Tag Archives: Microstructure

Fig.1 Die casting specimens

微量のAl含有量変化がHPDC Mg-4Sm-2Al合金の微細組織と特性に及ぼす影響

この紹介資料は、「Special Casting & Nonferrous Alloys」によって発行された論文「Effects of Trace Variation of Al Content on Microstructure and Properties of HPDC Mg-4Sm-2Al Alloy」に基づいています。 1. 概要: 2. 抄録: SA42およびMg-4Sm-2.6Al (SA42.6) 合金をHPDCプロセスで製造し、微量のAl含有量が機械的特性に及ぼす影響を系統的に分析した。結果として、SA42合金に0.6%のAlを添加すると、降伏強度と伸びがそれぞれ10.2%と63.5%低下することが示された。これは、Alとマトリックス中に溶解したSmとの反応によって大量の塊状Al₂Sm相が生成され、Mgマトリックス内のSm濃度が約50%減少し、固溶強化効果が大幅に低下したためである。形成されたAl₂Smによる第二相強化および結晶粒界強化の寄与は、固溶強化効果の損失を補うことができず、SA42.6の降伏強度はSA42と比較して約20 MPa低下した。伸びの大幅な減少は、主にAl₂Sm粒子とMgマトリックス間の弾性率のミスマッチに起因する。脆くて硬いAl₂Sm粒子は、変形プロセス中に大きな応力集中を引き起こし、それによって破壊と破損を加速させる。 3. 序論: マグネシウム合金は、その低密度と高比強度により、自動車産業において、センターコンソールバックパネル、ステアリングホイールフレーム、インストルメントパネルフレーム、LEDカーライトなど[1]、幅広い応用可能性を持っている。新エネルギー車における高度に集積化・高出力化された部品へのトレンドに伴い、構造材料には良好な放熱能力が求められている。従来の商用マグネシウム合金は熱伝導率が低いことが多い。したがって、高い熱伝導率と良好な機械的特性の両方を備えたマグネシウム合金の開発が重要である。Mg-RE-Al合金は、一般的な高熱伝導性マグネシウム合金である。合金組成と元素含有量を最適化することで、マトリックス中の固溶原子を減らし、それらを効果的な強化相に変換することで、より高い熱伝導率と機械的特性を達成できる。高圧ダイカスト(High-pressure die casting, HPDC)は、高効率、低生産コスト、高寸法精度で広く利用されている成形プロセスである[3-8]。HPDCは、結晶粒と第二相を効果的に微細化し、合金の機械的特性を向上させる可能性がある。近年の統合ダイカスト(「一体化压铸」)の研究動向は、特に新エネルギー車分野において自動車製造に革命をもたらし、車両の軽量化と生産効率の向上に貢献している[9]。本研究は、HPDC Mg-4Sm-Al合金における微量のAl含有量の変化が微細組織と特性にどのように影響するかを理解することに焦点を当てている。 4. 研究の概要: 研究テーマの背景: 自動車産業、特に新エネルギー車と統合ダイカストの文脈では、高強度と良好な熱伝導率を兼ね備えた軽量材料が求められている。Mg-RE-Al合金は有望な候補であるが、その特性は組成に敏感である。 先行研究の状況: 重力鋳造されたMg-4Sm-xAl合金に関する先行研究[2]では、Al含有量が2 wt%を超えると、良好な熱伝導率と機械的特性が得られることが示唆された。具体的には、重力鋳造されたSA42.6(Mg-4Sm-2.6Al)は、SA42(Mg-4Sm-2Al)と比較して強度と伸びが向上したが、これはAlがマトリックスSmを消費して形成されたAl₂Sm粒子による結晶粒微細化に起因すると考えられた。しかし、重力鋳造はHPDCよりも粗大な微細組織を生成し、HPDCは結晶粒と相を微細化することが知られているため、異なる特性結果をもたらす可能性がある。 研究の目的: 本研究は、HPDCプロセスによって製造されたMg-4Sm-Al合金において、微量のAl含有量の変化(0.6 wt%)が微細組織と機械的特性に及ぼす影響を調査することを目的とする。強化メカニズムと破壊挙動を解明し、ダイカストマグネシウム合金の設計指針を提供することを目指す。 研究の核心: 研究の核心は、HPDCを用いてSA42(Mg-4Sm-2.03Al)とSA42.6(Mg-4Sm-2.42Al)合金を製造することにある。次に、それらの微細組織(結晶粒径、相の種類と分布、マトリックス中の固溶体濃度)と室温引張特性(降伏強度、引張強度、伸び)を系統的に比較する。異なる強化メカニズム(固溶強化、結晶粒界強化、第二相強化)の寄与を分析し、破面と断面を検査して、観察された機械的挙動の違い、特にHPDCプロセスにおけるAl含有量増加に伴う予期せぬ強度と延性の低下の理由を理解する。 5. 研究方法論 研究設計: Al含有量がわずかに異なる2つのマグネシウム合金、SA42(公称Mg-4Sm-2Al)とSA42.6(公称Mg-4Sm-2.6Al)を用いた比較研究を設計した。両合金は同一のHPDC条件下で製造し、Al変動の影響を分離した。その後、微細組織と機械的特性を評価し比較した。 データ収集・分析方法: 研究テーマと範囲: 研究は、HPDC Mg-4Sm-Al合金においてAl含有量を約2.0 wt%(SA42)から約2.4

Read More

ワイヤアーク積層造形されたH13鋼-銅ハイブリッド部品の界面微細構造と形成メカニズム

この紹介論文は、「Journal of Materials Research and Technology」によって発行された論文「Interface microstructure and evolution mechanism of wire arc additively manufactured H13 steel-copper hybrid components」に基づいています。 1. 概要: 2. 抄録: 積層造形(AM)によって製造されたH13鋼-銅ハイブリッド構造は、特定の高温機械的特性を確保しつつシステムの冷却能力を向上させることができ、高圧ダイカスト金型において広範な応用可能性を示しています。本研究では、ワイヤアーク積層造形を用いて銅基板上にH13鋼を直接堆積させ、界面の微細構造を詳細に調査しました。界面構造の形成および進化メカニズムは、温度場シミュレーションと組み合わせて明らかにされました。界面におけるFe-Cu混合液体は2回の液相分離を経て、Feリッチ島およびCuリッチ島、ならびに分散したCuリッチ粒子を形成しました。冷却中のCuの体積収縮により、少数の気孔が形成されました。微小亀裂は、熱応力の影響と、旧オーステナイト粒界におけるCuリッチ粒子の分布によって引き起こされる高い亀裂感受性に起因すると考えられました。H13-Cu界面における元素分布の急激な変化と温度分布の連続的な変化により、H13の融点より低くCuの融点より高い温度を持つ拡張溶融プールが界面下に形成されました。微小硬さは、界面近傍の狭い範囲(約0.5 mm)でH13側からCu側に向かって徐々に減少しました。ハイブリッド部品の引張試験片は界面から離れたCu側で破断し、その引張強度(221 ± 2 MPa)はCu基板のレベルに達し、界面が良好な接合を形成したことを示しました。 3. 緒言: 単一材料の部品と比較して、多材料ハイブリッド部品は様々な材料の特性を組み合わせることができ、複雑な使用条件下での多様な性能および機能要件を満たすことができます。様々な多材料ハイブリッド構造の中でも、銅-鋼バイメタル部品は、銅の優れた熱伝導性および電気伝導性と、鋼の良好な機械的特性を組み合わせ、非常に高い応用可能性を持つ機能特性の組み合わせを実現します。この優れた包括的な機能特性により、銅-鋼バイメタル部品は航空宇宙、原子力産業、電力、自動車、金型などの産業分野で広く使用されています。銅-鋼ハイブリッド部品の従来の製造プロセスは、主にレーザー溶接、アーク溶接、電子ビーム溶接、拡散接合、爆発圧接などの溶接法です。しかし、これらの溶接法はハイブリッド部品を製造する際に形状および構造設計に限界があります。積層造形(AM)のニアネットシェイプ能力は、部品設計および製造の柔軟性を大幅に向上させます。これは銅-鋼ハイブリッド部品の製造において広範な開発の見通しを示しています。しかし、銅と鋼の間の熱物理的特性の不一致および機械的特性の違いにより、銅-鋼ハイブリッド部品のAMは依然として多くの課題に直面しています。まず、Fe-Cu状態図によれば、FeとCuの間には金属間化合物が存在しません。さらに、固相状態での溶解度は非常に限られています。溶解度およびFe-Cu系に存在する準安定混和ギャップの影響を受け、銅-鋼界面はしばしば液相分離の特性を示し、多くのCuリッチ島およびFe-rich島が分布します。これは機械的特性および疲労特性を損なう可能性があります。第二に、Cuの非常に高い熱伝導率(401 W m⁻¹K⁻¹)のため、熱が急速に放散され、溶融プールを安定に保つことが困難になります。これにより、材料の不十分な溶融が生じ、気孔が形成される可能性があります。最後に、銅と鋼の熱膨張係数の著しい違いは、ひずみの不整合と界面でのより高い残留応力を引き起こし、亀裂につながります。 4. 研究の概要: 研究テーマの背景: H13-Cuバイメタル構造は、H13鋼の高温機械的特性、特に耐熱衝撃性および耐熱疲労性と、銅の高い熱伝導性を組み合わせることができるため、特に高圧ダイカスト(HPDC)金型への応用において研究者から大きな関心を集めています。AMによって製造されたH13-Cuハイブリッド構造は、優れた高温機械的特性と高い熱伝導性を両立させ、システムの冷却能力を高め、十分な使用信頼性を確保することができます。しかし、H13とCuを直接接合することは、熱物理的特性の違いにより問題が発生する可能性があります。 先行研究の状況: 銅-鋼ハイブリッドのAMに関する先行研究では、プロセスパラメータの最適化、特定の走査戦略(例:アイランド走査)による欠陥低減、ビームシェーピング(リングモードレーザー)による混合低減、熱間等方圧加圧(HIP)による気孔・亀裂除去など、様々な試みが行われています。また、Inconel 718やDeloro 22などの高Ni含有中間層を追加することで、界面欠陥を効果的に低減し、ハイブリッド構造の接合強度を向上させることが示されています。これまでの研究の多くは、鋼基板上に銅を堆積させることに焦点を当てています。銅基板上に鋼を堆積させる研究、特にワイヤアーク積層造形(WAAM)を用いた研究は限られています。WAAMはレーザーベースのプロセスと比較して製造効率が高く、材料コスト(ワイヤベース)が低いという利点があります。さらに、銅を基板として使用する場合、高いレーザー反射率の問題が存在しません。しかし、予備実験では、Cu基板の非常に高い熱伝導率のため、従来のプロセスパラメータではCu基板を溶融させて安定した溶融プールを形成することが困難であることが判明しました。WAAMによるH13-Cuハイブリッド部品の製造に関する報告は、著者らの知る限り現在ありません。 研究目的: 本研究の目的は、WAAMを用いてCu基板上にH13鋼を直接堆積させることの実現可能性を評価することです。具体的には、以下の点を明らかにすることを目的としました。 研究の核心: 本研究の核心は、GMAWベースのWAAMを用いて、アニール処理された銅基板上にH13鋼ワイヤを直接堆積させることにあります。特殊な戦略として、(i) Cu基板の予熱(200 °C)、(ii) 基板に近い層(1~7層)に対してより高い入熱(高電流、低溶接速度)を使用、(iii) 揺動堆積戦略(振幅2 mm、周波数1 Hz)の採用、が挙げられます。得られたH13-Cu界面の微細構造をSEM、EDS、EBSD、TEMを用いて詳細に調査しました。堆積中の温度分布と熱履歴を組み合わせることで、界面構造の形成と進化メカニズムを明らかにしました。界面近傍の気孔や微小亀裂などの欠陥の原因についても議論しました。最後に、H13-Cu部品の機械的特性を評価しました。 5. 研究方法論 研究設計: 本研究では、実験的アプローチと数値モデリングを組み合わせました。WAAMを用いて銅基板上にH13鋼を積層造形しました。プロセスパラメータは、銅基板の高い熱伝導率を管理するために特別に調整されました。得られたバイメタル部品の界面について、詳細な微細構造解析と機械的特性試験を実施しました。界面形成メカニズムの理解を助けるために、堆積プロセスの熱的側面をモデル化する有限要素シミュレーションを使用しました。

Read More

Figure 3: Experimentation setup: vertical die casting machine of the capacity of 100 Tons (Industrial caseCGL)

数値シミュレーションアプローチを用いたシックスシグマ品質製品達成のための高圧ダイカストパラメータの解析と最適化

この紹介資料は、「International Journal of Engineering and Management Research」に掲載された論文「Analysis and Optimisation of High Pressure Die Casting Parameters to Achieve Six Sigma Quality Product Using Numerical Simulation Approach」に基づいています。 1. 概要: 2. 抄録: 高圧ダイカストにおける最適なパラメータ設定を予測するために、数値シミュレーションアプローチが提案されています。最適なパラメータの中でも、温度は他のパラメータよりも鋳造品質により大きな影響を与えることが示されました。本研究の成果は、ダイカストにおける不適切なプロセスパラメータ設定によって発生する鋳造欠陥の解決策を見つける上で有益でした。したがって、数値最適化技術と鋳造シミュレーションの組み合わせは、ダイカスト産業における鋳造製品の品質を向上させるためのツールとして役立ちます。本論文は、欠陥の原因となる射出圧力、溶湯温度、保持時間、プランジャー速度などの重要なパラメータを解析し、最適化することを目的としています。本研究論文では、有限要素解析技術を使用するProCASTシミュレーションソフトウェアを用いて、最適な圧力、温度、保持時間、プランジャー速度のパラメータを提供するための取り組みが行われました。溶湯温度、射出圧力、保持時間、プランジャー速度を変化させてパラメータを最適化する数値解析は、ホットスポットにおける凝固時間に関して、シミュレーションモデルにおける欠陥解析を研究するための重要なパラメータです。 3. 緒言: ダイカストプロセスは、プロセスパラメータの関与により、しばしば品質や生産性の低下に悩まされます。MohantyとJena (2014) によれば、ゼロ欠陥部品を達成するためにはプロセスパラメータを制御する必要があります。ダイカストプロセスにおける不良率は11~13%であることが判明しました。この不良の原因は、ブローホール、不十分な射出圧力、不適切な充填時間、気孔(ポロシティ)、ホットスポットです。プロセスパラメータを制御するためには、プロセスパラメータが鋳造に与える影響とその欠陥への影響を知る必要があります。本研究では、図1に示すように、ダイカストローター部品と、溶湯がゲーティングシステムに入る箇所と底部断面の2つの断面について調査します。 4. 研究概要: 研究テーマの背景: 高圧ダイカスト(HPDC)プロセスは、プロセスパラメータのばらつきにより、品質問題や生産性の低さに影響を受けやすいです。これらのばらつきは、ブローホール、気孔、不適切な充填、ホットスポットなどの鋳造欠陥を引き起こし、著しい不良率(11-13%)をもたらす可能性があります。 従来の研究状況: MohantyとJena(2014)などの従来の研究では、ゼロ欠陥部品を達成するためのプロセスパラメータ制御の必要性が強調され、業界の高い不良率が指摘されています。不良の主な原因として、不適切なパラメータ設定に直接関連する欠陥が特定されています。 研究目的: 本研究は、数値シミュレーションアプローチを用いて、重要なHPDCパラメータ、具体的には射出圧力、溶湯温度、保持時間、プランジャー速度を解析し、最適化することを目的としています。目標は、凝固時間を最小化し、それによって鋳造欠陥を削減し、製品品質をシックスシグマレベルに向上させる最適なパラメータ設定を決定することです。 中核研究: 本研究の中核は、有限要素解析(FEA)を用いるProCASTシミュレーションソフトウェアを使用して、ローター部品のHPDCプロセスをモデル化することです。体系的な数値最適化技術が適用され、定義された範囲内で4つの主要パラメータ(温度、圧力、速度、保持時間)が変化させられました(表2)。本研究では、これらの変化がローターおよび特定の断面(CS AAおよびCS BB、図1)のホットスポットにおける凝固時間に与える影響を分析します。目的は、欠陥解析と品質改善に不可欠と考えられる最小凝固時間を生み出すパラメータの組み合わせを特定することです。 5. 研究方法論 研究デザイン: 本研究では、数値シミュレーションと最適化の方法論を採用しています。ローター部品のHPDCプロセスは、有限要素法(FEM)に基づくProCASTソフトウェアを使用してシミュレーションされました。多段階最適化アプローチ(図5、図6)が用いられ、4つの主要パラメータ(温度、圧力、速度、保持時間)のそれぞれが、定義された範囲内の25レベルにわたって順次解析され(表2、図4)、凝固時間を最小化しました。 データ収集・分析方法: 研究テーマと範囲: 本研究は、アルミニウム合金ローター部品(外径100 mm、内径25

Read More

Fig. 3 Photographs of specimens at ambient temperature. (a) KCl–30 mol%NaCl. (b) K2CO3–50 mol% Na2CO3.

鋳造法により作製されたアルカリ炭酸塩およびアルカリ塩化物混合物塩中子の強度

本紹介論文は、「Materials Transactions / Japan Foundary Engineering Society」により発行された論文「Strength of Salt Core Composed of Alkali Carbonate and Alkali Chloride Mixtures Made by Casting Technique」に基づいています。 1. 概要: 2. 抄録: 高圧ダイカストプロセス用の消失性塩中子を開発するために、4つの二元系 NaCl-Na2CO3, KCI-K2CO3, KCI-NaCl および K2CO3-Na2CO3 の強度を調査した。永久鋳型鋳造技術を用いて溶融塩から作製した試験片の強度を決定するために、4点曲げ試験を実施した。NaCl-Na2CO3 系の強度は、Na2CO3 組成が 20 mol% から 30 mol% の間、および 50 mol% から 70 mol% の間で 20 MPa を超えた。最高強度は NaCl-70 mol%Na2CO3 の組成で約 30 MPa

Read More

Figure 1. SDAS definition: the distance between two secondary dendrites.

コンピュータビジョンを用いた鋳造微細組織検査:アルミニウム合金のデンドライト間隔

この紹介論文は、「Metals」によって発行された論文「Casting Microstructure Inspection Using Computer Vision: Dendrite Spacing in Aluminum Alloys」に基づいています。 1. 概要: 2. 抄録: 本稿では、畳み込みニューラルネットワーク(CNNs)を用いた二次デンドライトアーム間隔(SDAS)の決定について調査します。目的は、産業的に許容可能な予測精度を持つSDAS予測のための深層学習(DL)モデルを構築することでした。モデルは、高圧ダイカスト合金EN AC 46000 AlSi9Cu3(Fe)、重力鋳造合金EN AC 51400 AlMg5(Si)、およびインゴットとして鋳造された合金EN AC 42000 AlSi7Mgの研磨サンプルの画像で訓練されました。カラー画像は、訓練パラメータ数を減らすためにグレースケールに変換されました。比較的単純なCNN構造が、91.5%のR²値で非常に高い精度で様々なSDAS値を予測できることが示されています。さらに、モデルの性能は、訓練中に使用されなかった材料、すなわち重力鋳造EN AC 42200 AlSi7Mg0.6合金、および高圧ダイカスト合金EN AC 43400 AlSi10Mg(Fe)とEN AC 47100 Si12Cu1(Fe)でテストされました。このタスクでは、CNNの性能はわずかに劣りましたが、依然として産業的に許容可能な基準内でした。したがって、CNNモデルは、産業的に許容可能な予測精度でSDAS値を決定するために使用できます。 3. 緒言: デンドライトのサイズと二次デンドライトアーム間隔(SDAS)は、所与の材料の凝固速度に強く依存することがよく知られています[1,2]。加えて、合金の化学組成もこの構造特性に追加的な影響を与えます[3]。さらに、一部の著者は機械的特性とSDASの関係を示しています[1,4–8]。破壊力学特性も、化学組成、気孔や酸化膜などの鋳造欠陥[8]、およびSiまたはFeリッチな脆性相のサイズと形状[9]に依存します。ほとんどの著者はSDASと極限引張強さ(UTS)および伸び(E)の関係を示していますが、多くの著者はSDASが降伏強度(YS)に有意な影響を与えないことを示しています。さらに、別の研究では、材料の硬度はSDASに依存するものの、この関係だけでは十分に説明できないことが示されています[10]。したがって、一部の材料特性はSDASの値から直接決定できると仮定するのが合理的です。したがって、材料のSDAS値を知ることは有用である可能性があります。この点で、SDASを決定する自動化された方法は大きな利点となる可能性があります。人工知能(AI)の範囲は、材料科学よりもコンピュータサイエンスや電気工学などの分野でより重要です。しかし、過去30年間で、材料科学においても多くの応用が見られます。一般に、AIの中核アルゴリズムであるニューラルネットワークは、早くも1998年に材料科学に応用されています[11]。Singhらは、鋼圧延における108の変数のそれぞれの関数としてYSとUTSを推定しました。 4. 研究の概要: 研究トピックの背景: SDASは、鋳造アルミニウム合金における重要な微細構造特性であり、凝固条件と組成に影響され、機械的特性と相関しています。標準的なSDASの決定は、顕微鏡画像からの手動測定に依存しており、時間がかかり、主観的になる可能性があります。品質管理における効率と一貫性のために、このプロセスを自動化することが望まれます。 先行研究の状況: AI、機械学習(ML)、深層学習(DL)は、材料科学において、組成、プロセスパラメータ、または微細構造から特性(例:YS、UTS、疲労強度)を予測するため、および欠陥検出や微細構造分類などのタスクに適用されてきました。いくつかの研究では、プロセスパラメータやシミュレーション結果に基づいてSDASを予測するために人工ニューラルネットワーク(ANN)が使用されました[21]。しかし、DL法を用いて微細構造画像から直接SDASを決定する文献は現在ありませんでした。CNNは、様々な材料科学の画像ベースのタスクにおいて、浅層学習や従来の画像解析手法と比較して優れた性能を示しています[19,23,24]。 研究の目的: 本研究の目的は、アルミニウム合金のグレースケール微細構造画像から直接、産業的に許容可能な精度でSDAS値を予測できる深層学習(DL)モデル、具体的には畳み込みニューラルネットワーク(CNN)を開発し、評価することでした。目標は、手動のハイパーパラメータ調整を回避する完全自動化された手法を作成することでした。 中核研究: 研究の中核は以下を含みます: 5. 研究方法論 研究デザイン: 本研究では、深層学習を用いた定量的、コンピュータビジョンベースのアプローチを採用しました。教師あり学習戦略が用いられ、CNN回帰モデルが入力微細構造画像をスケーリングされたSDAS(S)を表す連続出力変数にマッピングするように訓練されました。モデルの予測精度は、訓練に使用された合金タイプと使用されなかった合金タイプの両方で評価されました。 データ収集と分析方法: 研究トピックと範囲: 本研究は、畳み込みニューラルネットワークを用いて2D微細構造画像から直接、鋳造アルミニウム合金の二次デンドライトアーム間隔(SDAS)を予測することに焦点を当てました。範囲には、高圧ダイカスト(HPDC)、重力ダイカスト、およびインゴット鋳造によって製造されたいくつかの一般的なAl-SiおよびAl-Mg合金が含まれました。本研究では、訓練セットに含まれる材料に対するモデルの精度と、訓練中に見られなかった材料への汎化能力を調査しました。 6.

Read More

Fig. 6. Sketch of the casting technique used by Gibbs Die Casting to cast Mg alloys [144].

マグネシウム合金製超大型高圧ダイカスト自動車構造部品の進歩と展望

本紹介資料は、「Journal of Magnesium and Alloys」に掲載された論文「Progress and prospects in Mg-alloy super-sized high pressure die casting for automotive structural components」に基づいています。 1. 概要: 2. 抄録: Teslaのギガキャスティング(Giga-Casting)プロセスの導入以来、自動車産業では、電気自動車および内燃機関自動車の両方の軽量化を促進する大きな可能性から、超大型構造部品のコンセプトが広く受け入れられています。これらの超大型部品は、アルミニウム合金の3分の2、鋼鉄の4分の1の密度しかない優れた軽量特性を持つMg合金を使用することで、さらに軽量化できます。この卓越した特性は、構造的完全性を損なうことなく大幅な重量削減を達成するという魅力的な展望を提供します。本レビューは、Mg合金高圧ダイカスト(HPDC)プロセスに関する研究を検討し、Mg合金を超大型自動車HPDC部品に組み込む将来の展望についての洞察を提供します。 3. 緒言: 気候変動とその悪影響に対する懸念が高まる中、世界各国は温室効果ガス排出という重大な問題に対処するための取り組みを強化しています。政策立案者は、特に電気自動車(EV)の普及促進に焦点を当て、包括的なCO2排出政策の実施に注目しています。しかし、EVは、従来の燃焼エンジンと比較してEVバッテリーの重量が大幅に増加しているため、同様のサイズのICE車と比較して、数百から数千キログラムの大きな重量差を示すことがあります。その結果、車両の軽量化は、環境性能の向上と性能向上の両方を可能にするため、将来の自動車産業にとって極めて重要です。自動車の軽量化の分野で、最近の最も画期的な進歩の1つは、Teslaのギガキャスティング技術[1]です。この先進的な高圧ダイカスト(HPDC)技術により、EV構造用の超大型一体部品の製造が可能になります。この革新的なアプローチを採用することで、Teslaは171個の複雑な車両部品を、フロントとリアのアンダーボディというわずか2つの鋳造品に統合しました。これにより、30%の驚異的な重量削減と40%の印象的なコスト削減が実現し、EVの効率と性能を向上させるための競争力のあるソリューションとなっています[1]。ギガキャスティングの成功は世界的に大きな注目を集め、自動車産業が超大型構造部品を採用し、従来の車体およびシャシー要素の数を大幅に削減するきっかけとなりました。一方、現在の超大型自動車部品の代替材料の調査を通じて、より高度な軽量化技術の追求への関心が高まっており、特にMg合金に焦点が当てられています。地球上で最も軽い構造材料として知られるMg合金は、アルミニウム合金のわずか3分の2、鋼鉄の4分の1の密度しか示しません。この卓越した重量対強度比により、Mg合金は構造的完全性を損なうことなく大幅な重量削減を達成するための非常に有望な選択肢として位置づけられています。Mg合金の探求は、効果的で革新的な軽量化ソリューションを求める自動車産業の探求を推進する上で大きな可能性を秘めています。2023年6月に発表された革新的な成果[5]として、重慶大学の国家マグネシウム合金工学研究センター(CCMg)は、Chongqing Millison Technologies Inc.およびChongqing Boao Magnesium Aluminium Manufacturing Company Ltdと協力し、Millisonの8800Tギガプレスマシンを使用して、世界最大のMg合金自動車ダイカスト部品の試作に成功しました。図1に示すように、リアアンダーボディとバッテリーエンクロージャー用アッパーカバーという2つの超大型ボディインホワイト(BIW)部品が鋳造され、両部品の投影面積は2.2 m²を超え、現在入手可能な最大のMg合金自動車HPDC部品としての地位を確立しました。Al合金鋳造品と比較して32%の顕著な軽量化を実現したこれらのMg合金超大型鋳造品は、自動車産業における軽量化用途に大きな可能性を示しています。この可能性に基づき、本研究は、大型で薄肉の自動車構造部品向けのMg合金HPDCプロセスに関して行われた調査のレビューを提示することを目的としています。Mg合金、溶湯処理、酸化物関連欠陥、ホットティア、現在のMg合金超大型製品などのトピックをカバーし、超大型自動車HPDC部品の製造にMg合金を利用する際の重要な側面を探求し、超大型自動車部品の軽量特性を向上させる有望な手段としてのMg合金の実現可能性についての洞察を提供します。 4. 研究の概要: 研究テーマの背景: 自動車産業は、特に重量が増加するEVの普及に伴い、効率改善と環境性能向上のために車両重量を削減する必要に迫られています。Teslaのギガキャスティングに代表される超大型構造部品は、Al合金を用いて部品統合、コスト削減、軽量化を実現する道筋を示しています。Mg合金のようなより軽量な材料を探求することで、さらなる重量削減が可能です。 従来の研究状況: Al合金を用いたギガキャスティングは自動車産業で確立されつつあります[1, 2, 3, 4]。自動車用途のMg合金に関する研究では、大型構造部品に適した非熱処理(NHT)形態で、鋳造性や延性などの望ましい特性を持つ適切な合金系(例:AM、AZ、AJ、AEシリーズ)が特定されています[6-11]。合金元素(Al、Si、Zn、Sr、Ca、RE)がMgの特性に及ぼす影響に関する研究が行われています[12-40]。溶湯処理技術(脱ガス、フラックス精錬、電磁・超音波・浮遊選鉱・濾過などの非フラックス精錬)は、Mg合金鋳造品の品質にとって重要であることが知られています[41-78]。Mg HPDCにおける一般的な欠陥、例えばダイソルダリング(Alよりは軽微)、酸化物介在物/バイフィルム、ホットティアなどが研究されています[79-132]。鋳造品の健全性を向上させるために、真空HPDC(VADC/SVDC)やVACURALなどの先進的な鋳造技術が使用されています[135-146]。大型Mg合金鋳造品の試作成功例も報告されています[5, 図8]。 研究の目的: 本レビューは、大型・薄肉の自動車構造部品に特化したMg合金高圧ダイカスト(HPDC)プロセスに関する既存の研究を検討することを目的としています。Mg合金を超大型自動車HPDC部品に組み込むことの実現可能性、利点、課題、および将来の展望についての洞察を提供することを目指しています。 研究の核心: 本論文は、Mg合金超大型HPDCに関連するいくつかの主要な領域をレビューします: 5. 研究方法論 研究デザイン: 本研究は包括的な文献レビューです。科学論文、技術報告書、業界出版物から得られた既存の知識を統合し、評価します。

Read More

Figure 1. Hybrid HPDC casting with gating system, casting and metal sheet. The metal sheet is connected to the casting by the surface contour of the metal sheet (ribs), which is filled by the melt.

高圧ダイカスト法により製造されたハイブリッド軽金属構造体のマルチスケールシミュレーション

本紹介資料は、「IOP Conference Series: Materials Science and Engineering」に掲載された論文「Multi-scale simulation of hybrid light metal structures produced by high pressure die casting」に基づいています。 1. 概要: 2. 抄録: 現代の自動車構造部品では、軽量かつ機械的に安定した構造を実現するために、金属板と鋳造部品が組み合わされています。本研究では、鋼板とアルミニウム鋳造部品との接合が、高圧ダイカスト(HPDC)プロセスの一部として行われます。この方法により、溶接のような追加の接合工程を省略でき、時間とエネルギーを節約できます。板金と鋳物の組み合わせは、板金の構造化された表面(リブ)によって達成され、これは鋳造プロセス中に液状アルミニウム合金で充填され、凝固後に機械的な接続をもたらします。連成された流動および凝固シミュレーションを用いて、リブ内部の急速凝固に焦点を当ててハイブリッド鋳造プロセスを解析します。板金とアルミニウム合金の界面における高解像度(メソスケール)の充填および凝固シミュレーションは、溶湯流動と急速凝固の詳細を捉えることができます。メソスケールの流動および凝固シミュレーションを、ミクロスケールでの多相場シミュレーションに連成することにより、結果として生じる微細構造を計算できます。メソスケールシミュレーションの結果としてのリブ内部の凝固条件は、コールドチャンバーHPDCマシンで実施された実際の鋳造品で見られる実験結果と計算された微細構造を比較することによって検証できます。 3. 緒言: 高圧ダイカスト(HPDC)は、特に自動車産業において、大型で薄肉の構造部品にとって重要な製造プロセスです。HPDCは、複雑な大型アルミニウムまたはマグネシウム部品の製造を可能にし、これは複数の鍛造金属板を溶接で組み合わせるよりも効率的である場合があります。興味深い新しい応用は、アルミニウム鋳物と金属板を1つのハイブリッド鋳造プロセスステップで組み合わせることです。この方法により、溶接のような追加の接合工程を省略でき、時間とエネルギーを節約できます。板金と鋳物の組み合わせは、板金の構造化された表面(リブ)によって達成され、これは鋳造プロセス中に液状アルミニウム合金で充填され、凝固後に機械的な接続をもたらします。機械的接続は接着接続よりも強力ですが、溶接接続よりは弱くなります。接続強度にとって重要なのは、金属板の構造化された表面が完全に充填されることです。HPDC充填プロセスのシミュレーションは、かなりの量の空気巻き込みを伴うキャビティの非常に高速でカオス的な充填のため、困難です。ほとんどの商用シミュレーションプログラムは、残留空気の影響を近似するためのいくつかの特殊なモデルを用いて、鋳造プロセスを記述するために単相アプローチを使用しています[1-4]。本研究では、空気、溶湯、固相を含む鋳造プロセスの三相シミュレーションが使用されます。溶湯と空気の両方が圧縮性流体と見なされ、界面をシャープに保つための特別な処理を含むVolume-of-Fluid(VoF)アプローチによって分離されます。凝固プロセス中の溶湯流動性の低下は、デンドライトネットワークを通る流れを記述するために多孔質媒体アプローチによって処理されます。臨界固相率の値で、溶湯は完全に停止します。このアプローチは、商用鋳造シミュレーションパッケージSTAR-CCM+[5]に実装されています。湯回り不良(misrun)を引き起こす可能性のある空気の正しい処理と高速凝固は、ハイブリッド鋳造の調査にとって重要であると見なされます。なぜなら、空気の巻き込みと構造化された金属板表面が完全に充填される前の溶湯凝固が、板金と鋳物との間の機械的結合を弱める可能性があるためです。 4. 研究の概要: 研究テーマの背景: 現代の自動車部品は、軽量でありながら機械的に安定した構造を必要としています。金属板(例:鋼)と鋳造軽金属部品(例:アルミニウム)を単一の高圧ダイカスト(HPDC)プロセスで組み合わせるハイブリッド鋳造は、溶接のような従来の組立方法と比較して時間とエネルギーを節約することにより、潜在的な利点を提供します。これらのハイブリッド構造における機械的接続は、金属板上に設計された構造化表面(リブ)によって達成され、これは鋳造中に溶融合金によって充填されます。 先行研究の状況: 複雑なHPDCプロセス、特に急速な充填と潜在的な空気巻き込みのシミュレーションは困難です。多くの商用コードは単相近似を使用していますが、空気、溶湯、固相を考慮する多相アプローチはより詳細な記述を提供します。Volume-of-Fluid(VoF)法のような技術は自由表面追跡に使用され、多孔質媒体モデルと流動停止基準を組み合わせて、凝固が流体流動に及ぼす影響をシミュレートします。 研究の目的: 本研究は、マルチスケールシミュレーションアプローチを用いてハイブリッドHPDCプロセスを分析することを目的としており、特に金属板表面の小スケールリブ内で発生する溶湯流動、充填ダイナミクス、および急速凝固に焦点を当てています。主な目標は、ハイブリッド接合部の機械的完全性にとって重要なリブの完全充填に影響を与える要因を理解することです。さらに、本研究は、リブ内で予測された微細構造を実際の鋳造品の実験的観察結果と比較することによって、シミュレーション結果を検証することを目指しています。 中核研究: 研究の中核は、マルチスケールシミュレーション戦略を含みます。まず、HPDCプロセス全体のメジャースケールシミュレーションが、後続の高解像度メソスケールシミュレーションのための現実的な境界条件(溶湯速度と温度)を提供します。このメソスケールシミュレーションは、鋼板とアルミニウム合金(Al-5wt%Mg-1.8wt%Si)の間のリブ付き界面領域に特に焦点を当てています。0.2 x 0.2 mmのリブ内の詳細な充填および凝固挙動を捉えるために、三相(空気、溶湯、固相)VoFモデルを採用しています。メソスケールシミュレーションによって予測された熱条件(冷却速度)は、期待される微細構造を計算するために、ミクロスケール相場シミュレーション(MICRESS®ソフトウェアを使用)の入力として使用されます。本研究は、異なるプロセスパラメータ(流れに対するリブの向き、リブ上のキャビティ厚さ、溶湯速度)および凝固モデル(Scheil近似対相場由来固相率曲線)がリブ充填プロセスに及ぼす影響を体系的に調査します。最後に、シミュレーションされた微細構造は、検証のためにコールドチャンバーHPDCマシンで製造されたハイブリッド鋳造品の実験結果と比較されます。 5. 研究方法論 研究設計: 本研究では、実験的検証と組み合わせたマルチスケールシミュレーションアプローチを採用しました。完全なHPDCプロセスのマクロスケールシミュレーションは、重要なリブ付き界面の詳細なメソスケールシミュレーションのための境界条件を提供しました。メソスケールシミュレーションの結果(具体的には、局所的な凝固条件)は、結果として生じる微細構造を予測するために、ミクロスケール相場シミュレーションの入力として使用されました。これらのシミュレーション予測は、定義された条件下で製造された実験的なハイブリッド鋳造品で観察された微細構造と比較することによって検証されました。 データ収集および分析方法: 研究トピックと範囲: 本研究は、ハイブリッドHPDCプロセス中の鋼板上の0.2 x 0.2 mmリブ内におけるAl-Si-Mg合金の充填と凝固のシミュレーションに焦点を当てました。範囲には以下が含まれます: 6. 主要な結果: 主要な結果: 図表リスト: 7.

Read More

Fig. 1 Gating system design of clutch housing: (a) case I, (b) case II, and (c) case III

高圧ダイカストの鋳造シミュレーションを用いたクラッチハウジング部品の金型設計

本紹介資料は、「International Journal of Precision Engineering and Manufacturing」に掲載された論文「Mould Design for Clutch Housing Parts using a Casting Simulation of High Pressure Die Casting」に基づいています。 1. 概要: 2. 抄録: 高圧ダイカストを適用した自動車用クラッチハウジング部品を製造するために、以下の3つのゲートシステム設計が考慮されました。これらのゲートシステム設計を実際の実験で採用するにはコストと時間がかかりすぎるため、代わりに鋳造シミュレーションプログラムが使用されました。金型を充填する要素としての流動挙動が解析されました。溶湯が金型に完全に充填された後の空気圧とエアポケットに基づいて、最終的なゲートシステム設計が選択されました。5つのゲートを持つ3番目のゲートシステム設計は、他の設計よりも欠陥が少なく、均一であると予想されました。冷却チャネルとチルベントが設計されました。実際の鋳造試験では、合計5つの製品が製造されました。すべて健全であり、充填不足箇所や表面欠陥はありませんでした。実際の試験では、解析に基づいて引け巣の発生が予想されましたが、実際に引け巣が発生した製造品のそれらとは正確には一致しませんでしたが、類似していました。硬さは場所に関わらず約84 HVでした。 3. 緒言: 高圧ダイカストは、高速・高圧を用いる鋳造プロセスです。非鉄金属を金型に急速に充填し、その後凝固させ、鋳物を金型から取り出します。この方法は、複雑で精密な形状を持ち、均一な品質を持つ製品の大量生産に適しています。さらに、薄板タイプの製品を製造することも可能です。適用分野は拡大し続けています。高圧ダイカストはアルミニウム合金にしばしば適用され、最近では、自動車メーカーがマグネシウム合金を用いた高圧および高真空ダイカストの適用による大量生産の研究を行っています。高圧ダイカストで発生しうる欠陥には、空気や他の物質の巻き込みなどの流動欠陥、充填プロセス中の微小気孔(ブローホールやピンホール)、凝固プロセス中の引け巣などがあります。過去の金型設計では、金型設計者や現場技術者の試行錯誤法に多くの困難がありましたが、最近の高圧鋳造金型設計では、初期開発段階から充填および凝固プロセスに対してComputer Aided Engineering (CAE)を採用しており、製品品質の予測と評価に基づいて最適な金型設計計画を確立することが可能になっています。さらに、多くの設計者が現場経験に基づいてCAEと組み合わせた金型設計手法を採用するにつれて、不良率はコスト削減と開発期間短縮とともに減少しています。この分野で発表された論文のほとんどは、鋳造シミュレーションや鋳造技術、および大量生産の方法で製造コストを削減するための改善方法に焦点を当てています。対照的に、製品の品質を決定する金型設計に関する研究はほとんどありません。本研究では、鋳造ソフトウェアであるMAGMAを用いて、自動車エンジンの動力を制御または伝達するクラッチハウジング製品の鋳造シミュレーションを含みます。まず第一に、充填および凝固プロセスにおける潜在的な鋳造欠陥を予測または防止することにより、製品を大量生産するための最適なゲートシステム設計と鋳造条件が求められました。データベースに基づいて、鋳造コストを最小化する方法が次に求められました。最適なゲートシステム設計が金型設計に適用され、金型製作後、鋳造プロセスにおける欠陥を最小限に抑えた可能な限り最高の品質の製品が製造されました。 4. 研究の概要: 研究テーマの背景: 高圧ダイカスト(HPDC)は、複雑で精密、かつ均一な品質の部品、特に自動車産業向けのアルミニウムやマグネシウムなどの非鉄合金製の薄肉部品の大量生産に広く用いられる製造プロセスです。しかし、HPDCプロセスは、流動欠陥(空気巻き込み)、微小気孔(ブローホール、ピンホール)、引け巣などの欠陥が発生しやすい傾向があります。 従来の研究状況: 従来、金型設計は設計者や技術者の試行錯誤の経験に大きく依存していました。近年では、初期設計段階から充填および凝固プロセスをシミュレーションするために、Computer Aided Engineering(CAE)ツールがますます採用されています。これにより、金型設計の予測、評価、最適化が可能となり、欠陥、コスト、開発期間の削減につながっています。多くの研究がシミュレーション技術やコスト削減に焦点を当てていますが、金型設計が製品品質にどのように影響するかに特化した研究は比較的少ないです。 研究の目的: 本研究は、鋳造シミュレーションソフトウェア(MAGMAsoft)を利用して、HPDCによりALDC 12アルミニウム合金で製造される自動車用クラッチハウジング部品のための最適な金型を設計することを目的としました。具体的な目標は、最良のゲートシステム設計と鋳造条件を決定し、充填および凝固中の潜在的な鋳造欠陥を予測・防止し、シミュレーションデータに基づいて製造コストを最小化し、最終的に最適化された金型設計を通じて欠陥を最小限に抑えた高品質な部品を生産することでした。 研究の核心: 研究の核心は、Pro/ENGINEERとMAGMAsoftを使用してクラッチハウジング部品用の3つの異なるゲートシステム(Case I、II、III)を設計し、シミュレーションすることでした。Case Iは垂直ゲートを特徴とし、Case IIはサイドゲートを含む4つのゲートを使用し、Case IIIは流れを制御するためにCase IIを5つのゲートに変更したものです。冷却チャネルは計算された熱負荷(式1~8)に基づいて設計され、スポット冷却とライン冷却を組み合わせています。ガス排出を容易にするために、波形のチルベント(STD 61材)が設計されました。MAGMAsoftを使用して鋳造シミュレーションが実施され、定義されたHPDC条件下(ALDC 12合金、STD 61金型、特定の温度、速度、1600トンマシン)で各ゲート設計の充填挙動、温度分布、空気接触、空気圧、凝固パターンが解析されました。最も均一な充填と最も少ない欠陥を予測したシミュレーション結果に基づき、Case IIIが選択されました。最後に、Case

Read More

Fig. 2 Drawing of the test sample and the sample itself for the tensile test

ステアリングホイール製造に使用されるマグネシウム合金の微細組織と機械的特性のモニタリング

この紹介論文は、「MANUFACTURING TECHNOLOGY」によって発行された論文 [Monitoring of the microstructure and mechanical properties of the magnesium alloy used for steering wheel manufacturing]に基づいています。 1. 概要: 2. 抄録: 本論文は、マグネシウム製ステアリングホイールの微細組織と機械的特性について述べる。これらのステアリングホイールは高圧ダイカスト(High-pressure die casting, HPDC)によって製造される。HPDCは、マグネシウムやアルミニウム合金のような軽金属から複雑な機械部品を製造するための非常に優れたプロセスである。しかし、近年では、より軽量な車両と燃費向上の探求において、別の軽金属が前面に出てきている。ダイカスト自動車部品に最も一般的に使用されるマグネシウム合金はMg-Al-Mnタイプである。MgAl5Mnは、良好な耐食性、非常に優れた機械的特性、良好な鋳造性を備えた高純度マグネシウム合金である。MgAl5MnやMgAl6MnのようなMg-Al-Mn系合金は、MgAl9Znよりも優れた伸びと衝撃強度を持ち、主にホイールリムやステアリングホイールのような自動車安全システムに使用される。MgAl5Mn合金は、優れた延性とエネルギー吸収特性を良好な強度と組み合わせた合金である。この合金は、固相状態では固溶体αと中間相Mg17 Al12を含む。 3. 緒言: 近年、自動車産業で使用される、低密度で高延性の鋳造材料にかなりの注意が払われている。高い伸びは、自動車の衝突試験における安全性の保証となる。これらの鋳造品には、例えば車体が含まれる。ステアリングホイール生産のためのこれらの特性は、現在、適切な強度と低密度を持つマグネシウムを使用することによって達成されている。マグネシウム合金は最も軽量な工学金属の一つである。マグネシウム合金鋳物は、航空宇宙、自動車、電子機器の用途に使用される。主な利点は軽量であることである。典型的なマグネシウム合金の密度は1800 kg.m⁻³であり、アルミニウム合金の2700 kg.m⁻³と比較される[1]。アルミニウムは、マグネシウムベースの鋳造合金の主要な合金元素であり、亜鉛とマンガンも少量存在する。マグネシウム合金は融点が低く、比熱も低い。圧力ダイカストは、低い鋳造温度(650~700°C)のため、マグネシウム合金に最も一般的に使用される鋳造プロセスであり、ホットチャンバーダイカスト機を使用できる。マグネシウム合金の高圧ダイカストは、アルミニウム合金よりも薄い壁厚で製造できる[2]。自動車会社が軽量化の方法を模索するにつれて、自動車部品におけるマグネシウム合金ダイカストの使用は急速に増加している。一部の車両にはすでに10~20kgのMg合金部品が含まれている[3]。現在、量産車向けに最も人気のある部品は、インストルメントパネル、クロスカービーム、シートフレームである。ホイール、ギアボックスケーシング、サンプ、インレットマニホールドは、フォーミュラ1や他のレーシングカーで使用されている。これらの合金の主成分はほぼ完全にアルミニウムである(すなわち、これらはMg-Al-MnおよびMg-Al-Znの合金である)[4]。マグネシウム合金は、酸素との高い親和性のため、加工性が劣る。これらの困難にもかかわらず、マグネシウム合金は、壁厚2mm未満の複雑な鋳物の複雑な大規模生産さえも可能にするため使用される。我々の学科(リベレツ工科大学工学技術科)では、自動車産業の鋳物に使用されるマグネシウム合金の特性を観察することに関心を持っている。 4. 研究の概要: 研究テーマの背景: MgAl5MnのようなMg-Al-Mn系マグネシウム合金は、その低密度、良好な機械的特性(特に延性)、および高圧ダイカスト(HPDC)への適合性から、自動車部品での使用が増加している。ステアリングホイールは、これらの特性が車両の軽量化と安全性に寄与する主要な用途である。鋳造されたままのこれらの合金の微細組織と機械的特性をモニタリングすることは、部品の品質と性能を保証するために不可欠である。 先行研究の状況: 既存の知識には、一般的なマグネシウム鋳造合金(例:AZ91、AMシリーズのAM50、AM60)、それらの状態図(Mg-Al、Mg-Al-Mn)、および標準規格(ASTM、EN)の特性が含まれる。アルミニウムと亜鉛の含有量が低く、マンガン含有量が高い合金(研究対象のMgAl5Mnに対応するAM50など)は、より高い延性を示すことが知られており、安全性が重要な部品に適している。HPDCは、このような部品の主要な製造方法として確立されている。 研究の目的: 本研究は、高圧ダイカストプロセスによって自動車用ステアリングホイールの製造に使用される特定のマグネシウム合金、MgAl5Mn(VDA 260 – MgAl、ASTM AM50に類似)の微細組織と機械的特性をモニタリングし、特性評価することを目的とした。 中核研究: 研究の中核は、MgAl5Mn合金を使用してHPDCでステアリングホイールを製造することであった。次に、得られた鋳造品に対して、以下を含む詳細な分析を実施した: 5. 研究方法論 研究デザイン: 本研究は実験的アプローチを採用した。工業用HPDC装置と特定のマグネシウム合金(MgAl5Mn)を使用してステアリングホイールを製造した。これらの鋳造品からサンプルを抽出し、その後の材料特性評価を行い、製造プロセスが最終的な特性に与える影響を評価した。 データ収集と分析方法: 研究対象と範囲: 本研究は、HPDCによってステアリングホイール本体に鋳造されたMgAl5Mn合金(ASTM AM50相当)に特化した。範囲は以下を含む: 6.

Read More

FIG. 2 Door and window frames for a German sports car (Photo: Georg Fischer AG). Telai di portiere e finestrini di un’automobile sportiva tedesca (Photo: Georg Fischer AG).

構造部品の成功したダイカストへの工具鋼メーカーの貢献

本紹介論文は、「AIM / La Metallurgia Italiana」によって発行された論文「構造部品の成功したダイカストへの工具鋼メーカーの貢献 (The tool steel producer’s contribution to successful die casting of structural components)」に基づいています。 1. 概要: 2. 抄録: 自動車産業におけるダイカスト構造部品は、自動車の軽量化に大きく貢献し、燃費削減およびCO2排出量削減においてますます重要性を増しています。そのため、今日ではダイカストアルミニウム製のA、B、Cピラー、ショックタワー、またはドア部品が従来の鋼製部品に取って代わることが非常に多くなっています。これらの構造部品は、しばしば大きな寸法と複雑な設計によって特徴付けられます。構造部品用のダイカスト金型は、靭性、高温強度、および熱疲労抵抗に関して最高の要件を満たす必要があります。従来使用されてきた1.2343 (AISI H 11)、1.2344 (Η 13)、または1.2367のような熱間工具鋼では、これらの要件を満たせないことがよくあります。Kind & Co.は、特性を大幅に改善した3つの特殊熱間工具鋼、TQ 1、HP 1、およびHTRを開発しました。本報告書は、これらの鋼の特性に関する調査だけでなく、これらのグレードで得られた実用的な経験についても述べます。適切な熱処理は金型の性能にとって不可欠です。Kind & Coは最近、これらの大型ダイカスト金型に焦点を当てた、世界最大かつ最新の真空焼入れ炉の1つを設置しました。本報告書はまた、現代的な熱処理設備が高品質な構造部品の経済的なダイカストプロセスにどのように貢献するかを示します。 3. 序論: 国際的な自動車産業は、乗用車からのCO2排出量を大幅に制限するという政治的決定に直面しており、欧州連合は自動車産業に対して積極的な目標(例:130 g CO2/kmの義務的削減目標)を設定しています。軽量化はこれらの目標を達成するための重要な戦略であり、燃料消費とCO2排出に直接影響します。その結果、自動車メーカーは従来の鋼製部品に代わるダイカストアルミニウム構造部品の使用をますます増やしています。アウディはこのアプローチの先駆者であり、特にAUDI A8(FIG. 1)で顕著であり、現在ではドアフレーム(FIG. 2)やハッチバックサポートフレーム(FIG. 3)などの用途で一般的です。これらの部品はしばしば大きな寸法と複雑な設計によって特徴付けられ、ダイカストプロセスと金型自体に大きな課題をもたらします。金型は長い溶湯流路を処理する必要があり、潜在的により高い溶湯温度が必要となり、局所的な高い熱負荷と熱的不均一性を引き起こします。リブのような特徴を持つ複雑な形状は応力集中を引き起こし、グロスクラックのリスクを高める可能性があります。したがって、金型設計、工具鋼の選択、金型製造、および熱処理は慎重に検討する必要があり、関係するすべての当事者間の早期の協力が必要です。 4. 研究の概要: 研究テーマの背景: 燃費向上とCO2排出量削減のための自動車軽量化への要求の高まりは、大型で複雑なダイカストアルミニウム構造部品の広範な採用につながっています。 先行研究の状況: これらの大型構造部品の製造に必要な金型は、高い熱負荷、温度不均一性による大きな熱応力、複雑な形状による高い機械的応力など、極端な条件に直面します。1.2343 (H11)、1.2344 (H13)、1.2367などの従来の熱間工具鋼は、これらの厳しい条件下では、靭性、高温強度、熱疲労(ヒートチェック)抵抗性の点でしばしば性能限界に達します。これらの鋼は、適切な品質を得るためにESR(エレクトロスラグ再溶解)法で製造する必要があります。 研究の目的: 本研究は、大型構造部品のダイカストの課題に対処するためにKind & Co.によって特別に開発された3つの特殊熱間工具鋼(TQ 1、HP

Read More