (PDCA)手法を使用しました。分析の結果、問題の原因はシリンダー部品のアンダーカットとポーラスであることが示されました。材料、機械、検査に関連する是正処置が実施されました。是正処置の結果、不良品率は3.17%に低下しました。予防処置は、将来の再発を防ぐために、不適合製品の潜在的な原因を減少させるために実施されました。 3. 研究背景: 研究トピックの背景: 今日、オートバイ産業は巨大な産業となり、製品品質に高い基準を適用しています。ファイゲンバウム(Feigenbaum, 1991)によれば、品質とは、マーケティング、エンジニアリング、製造、そして製品とサービスが顧客の期待を満たすために使用されるメンテナンスに至るまでの、製品とサービス全体の特性の組み合わせです。一方、ANSI/ASQC規格(1978)の定義に基づくと、品質とは、与えられた満足の必要性を保証できる製品またはサービスのすべての特徴と特性です。クロスビーは、トータルクオリティマネジメント(TQM)は、顧客満足度を高め、すべての管理者と従業員の関与を優先し、定量的な方法を使用する経営システムの戦略と統合であると主張しました(Bhat dan Cozzolino, 1993)。ISO 9001: 2008に基づき、品質マネジメントシステムの採用は、組織の戦略的意思決定として望ましいものです。組織における品質マネジメントシステムの設計と実施は、組織環境、さまざまな必要性、主な目的、利用可能な製品、適用されるプロセス、組織の規模と構造によって影響を受けます。 既存研究の状況: 組織は、品質方針、品質目標、監査結果、データ分析、是正処置および予防処置、および経営上の考慮事項を用いることによって、品質マネジメントシステムの有効性を継続的に改善する必要があります。組織は、再発を防止するために、不適合の原因を減少させるための是正処置を行う必要があります。予防処置は、起こりうる問題の予防に正確でなければなりません。PDCAサイクルは、継続的な改善を生み出すために使用される手法であり、作業プロセスまたはプログラムの実行に効果的に使用されます。PDCAサイクルは、一時的および永続的な改善という2種類の改善を行う可能性があります。セブンツール(7つの品質補助ツール)は日本発の用語であり、QCサークルおよび継続的改善と切り離すことはできません。セブンツールは、パレート図、特性要因図、チェックシート、ヒストグラム、散布図、フローチャート、管理図です。 研究の必要性: 不良品は、製造プロセスにおける望ましくない品質逸脱であり、産業における主要な問題の一つです。オートバイのシリンダー部品の鋳造プロセスでは、不良品問題が4.47%の割合で発生しており、これは企業の目標値である3.6%を上回っています。したがって、不良品率を目標値以下に低減するためには、是正処置と予防処置が必要です。 4. 研究目的と研究課題: 研究目的: 本研究の主な目的は、ダイカストプロセスにおけるシリンダー部品の不良品率を低減し、企業目標である3.6%を達成することです。 主な研究: 本研究は、ダイカストで製造されたオートバイのシリンダー部品のリーク問題の原因を分析し、PDCA手法とセブンツールを用いて是正処置と予防処置を実施し、不良品率を低減することに焦点を当てています。 研究仮説: 本論文では、研究仮説は明示的に述べられていません。しかし、PDCAとセブンツールを適用し、欠陥の根本原因(アンダーカットとポーラス)を特定し、是正処置と予防処置を実施することで、不良品率を4.47%から目標値の3.6%未満に低減できると暗黙のうちに仮説を立てています。 5. 研究方法 研究デザイン: 本研究では、PDCA手法とセブンツールを用いて、オートバイのシリンダー部品の鋳造プロセスにおけるリーク問題という不良問題を分析します。研究方法のステップは、問題の明確化、研究目的の決定、文献レビュー、研究範囲の確立、データ収集と計算、データ分析、是正処置の開発、予防処置の開発、研究結果の結論です。

Read More

Figure 2. Schematic diagrams of casters used in this study. (a) Melt spinning single roll caster, (b) melt drag single roll caster, (c) vertical type high-speed twin roll caster.

狭隘チャンネルダイギャップにおける純アルミニウムの流動性

この論文要約は、[‘狭隘チャンネルダイギャップにおける純アルミニウムの流動性:ダイカスト中’]という論文に基づいており、[‘Metals, MDPI’]に掲載されました。 1. 概要: 2. 研究背景: 研究テーマの背景: 優れた放熱特性を持つ軽量ヒートシンクへの需要が高まるにつれて、従来のダイカスト合金であるJIS ADC12 [1]よりも熱伝導率の高い純アルミニウムへの関心が高まっています。薄いフィンを持つヒートシンクを製造するには、ダイカストプロセス中の狭隘なダイギャップにおける純アルミニウムの流動性を理解することが不可欠です。しかし、このような条件下での純アルミニウムの流動性に対する鋳造条件の影響は、まだ十分に解明されていません。 既存研究の現状: アルミニウム合金の流動性に影響を与える要因に関する広範な研究が行われてきました。これらの要因には、凝固モード [2-7]、金属組成 [8-18]、溶融金属の過熱 [5,12-14,19-23]、粘度 [3,24-26]、表面張力 [27-29]、金型材料 [30-32]、金型温度 [33-40]、プランジャ速度 [13,34-38,40,41]、金型ギャップ [13,40,41]、金型振動 [42,43] などが含まれます。一般的に、アルミニウム合金の流動性は、ダイ温度、ダイギャップ、およびプランジャ速度が増加するにつれて向上することが知られています。しかし、これらの研究は主にアルミニウム合金と広いダイギャップに焦点を当ててきました。ダイカストにおける狭隘なダイギャップ内の純アルミニウムにこれらの研究結果が適用可能かどうかは不明確です。 研究の必要性: 狭隘な0.5 mmダイギャップでダイカストを行う際の純アルミニウム(99.9%Alおよび99.7%Al)の流動性に対する鋳造条件の特定の影響を明らかにすることが重要です。特に、流動性に影響を与える重要な鋳造パラメータであるプランジャ速度とダイ温度の役割について詳細な調査が必要です。さらに、アルミニウム純度と流動長の関係 [2–6] が狭隘なダイギャップシナリオでも維持されるかどうか、そしてこれらの条件下での純アルミニウムの流動長に対する不純物としての鉄(Fe)の影響を評価することが不可欠です。 3. 研究目的と研究課題: 研究目的: 主な研究目的は、狭隘な0.5 mmダイギャップに鋳造される際の99.9%Alおよび99.7%Alの流動性に対するダイカスト条件の影響を明らかにすることです。本研究は、ダイカスト中の制限された形状における純アルミニウムの流動挙動に関するより深い理解を提供することを目的としています。 主要な研究課題: 本研究は、以下の主要な領域に焦点を当てています。 研究仮説: 本研究は、ダイカストにおいて流動性がダイ温度とプランジャ速度の増加とともに一貫して増加するという従来の仮説に挑戦します。特に狭隘なダイギャップ、特に純アルミニウムの場合、流動性とこれらのパラメータ間の関係が、凝固層の挙動などの要因により、従来の予想から逸脱する可能性があるという代替仮説を探求します。 4. 研究方法 研究デザイン: 本研究では、500 kNコールドチャンバーダイカストマシン(HC 50F、ヒシヌママシナリー、ランザン、日本)を利用した実験的デザインを採用しました。流動性試験には、チャンネル幅7 mm、チャンネルギャップ0.5 mmおよび1.0 mmのスパイラルダイ(図1に概略的に図示)を使用しました。 データ収集方法: 流動長測定は、鋳造されたスパイラル試験片から取得しました。各条件で12個の試験片を鋳造し、平均流動長を記録しました。合金(99.9%Al、99.7%Al、ADC12、Al-X%Fe)の化学組成は、発光分光分析法(PDA-500、SIMADZU、京都、日本)を使用して決定しました。光学顕微鏡(ECLIPSE LV150、ニコン、東京、日本)を使用して、ダイ表面および鋳造試験片の画像をキャプチャしました。 分析方法: 収集された流動長データを分析して、0.5 mmと1.0 mmの両方のダイギャップにおける純アルミニウムおよび他の合金の流動性に対するダイ温度(30 °Cおよび150 °C)およびプランジャ速度(0.2、0.4、0.6、および0.8

Read More

Figure 3. Radio filter produced by means of the RSF/RheoMetalTM process. A unique feature of this product is the weight reduction of 1.6 kg facilitated by wall thicknesses as low as 0.4 mm at 40 mm height (aspect ratio 100). High conductivity low Si alloys were used, and thermal transport properties further increased by up to 20% depending on the alloy composition by means of heat treatments, as depicted in the top right diagram by means of arrows denoting the course of the latter (images provided by Comptech AB, Skillingaryd, Sweden).

金属鋳造技術の進歩:最先端、課題、トレンドのレビュー—パート II:新技術と再活性化技術

この論文の要約は、MDPI発行の「Advances in Metal Casting Technology: A Review of State of the Art, Challenges and Trends—Part II: Technologies New and Revived」に基づいて作成されました。 1. 概要: 2. 抄録または序論 本稿は、Special Issue「Advances in Metal Casting Technology」のために書かれた社説の第2部であり、2022年11月に発表されたパートIを基にしています。パートIでは、グローバルな金属鋳造産業の概要を示し、e-モビリティやギガキャスティング技術の出現、鋳造産業への環境負荷低減圧力など、市場と製品の変化を強調しました。パートIIでは、視点を変え、業界内の技術開発を検討し、一般的なトレンドまたは先行する課題への対応として分類し、「新規技術と再活性化技術の両方」を網羅的に議論します。網羅的な記述は不可能であることを認めつつも、本レビューは「読者にさらなる研究のための出発点を提供する」ことを目指しています。最終章では、Special Issueへの寄稿を、議論された技術分野の文脈において位置づけます。パートIと同様に、著者の専門分野である「アルミニウム合金の高圧ダイカスト(HPDC)」に偏っている可能性があることをご了承ください。 3. 研究背景: 研究トピックの背景: 金属鋳造業界は、「e-モビリティ、ギガキャスティング技術の出現、鋳造業界への環境負荷低減圧力[1]」など、市場と製品の変化によって変化の時代を迎えています。これらの進化する要求は、分野における技術進歩の再検討を必要としています。「ガー Gartner hype cycle [2-4]」のような技術中心のモデルや、「コンドラチエフ波とその関連[5]」のような経済レベルの観察など、技術進化の周期的な性質は、新規技術と再活性化技術の両方を定期的に再評価することの重要性を強調しています。 既存研究の現状: 以前に発表された本論説のパートIでは、鋳造業界に影響を与える「変化する市場と境界条件」についてすでに「本稿のパートIで議論」しています。既存の研究には、グローバルな金属鋳造のトレンドの概要や、ギガキャスティングのような特定の技術の分析が含まれます。「半凝固金属加工」のような特定の技術への学術的および産業界の関心は、「図2」に示すように、Google ScholarやScopusのようなデータベースの出版トレンドによって証明されています。しかし、特に現在の業界の課題の文脈において、新規技術と再活性化技術の両方に焦点を当てた包括的なレビューが必要です。 研究の必要性: 「鋳造業界への環境負荷低減圧力の増大[1]」と、e-モビリティのような新しい市場の要求への適応は、鋳造所が高度な技術を探求し採用する「必要性」を生み出しています。本レビューは、この必要性に対応するために、「新規技術と再活性化技術の両方」の概要を提供し、「読者にさらなる研究のための出発点を提供」し、戦略的な技術採用の意思決定を支援することを目的としています。さらに、「新しいアイデア、新しい市場ニーズ、または制限特許の失効」により「技術の再出現」の可能性と技術の周期的な性質を理解することは、長期的な業界競争力にとって重要です。 4. 研究目的と研究課題: 研究目的: 本レビューの主な「目的」は、「業界内の技術開発を、一般的なトレンドまたは先行する課題への対応として見ることができる技術開発、言い換えれば、本稿では新規技術と再活性化技術の両方について議論する」ことを検討し、要約することです。専門家レベルのハンドブック概要をこれらの技術について提供し、金属鋳造における現在の最先端技術の文脈において位置づけることを目指しています。第二の目的は、Special Issue「Advances in Metal Casting Technology」への寄稿を、議論されたより広範な技術的展望の中に位置づけることです。 主な研究: 本レビューで探求される「主な研究」分野は以下の通りです。

Read More

Fig. 1 Relationships among commonly used alloys in the 2xxx series (Al-Cu)

アルミニウムとアルミニウム合金

この論文サマリーは、[‘ASM International’]が発行した論文「Aluminum and Aluminum Alloys」に基づいて作成されました。 1. 概要: 2. 抄録または序論 本論文「アルミニウムとアルミニウム合金」は、アルミニウムとその合金の入門と概要を提供し、その一般的な特性と多様な応用分野を強調しています。アルミニウムとその合金は、可鍛性のある包装用箔から要求の厳しいエンジニアリング用途に至るまで、幅広い用途に適した、非常に汎用性が高く、経済的で魅力的な金属材料として提示されており、構造用金属としては鋼に次いで広く使用されています。主な特徴としては、鋼の密度の約3分の1である低い密度(2.7 g/cm³)があり、これにより、宇宙、航空、陸上、海上輸送手段を含むさまざまな分野の車両に有利な軽量でありながら強力な構造が可能になります。さらに、アルミニウムは、鉄錆とは異なり、傷が付いた場合でも即座に再シールする薄くて不活性な酸化アルミニウム皮膜を形成するため、進行性の酸化に対する耐性を示します。適切な合金化と処理により、アルミニウムは、水、塩、環境要因、およびさまざまな化学的および物理的作用剤に対して耐食性を示します。本論文では、「合金化が腐食挙動に及ぼす影響(Effects of Alloying on Corrosion Behavior)」のセクションで、アルミニウム合金の腐食特性を詳細に検討しています。 3. 研究背景: 研究テーマの背景: アルミニウムとその合金は、独自の特性の組み合わせにより、重要なエンジニアリング材料です。低い密度と高い強度重量比、優れた耐食性、多様な加工性は、数多くの産業分野で不可欠なものとなっています。本論文は、アルミニウム合金の基本的な特性を取り上げ、材料科学および関連分野のエンジニアや専門家に基礎的な理解を提供します。 既存研究の現状: アルミニウム冶金に関する理解は十分に確立されており、合金化の原理、加工技術、特性の最適化に関する広範な研究が行われています。アルミニウム協会(Aluminum Association)の合金命名システムは広く認知され、使用されており、標準化された知識体系を示しています。「Metals Handbook Desk Edition」のような既存の文献は、化学組成と国際的な名称に関する包括的なデータを提供しており、成熟した研究分野であることを示しています。 研究の必要性: アルミニウム合金技術が成熟した段階にあるにもかかわらず、ハンドブックレベルの包括的な概要は依然として重要です。これは、さまざまなエンジニアリング用途において、基本的な知識を普及させ、材料の選択を導き、製造プロセスを最適化するために不可欠です。本論文は、アルミニウム合金冶金の主要な側面を単一でアクセス可能な文書に統合する統合リソースとして機能します。 4. 研究目的と研究課題: 研究目的: 本論文の主な目的は、アルミニウムとアルミニウム合金のハンドブックレベルの概要を提供し、その特性、分類、加工特性、および応用分野を詳細に説明することです。これは、ダイカスト技術および関連するエンジニアリング分野の専門家のために、不可欠な情報を統合し、この重要な材料システムに関する容易にアクセスできる資料を提供することを目的としています。 主要な研究課題: 本論文は、アルミニウム合金に関する既存の知識と確立された研究成果を総合しています。さまざまな合金システム、展伸材と鋳造材、および材料特性と加工挙動に対する合金元素の影響を体系的に分類し、説明しています。主な研究分野は次のとおりです。 研究仮説: ハンドブックレベルの概要として、本論文は新しい研究仮説を提示していません。代わりに、アルミニウム合金の挙動を説明および分類するために、材料科学および冶金学の確立された原理に基づいて動作します。根本的な前提は、アルミニウム合金の特性と加工特性が、組成、微細構造、および加工履歴によって根本的に決定されるということであり、これは論文全体を通して体系的に探求され、説明されています。 5. 研究方法: 研究デザイン: 本論文は、ハンドブックの章の特性である記述的かつ解説的な研究デザインを採用しています。確立された冶金学的原理と業界標準に基づいて、アルミニウム合金に関する情報を体系的に提示します。設計は、明確さと理解の容易さのために合金と特性を分類して、包括的な概要を提供するように構成されています。 データ収集方法: 本論文は、アルミニウム冶金分野の既存の文献、ハンドブック、および確立された知識からデータと情報を総合しています。データは、表(表1〜11)、図(図1〜36)、および説明テキストの形式で提示され、すべて確立された出典と以前の研究から直接派生しています。 分析方法: 分析方法は主に質的かつ記述的であり、合金組成、微細構造、加工、および特性間の関係を説明することに焦点を当てています。本論文では、相図(図5、図7)、強度と伸びのグラフ表示(図8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、26、28、33、34、35、36)、および微細構造画像(図24、25、29、31、32)を使用して、主要な概念と傾向を説明しています。分析には、合金の分類、合金元素と加工に基づく特性変化の説明、および構造化された形式で確立された知識の要約が含まれます。 研究対象と範囲: 本論文の主題は、展伸材と鋳造材の両方の組成を含むアルミニウムとその合金です。範囲は広く、合金の分類、強化メカニズム、加工技術(成形、機械加工、接合)、腐食挙動、および耐摩耗性を網羅しています。本論文は、商業的に重要なアルミニウム合金と、さまざまな産業分野での応用例に焦点を当てています。 6. 主な研究成果: 主要な研究成果: 本論文は、アルミニウム合金に関する豊富な情報を体系的に提示しており、主な成果は次のように要約されます。 提示されたデータの分析: 表と図を含む提示されたデータは、論文全体の記述的な説明を一貫して裏付けています。さまざまな展伸材および鋳造材合金の強度範囲(表2および3)は、さまざまな合金システムにわたる特性の変化を定量化しています。一般的な展伸材および鋳造材合金の組成範囲(表4および5)は、合金の選択に関する実用的なガイダンスを提供します。合金の関係(図1〜4)と合金元素の効果(図7〜21、30)を示す図は、合金の挙動と特性の傾向に関するテキストの説明を視覚的に強化します。微細構造画像(図24、25、29、31、32)は、結晶粒微細化および改質技術の影響を視覚的に示しています。 図のリスト: 7. 結論:

Read More

Figure 1. Intersection of a die mold of LPDC machine

INDUSTRY 4.0 鋳造データ管理と教師あり機械学習による低圧ダイカスト品質改善

This paper introduction was written based on the ‘INDUSTRY 4.0 FOUNDRY DATA MANAGEMENT AND SUPERVISED MACHINE LEARNING IN LOW-PRESSURE DIE CASTING QUALITY IMPROVEMENT’ published by ‘International Journal of Metalcasting’. 1. 概要: 2. 概要または序論 低圧ダイカスト(LPDC)は、高性能、高精度なアルミニウム合金自動車ホイール鋳物の製造に広く使用されており、気孔率欠陥などの欠陥は許容されません。LPDC部品の品質は、鋳造プロセス条件に大きく影響されます。ガスや収縮気孔率などの困難な欠陥に対する部品品質を向上させるためには、プロセス変数を最適化する必要があります。これを行うには、プロセス変数の測定値を欠陥の発生率と照らし合わせて調査する必要があります。本論文では、Industry 4.0クラウドベースのシステムを使用してデータを抽出します。これらのデータを用いて、実際の鋳造アルミニウムLPDCプロセスで欠陥を予測する条件を特定するために、教師あり機械学習分類モデルが提案されています。このプロセスの欠陥率は小さく、潜在的なプロセス測定変数が多数存在するため、根本原因の分析は困難です。XGBoost分類アルゴリズムに基づくモデルを使用して、プロセス条件と欠陥のあるホイールリムの生成との間の複雑な関係をマッピングしました。データは、特定のLPDCマシンとダイモールドから、3シフト、6日間連続で収集されました。気孔率欠陥の発生率は、かなり小さなサンプル(1077個のホイール)から収集された13のプロセス変数からの36の特徴量を使用して予測でき、非常に偏っており(欠陥品62個)、良品で87%の精度、気孔率欠陥のある部品で74%の精度でした。この研究は、欠陥を減らすための新製品の量産前段階でのプロセスパラメータ調整を支援する上で役立ちました。 3. 研究背景: 研究トピックの背景: 低圧ダイカスト(LPDC)は、高性能、高精度、大量生産が求められる金属鋳造部品、特に自動車産業におけるアルミニウム合金ホイールリムの製造において広く利用されています。気孔率の不連続性は、LPDCアルミニウム製品で最も頻繁に見られる欠陥の一つです。これらは回避が難しく、部品の完全性と性能を損なう可能性があります。したがって、気孔率欠陥の原因と防止は品質管理において重要な考慮事項であり、部品品質を向上させるためにプロセス変数を最適化する要求を生み出しています。気孔率欠陥の原因は、金属組成、水素含有量、鋳造圧力、温度、指向性凝固速度を得るための金型熱管理など、さまざまな要因に起因する可能性があります。このような鋳造欠陥が発生した場合、正確な根本原因を診断し、適切なプロセスパラメータ変更を行うことはしばしば困難です。気孔率欠陥を引き起こす可能性のあるプロセス設定と逸脱を監視および分析する手段が必要です。Industry 4.0品質管理システムは、すべてのプロセス測定ポイントから記録されたデータを、検査結果を含む個々の部品に関連付けることができます。これにより、機械学習分類器アルゴリズムを利用して、プロセス欠陥を引き起こすプロセス設定の組み合わせを特定できます。これらは、プロセス制御の調整に役立てることができます。 既存研究の現状: LPDC生産は歴史的に高い不良率を示しており、通常、すべての生産部品は気孔率欠陥についてX線検査されています。この研究は気孔率欠陥を予測するのに役立ちますが、検査のためのX線装置に取って代わることはできません。しかし、気孔率欠陥の原因を定量化するのに役立ちます。典型的な鋳造工場では、数百種類のモデルと、毎年数十種類の新製品モデルが導入されます。量産前のプロセス設定を迅速に調整することが重要です。最初のセクションでは、LPDC鋳造工場の生産運転中に欠陥の原因を特定する際の課題が提示され、その後、関連研究について議論します。「Industry 4.0 Foundry Data Collection」では、鋳造工場全体で部品と関連データをデジタルタイムスタンプで追跡するためのIndustry 4.0データ収集システムが提示されています。「LPDC Porosity Defect Prediction」では、監視された鋳造欠陥について議論します。次に、「Classification Algorithm Model」では、気孔率欠陥が発生するプロセス条件を分類する統計的機械学習モデルが提示されています。 研究の必要性: 工場データを使用して欠陥部品の発生を予測する機械学習モデルを構築することは、いくつかの理由から困難です。潜在的な因果関係の要因の数が膨大であること、これらのプロセスデータをすべて収集するために計測することが困難な場合があります。また、時系列データの特徴を特定する必要があります。これには、高低シフト、変動が大きすぎる、またはデータ対時間のジャンプなどが含まれます。欠陥の原因に関連付けられる可能性のある特徴が検討されます。さらに、収集されたプロセスデータは、実際に生産されている部品に関連付けられている必要があります。これにより、これらのプロセス条件を部品の合格または不合格の指標に関連付けることができます。プロセスデータを収集するだけでは不十分であり、プロセスデータは部品にタグ付けする必要があります。これは、どのプロセスデータをどの部品に関連付けるかを知るために、部品を鋳造工場全体で追跡する必要があることを意味します。これは、スマートファウンドリの重要なIndustry 4.0の課題の1つです。鋳造工場は過酷な条件下で操業しており、投入材料の流れの開始から最終鋳造部品まで、各部品を追跡およびマークすることは困難です。2番目の課題は、時系列データを機械学習統計分析用の特徴量に前処理することです。完全なデータセットではなく、プロセスエンジニアが理解できるエンジニアリング統計を検討することが有用です。たとえば、時系列の圧力、温度、冷却データを位相に分離し、各位相内の統計量を計算できます。これには、データを充填や凝固などの位相に分離し、位相内の平均や分散などの特徴量を計算することが含まれる場合があります。プロセスエンジニアは、さまざまな位相での平均シフトと変動の大小が歩留まりにどのように影響するかを理解したいと考えています。最後に、特徴量が与えられた場合、これらの特徴量を欠陥率に関連付けるために利用可能な代替分類手法も多数存在します。全体として、機械学習を活用して欠陥の原因と根本原因をより深く理解するための研究機会が存在します。現在の鋳造工場のプロセス制御は、一般的に検査ベースの受入手順です。投入材料、鋳造結果の品質管理、およびプロセス制御は、指定された制限内でコンプライアンスについて検査または監視されます。部品の欠陥は、気孔率ボイドの存在に関するX線画像の目視検査によって定義されます。操業上の問題は、入力が許容範囲外になった場合に定義されます。この現状では、欠陥制御が困難になっています。第一に、目視検査と手動制御は、かなりの再現性と再現性の測定誤差を伴う可能性があります。また、このアプローチでは、許容範囲内の入力の組み合わせが、気孔率欠陥を発生させることを知らずに許容してしまう可能性があります。プロチャによって導入されたように、ステップバイステップの知識ベースのアプローチを採用して、より高品質な成果を得るために、鋳造プロセスの人工知能とデータ駆動型プロセス制御を構築します。Industry

Read More

Fig. 1 – Position of the spoke and the rim zone in the wheels analysed.

低圧ダイカスト自動車ホイール用A356合金の衝撃挙動

この論文の概要は、 журнале [‘Journal of Materials Processing Technology’] によって発行された [‘Impact behaviour of A356 alloy for low-pressure die casting automotive wheels’] という論文に基づいて作成されました。 1. 概要: 2. 抄録または序論 計装化衝撃強度試験は、低圧ダイカストで製造されたA356アルミニウム合金製17インチホイールから採取したKVサブサイズシャルピー試験片に対して実施されました。ホイールは異なる形状と熱処理状態を示しています。本論文では、微細組織と欠陥が衝撃特性に及ぼす影響を研究します。その結果、衝撃エネルギーはT6熱処理ホイールよりも鋳造ままホイールの方が低いことが示されています。より微細な微細組織は常に高い衝撃強度に対応し、亀裂伝播抵抗値と二次デンドライトアーム間隔(SDAS)との間に直接的な相関関係が存在します。X線および密度測定技術によって明らかになった鋳造欠陥は、シャルピー試験片の荷重負担面積を減少させるVノッチ周辺に集中すると重大になります。シャルピー試験片の破断面プロファイルと表面を調査し、亀裂が、亀裂した共晶シリコンと金属間化合物がかなりの割合で発見されるデンドライト間共晶領域をどのように横断するかを明らかにしました。 数値シミュレーションは、分析されたホイール合金の充填および凝固挙動を研究するために実行され、最終的な微細組織および引け巣形成を予測することを目的としています。SDAS測定によって推定され、数値シミュレーションアプローチによって計算された凝固時間は、良好な一致を示しています。ホットスポットおよび引け巣に関する重要な領域は、一般にリム領域だけでなく、スポークとリムの間のホイール領域で明らかになります。 3. 研究背景: 研究テーマの背景: 汚染物質排出量の削減は、エネルギー消費量の削減およびリサイクル材料の増加とともに、国際政策の優先目標です。自動車分野では、アルミニウム合金の適用は経済的に持続可能な革新と見なされています。アルミニウム-シリコン合金は、複雑な形状の部品を鋳造するために広く使用されている鋳造合金であり、ホイールは統合された例です。ホイールは、高品質の表面仕上げ、衝撃および疲労性能の組み合わせを満たす必要があります。低圧ダイカスト(LPDC)は、アルミニウム合金ホイールの鋳造の主要な技術であり、機械的特性、高い生産性、費用対効果、および設計要求の間で優れた妥協点を提供します。 既存研究の現状: 過去の研究では、アルミニウム合金の衝撃特性が調査されてきました。Liら(2004)は、計装化衝撃試験を使用して、A319合金における合金元素と熱処理の効果を分析しました。Parayら(2000)は、Al-Si鋳造合金の吸収エネルギーを評価しました。Srivastavaら(2006)は、鋳造アルミニウム合金におけるノッチが衝撃値に及ぼす影響を示しました。Muraliら(1992)は、AlSi7Mg0.3合金中のマグネシウム含有量を評価し、Shivkumarら(1994)は、A356-T6合金中のストロンチウム改質と凝固速度を研究しました。Zhangら(2002)は、鋳造アルミニウム部品の降伏強度と延性に対するT6熱処理の利点を特定し、Cáceresら(1995)およびWangとCáceres(1998)は、亀裂核生成と伝播における粒子間間隔の役割を観察しました。CáceresとSelling(1996)は、鋳造欠陥が機械的特性に及ぼす影響を定量化しました。 研究の必要性: T6熱処理の利点は認識されていますが、追加のコストと時間が相当かかります。異なる形状とテンパーを持つLPDC A356合金ホイールの衝撃特性、微細組織、および鋳造欠陥の影響を考慮した研究が必要です。LPDCプロセス中の微細組織および欠陥形成を予測するための数値シミュレーションも必要です。 4. 研究目的と研究課題: 研究目的: 本研究の目的は、計装化シャルピー衝撃試験によって、異なる形状とテンパーを持つA356 17インチホイールから採取したKVサブサイズシャルピー試験片の衝撃特性を調査し、破壊中の個々のエネルギー部分に関する考察を含むことです。 主要な研究課題: 研究仮説: 本論文では、研究仮説を明示的に述べていません。しかし、研究目的と課題に基づいて、暗黙の仮説は次のとおりです。 5. 研究方法 研究デザイン: 本研究では、低圧ダイカストで製造されたA356合金ホイールの衝撃挙動を調査するために、実験的および数値シミュレーションアプローチを採用しました。計装化シャルピー衝撃試験は、異なるテンパーおよび形状を持つホイールのKVサブサイズ試験片に対して実施されました。微細組織分析、気孔率測定、X線検査、破断面解析、および数値シミュレーションを実施して、プロセス、微細組織、欠陥、および衝撃特性の間の相関関係を分析しました。 データ収集方法: 分析方法: 研究対象と範囲: 研究対象は、低圧ダイカスト(LPDC)で製造された3つのA356アルミニウム合金製17インチ自動車ホイールでした。 6. 主な研究結果: 主要な研究結果: 提示されたデータの分析:

Read More