Tag Archives: High pressure die casting

Figure 2: The cast part (end head of motor) and the die.

勘と経験に頼らない:CFDによるHPDCベンティングの精密モデリングと最適化

この技術要約は、M.C. Carter、S. Palit、M. LittlerがNADCA(2010年)で発表した学術論文「Characterizing Flow Losses Occurring in Air Vents and Ejector Pins in High Pressure Die Castings」に基づいています。HPDC(ハイプレッシャーダイカスト)の専門家のために、CASTMANの専門家がGemini、ChatGPT、GrokなどのLLM AIの助けを借りて分析・要約しました。 キーワード エグゼクティブサマリー 課題:この研究がHPDC専門家にとって重要な理由 長年にわたり、技術者たちはHPDC製品の表面欠陥や内部気孔の問題に直面してきました。降伏強度や延性といった機械的特性を損なうこれらの欠陥は、主に巻き込まれた空気や潤滑剤の分解によって発生するガスが原因です。真空システムは解決策の一つですが、高価であり、工程を複雑にします。 論文の序論で述べられているように、ベンティングは巻き込まれた空気を除去するための「最も簡単で安価な方法」であり続けています。しかし、効果的なベンティングシステムの設計は決して単純ではありません。総排気量は、専用のベント、ショットスリーブ、エジェクタピン、パーティングラインを通過する流れの複雑な総和だからです。これらの流れ損失を確実に特性評価する方法がなければ、技術者は経験と試行錯誤に頼ることが多くなり、高価な金型修正や不安定な部品品質につながります。本研究は、これらの重要な流れ損失をモデル化するための実用的で正確な方法を模索することにより、この根本的な問題に正面から取り組んでいます。 アプローチ:研究手法の解説 この課題を解決するため、研究者たちは物理的な実験と高度なシミュレーションを組み合わせた巧みな方法論を考案しました。彼らはLittler DieCast社でモーターエンドヘッド用の市販金型を使用し、溶湯なしでの射出実験(「空打ち」)を実施しました。 実験の核心は以下の通りです: ブレークスルー:主要な研究結果とデータ 本研究は、HPDCにおけるベンティングについて我々の考え方に直接影響を与える、いくつかの重要な洞察をもたらしました。 HPDC製品への実用的な示唆 論文詳細 Characterizing Flow Losses Occurring in Air Vents and Ejector Pins in High Pressure Die Castings 1. 概要: 2. 抄録 (Abstract): It will be

Read More

Fig. 4: Shrinkage [3]

研究データが示す、アルミダイカスト3大欠陥の解決策

この技術概要は、Jay M. Patel、Yagnang R. Pandya、Devang Sharma、およびRavi C. Patelによって「International Journal for Scientific Research & Development」(2017年)に発表された学術論文「Various Type of Defects on Pressure Die Casting for Aluminium Alloys」に基づいています。本稿は、Gemini、ChatGPT、GrokなどのLLM AIの支援を受け、CASTMANの専門家がHPDC専門家のために分析・要約したものです。 キーワード エグゼクティブサマリー(要旨) 課題:なぜこの研究がHPDC専門家にとって重要なのか 長年にわたり、技術者や生産管理者は、高圧ダイカスト法を用いて欠陥のないアルミニウム部品を製造するという固有の課題に取り組んできました。HPDCは迅速かつコスト効率の高いプロセスですが、鋳造欠陥は「部品に悪影響を及ぼす材料の不規則性」であり(Abstract)、スクラップの増加、部品の故障、顧客の不満につながる可能性があります。 最も一般的で損害の大きい欠陥である「引け巣、鋳巣、ガスブロー」の根本原因を特定することはしばしば困難です。ある研究では、「ガスと引け巣が混在する鋳巣の性質上、その主な原因を特定し指摘することは困難」であると指摘されています(Ref. [7])。このレビュー論文は、長年の研究成果を統合することで複雑さを解消し、これらの欠陥が発生する理由と、それを防ぐために実行可能な対策について、より明確な理解を提供します。 アプローチ:研究手法の解明 本稿は、欠陥分析と予防に関する全体的な概要を提供するために、さまざまな学術研究の知見を統合しています。著者らは新たな実験データを提示するのではなく、以下のような様々な先進技術を用いた既存の研究をレビュー・分析しています。 これらの多様なアプローチを検証することで、本稿は鋳造品質を向上させるための多角的な戦略を提示します。 画期的な知見:主要な研究結果とデータ この包括的なレビューは、生産現場に直接活かすことができるいくつかの重要な知見を明らかにしました。 HPDC製品への実践的意味合い このレビューは、製造現場で部品品質を向上させるために実施可能な、研究に裏打ちされた明確な指針を提供します。 論文詳細 Various Type of Defects on Pressure Die Casting for Aluminium Alloys 1. 概要: 2. Abstract: In

Read More

Fig. 1. Production site and system boundaries including the relevant processes considered within the project.

コストを削減するためのシステムアプローチ:HPDCプラントにおける水とエネルギーの使用を最適化する方法

このテクニカルブリーフは、Peter Enderle、Otto Nowak、Julia Kvasによって執筆され、Journal of Cleaner Production(2012年)に掲載された学術論文「Potential alternative for water and energy savings in the automotive industry: case study for an Austrian automotive supplier」に基づいています。HPDC専門家のために、CASTMANの専門家が要約・分析しました。 キーワード エグゼクティブサマリー 課題:この研究がHPDC専門家にとって重要な理由 競争の激しい自動車サプライチェーンにおいて、資源効率は環境目標であるだけでなく、経済的パフォーマンスにとって重要な要素です。ダイカストや部品洗浄などの生産分野は、エネルギーと水の主要な消費者です。何十年もの間、エンジニアは個々の機械を最適化するために取り組んできましたが、熱管理と水循環を別々の問題として扱うことがよくありました。この研究は、生産システム全体を包括的に見ることによってさらなる効率化をいかにして引き出すかという、業界共通の課題に取り組んでいます。炉からの廃熱を洗浄ラインに利用したり、ある段階の水を再利用して別の段階に供給したりするなど、プロセス間の相互作用から節約効果を見出すことで、個別の改善を超えたアプローチを提示しています。 アプローチ:方法論の解明 これを調査するため、研究者たちはシステムの境界を単なる「ダイカスト」ラインから機械加工および硬化処理を含む「拡張システムダイカスト」へと広げました(論文の図1参照)。これにより、異なる生産工程間の材料、エネルギー、水の複雑な交換を分析することが可能になりました。 その方法論は、複数のステップからなるプロセスを含んでいました: ブレークスルー:主要な発見とデータ この研究は、統合されたシステムアプローチの力を示す、明確で定量化可能な結果を生み出しました。 貴社のHPDC製品への実践的示唆 論文の結果と結論に厳密に基づき、これらの発見は実際の製造環境に直接応用できます。 論文詳細 自動車産業における水とエネルギー節約のための潜在的代替案:オーストリアの自動車部品サプライヤーのケーススタディ 1. 概要: 2. 要旨: 本稿は、自動車産業における水とエネルギーの効率を向上させるための代替的な最適化策を示す。ある自動車部品サプライヤーの技術システム最適化に関するポテンシャルスタディが、プロセス水の再利用と熱回収の分野を組み合わせて実施された。高圧ダイカストと部品洗浄に焦点を当てた既存プロセスの改良に関する可能な最適化策が策定された。さらに、既存のプロセスやシステムを改良する場合の、成功的かつ広範な実施のための制限要因が評価された。 3. 緒言: 自動車産業は、現代の自動車部品の約80%を生産するサプライヤーが不可欠な役割を果たす、オーストリアで最も重要な産業部門の一つである。全体として水とエネルギーを大量に消費する産業とは特定されていないが、ダイカスト、機械加工、塗装仕上げなどの特定の生産分野では、資源効率を向上させる高いポテンシャルがある。本研究は、自動車サプライチェーン内で一般的かつ影響の大きいプロセスである高圧ダイカスト(HPDC)と部品洗浄に焦点を当てている。 4. 研究の概要: 研究トピックの背景: 本研究は、資源効率を改善するという自動車産業に対する経済的および環境的圧力が高まる状況を背景としている。複雑な軽量アルミニウム部品を生産するための主要プロセスであるHPDCと、しばしば水、化学薬品、エネルギーを大量に消費する関連の洗浄工程に焦点を当てている。 先行研究の状況: 先行研究は、エコイノベーションや車両リサイクルなどの特定の問題に焦点を当ててきた。しかし、本稿は、生産施設を独立したプロセスの集合体ではなく、相互に関連したシステムとして捉え、熱回収とプロセス水の再利用を組み合わせる、より統合的で体系的なアプローチの必要性を指摘している。 研究の目的: 本研究の目的は、自動車部品サプライヤーの生産現場で水とエネルギーの効率を向上させるための可能な最適化策を特定し、評価することであった。目標は、熱回収と水の再利用を組み合わせることで既存のシステムを改良するための実用的なコンセプトを開発し、実施における制限要因を特定することであった。 中核研究: 研究の中核は、駆動系およびシャシー制御システムを生産するオーストリアの自動車部品サプライヤーにおける詳細なシステム分析であった。分析は、ダイカストライン、機械加工ライン、硬化処理ラインを含む「拡張システムダイカスト」に焦点を当てた。研究者たちは、エネルギーと水の流れを評価し、熱回収の可能性を計算し、余剰の離型剤廃水を処理して再利用するための限外ろ過のパイロットテストを実施した。

Read More

Fig.1 Degradation of the mold part

金型寿命の延長:先進PVDコーティングはアルミニウムHPDCにおける劣化とどう戦うか

この技術概要は、Ján Hašul氏およびJanette Brezinová氏によって執筆され、「INTERNATIONAL SCIENTIFIC JOURNAL “MACHINES. TECHNOLOGIES. MATERIALS”」(2022年)に掲載された学術論文「Possibilities of reducing the degradation of molds for high-pressure of Al alloys」に基づいています。HPDC(ハイプレッシャーダイカスト)専門家のために、CASTMANの専門家が要約・分析しました。 キーワード エグゼクティブサマリー 課題:この研究がHPDC専門家にとって重要な理由 要求の厳しいハイプレッシャーダイカスト(HPDC)の世界では、金型の運用寿命は重要な経済的要因です。金型は、高圧(最大100 MPa)、高温(約700°C)、そして急激な温度変化という過酷なサイクルにさらされます。これらの条件は、必然的に金型の寿命を制限する主要な故障メカニズム、すなわち腐食、焼付き、エロージョン摩耗、そして最も顕著な熱疲労を引き起こします。 金型表面の絶え間ない加熱と冷却から生じる熱疲労は、相互に連結した亀裂のネットワークを形成します。これらの亀裂は成長し、材料の損失、鋳造部品の寸法不正確さ、そして最終的には致命的な金型故障につながる可能性があります。これらの複雑な工具の交換や修理は生産コストの大部分を占めるため、エンジニアは何十年もの間この問題に取り組んできました。この研究は、金型を最初から保護するために設計された表面処理ソリューションを調査することで、この課題に直接取り組んでいます。 アプローチ:方法論の解明 解決策を見つけるため、研究者たちは2段階のアプローチを取りました。まず、故障の根本原因を理解するために、Uddeholm Dievar(一般的なH13タイプの熱間加工用工具鋼)で作られた摩耗した金型入れ子を分析しました。光学顕微鏡、走査型電子顕微鏡(SEM)、エネルギー分散型X線分光法(EDX)を使用して、金型の鋭い角に形成された亀裂を調査しました。 次に、予防的な解決策をテストしました。研究チームは、Uddeholm Dievarの母材に2種類の異なるデュプレックスPVD(物理蒸着)コーティングを施しました。 これらのコーティングされたサンプルは、その実用性を測定するために、密着性を評価するロックウェルC圧痕試験や、表面硬度の向上を定量化するビッカース微小硬度試験など、厳格なテストにかけられました。 ブレークスルー:主要な発見とデータ この研究は、PVDコーティングの有効性を示す明確で定量的な結果をもたらしました。 貴社のHPDC製品への実践的な示唆 論文の結果に厳密に基づくと、これらの発見は製造オペレーションに直接的かつ実践的な示唆を与えます。 論文詳細 Possibilities of reducing the degradation of molds for high-pressure of Al alloys 1. 概要: 2. 要旨: 本論文は、Alおよびその合金の高圧鋳造技術に使用される金型の劣化に焦点を当てています。アルミニウム製品の高圧鋳造法は、自動車や様々な機械部品の生産において、精密さと生産性の要求を同時に満たす広く使用されている生産方法の一つです。高圧鋳造プロセスでは、金型は様々な熱的および機械的負荷にさらされ、金型とその形状部品が劣化します。本論文は、Alおよびその合金の高圧鋳造用金型の形状部品の寿命を延ばすためのデュプレックスPVDコーティングの使用に焦点を当てた研究結果を提示します。 3. 緒言:

Read More

Fig. 1. Runner System of the Modified Design

Optimization of Runner Design in Pressure Die Casting

本紹介は、『International Journal of Engineering Research & Technology (IJERT)』に掲載された論文「Optimization of Runner Design in Pressure Die Casting」を基に作成されています。 1. 概要 2. 要旨 高圧ダイカストで高品質な部品を製造するため、コンピュータ支援シミュレーションが金型設計の最適化に用いられてきました。有限差分法、有限体積法、有限要素法が充填プロセスシミュレーションで使用され、一般的な問題に対して大きな進展が見られました。しかし、特定の課題に対処するための金型設計の最適化については、さらなる研究が望まれています。ダイカストでは、金型が同一または異なる部品を製造するための複数のキャビティを持つことがよくあります。複数のキャビティには、主ランナーに接続する分岐ランナーの適用が必要です。複数のキャビティが同時に充填を開始し、同じ充填時間を確保することが設計者にとって重要であるため、ランナーシステムの設計は常にダイカストの重要課題でした。設計における重要な要素は、キャビティの体積に応じて各分岐ランナーの断面積を調整することですが、これだけではキャビティを同時に充填するには不十分な場合があります。分岐ランナーと主ランナーの間の角度が充填圧力、充填時間、残留応力に影響を与えることが観察されていますが、これらの観察は実用的な鋳造品ではなく、非常に単純な実験室レベルの金型設計に限定されていました。 3. 緒言 ダイカストは、ダイカストマシンの射出システムからの油圧エネルギーを溶湯に加えて運動エネルギーを伝え、金型キャビティを高速で充填するプロセスです。本論文は、コールドチャンバー高圧ダイカストのランナーにおける問題、特に不正確に設計された湯口システムが製品にジェットマークを引き起こす問題を取り扱います。溶湯のジェッティングはランナー壁の溶損につながり、長期間の生産稼働後には、この摩耗が局部的な窪みを形成し、さらに湯の流れ方向を変化させます。この問題には、ランナー側壁の摩耗を最小限に抑えるため、ランナー側壁でのジェッティングがほとんど、あるいはまったくない溶湯の流れを作り出すようにランナーを設計する解決策が必要です。本論文では、ダイカスト設計プロセスにおける重要なツールであるP-Q²線図を利用して、プロセスパラメータの操作ウィンドウを決定します。 4. 研究の概要 研究テーマの背景 高圧ダイカストにおける高品質な部品は、最適な金型設計に大きく依存します。複数のキャビティを持つ金型の場合、すべてのキャビティが同時に均一に充填されるように、ランナーシステムが非常に重要です。不適切に設計されたランナーは、欠陥、生産コストの増加、金型の摩耗を引き起こす可能性があります。 先行研究の状況 コンピュータ支援シミュレーションは、金型設計を最適化するために広く使用されてきました。先行研究では、分岐ランナーと主ランナーの間の角度のような要因が充填圧力と時間に影響を与えることが示されています。しかし、これらの観察は、しばしば単純な実験室レベルの設計に限定されていました。本研究は、実用的で多キャビティの工業部品に数値流体力学(CFD)法を適用することにより、既存の知識を基に構築されています。また、ゲーティングシステムに関するHermanの設計手法や、Ref.で述べられているようなプロセスパラメータ最適化のためのP-Q²線図の使用など、確立された設計手法を参照しています。 研究の目的 本研究の主な目的は、高圧ダイカスト金型のランナー設計を最適化し、ジェットマークなどの製品欠陥をなくすことでした。この研究は、ランナー側壁でのジェッティングを最小限に抑え、溶損を防ぎ、金型キャビティの完全な充填を保証し、最終的に鋳造部品の不良率を低減するランナーを設計することを目的としました。 研究の核心 研究の核心は、欠陥部品を生産していた既存のクラッチレバー用金型を分析するためにCFDシミュレーションを使用したことです。この分析により、不均一な充填が凝固欠陥やジェットマークを引き起こす充填パターンの問題が特定されました。この分析に基づき、ランナー設計はファンタイプからタンジェンシャルタイプに変更されました。その後、この新しい設計をシミュレーションおよび分析し、スムーズな充填の実現、ポロシティの低減、欠陥の除去における有効性を検証しました。 5. 研究方法 研究設計 本研究は比較分析手法に従いました。まず、4キャビティのクラッチレバー用の既存の金型設計を分析し、その欠陥を理解しました。続いて、修正されたランナー設計が開発され、シミュレーションが行われました。そして、修正された設計の性能を、主要な鋳造パラメータを評価することによって元々の設計と比較し、改善点を検証しました。 データ収集・分析方法 本研究では、主に数値流体力学(CFD)シミュレーションを用いて鋳造プロセスを分析しました。充填時間、凝固、インゲート速度、金型溶損、エア巻き込み、コールドシャットなどのパラメータが考慮されました。分析では、ファンタイプやタンジェンシャルタイプを含むさまざまなランナーの繰り返し計算結果を解析ソフトウェアを使用して比較し、最も適した設計を決定しました。 研究の対象と範囲 本研究は、クラッチレバーを生産する4キャビティの高圧ダイカスト(HPDC)金型のランナーシステムの最適化に焦点を当てています。研究範囲には、キャビティのスムーズな充填を実現し、製品欠陥を減らし、全体的な鋳造品質を向上させるためのランナーの軌道と方向変化の分析が含まれます。 6. 主な結果 主な結果 CFD解析により、ランナーをファンタイプからタンジェンシャルタイプに変更することで、溶湯の流れが金型と製品に与える悪影響をうまく低減できることが実証されました。この変更により、鋳造品のジェットマークが大幅に減少しました。その結果、溶湯が早期に凝固することなく金型を完全に充填するため、不良率が低下しました。また、解析により、新しい設計では前の繰り返し計算と比較してポロシティが減少したことも確認されました。ジェットマークがなくなったため、研磨などの後処理作業の必要性もなくなりました。 図のリスト 7. 結論 CFD解析により、ランナーをファンランナーからタンジェンシャルランナーに変更することで、金型と製品への流れの影響が低減されることがわかりました。金型と製品にジェットマークが発生する可能性が低くなりました。溶湯が金型を完全に充填するようになり、不良率が減少しました。また、最初の繰り返し計算と比較してポロシティも減少しました。ジェットマークが減少したため、研磨のような製品の後処理は不要となりました。 8. 参考文献 9. 著作権 論文要約 研究に関する主な質疑応答

Read More

Figure 1. Thermogenerator: (a) view from the structured side, (b) view through the transparent BSG-substrate.

マイクロマシン加工された熱電発電機の金属部品への直接統合:埋め込みプロセスの技術的側面

鋳造プロセス中に半導体デバイスを直接統合する技術:歩留まり28%を達成した画期的なアプローチ この技術概要は、A. Ibragimov氏らによって執筆され、「1st Joint International Symposium on System-Integrated Intelligence 2012: New Challenges for Product and Production Engineering」で発表された学術論文「Micromachined Thermogenerator Directly Integrated into Metal Parts: Technological Aspects of the Embedding Process」(2012年)に基づいています。ハイプレッシャーダイカスト(HPDC)の専門家のために、CASTMANの専門家が要約・分析したものです。 キーワード エグゼクティブサマリー 課題:なぜこの研究がHPDC専門家にとって重要なのか 金属部品にセンサーや電子部品などの機能要素を直接統合することは、製品のインテリジェント化や高機能化に向けた重要な技術です。これにより、センサーは測定対象と直接接触して感度が向上し、電子部品は堅牢な金属ケーシングによって外部環境から保護されます。しかし、特にアルミニウムのような高融点金属の鋳造プロセスは700°C以上にも達するため、繊細な半導体デバイスをその過酷な環境下で生き残らせることは極めて困難な課題でした。 これまでの試みとして、厚い保護層で覆ったRFIDチップの埋め込み(Ref. [1-2])や、鋼製基板上に形成した薄膜ひずみセンサー(Ref. [3-4])などがありましたが、前者はセンサーとしての感度が低く、後者は一般的な半導体技術との互換性がないという制約がありました。本研究は、これらのギャップを埋め、一般的な半導体デバイスを溶融金属から成形される部品に直接埋め込む可能性を実証することを目的としています。 アプローチ:研究方法の解明 この課題を克服するため、研究者らはSeebeck効果を利用した熱電発電機(TG)を実証デバイスとして選択しました(Figure 1)。このTGは、主にホウケイ酸ガラス(BSG)の基板とその表面に形成されたSi-金属熱電対で構成されています。BSG基板の非晶質構造と熱電対の波状形状が、鋳造プロセスに伴う熱機械的ストレスを緩和する役割を果たします。 研究は段階的に進められました。 ブレークスルー:主要な発見とデータ この綿密なアプローチにより、研究者らはいくつかの重要な発見をしました。 HPDCオペレーションへの実践的な示唆 この研究成果は、実際の製造現場における「スマート鋳造」の実現に向けた貴重な知見を提供します。 論文詳細 Micromachined Thermogenerator Directly Integrated into Metal Parts: Technological Aspects of

Read More

Fig. 9: Microstructures and EDX results of purified NaCl (99.5%) reinforced by aluminum borate whisker. Whisker addition is 3.8vol%. (a) is SEM image with low magnification. (b) and (c) are enlarged area in fig. 6 (a). (d) and (e) are EDX results analyzed at fig.6 (b) and (c), respectively.

ホウ酸アルミニウムウィスカで強化したアルカリハライド中子の強度

本稿は、「J. JFS (日本鋳造工学会誌)」に掲載された論文「Strength of Aluminum Borate Whisker Reinforced Alkali Halides Salt Core (ホウ酸アルミニウムウィスカで強化したアルカリハライド中子の強度)」を基に作成した紹介資料です。 1. 概要: 2. 抄録: 高圧ダイカスト用ソルト中子の研究を行った。3種類のアルカリハライド、すなわち塩化ナトリウムNaCl (98%)、臭化カリウムKBr (99.7%)、臭化ナトリウムNaBr (99.7%)をソルト材料として準備した。塩化カリウムKClの強化に最適な強化材であるホウ酸アルミニウムウィスカをソルト中子の強化材として選択した。これらのソルト材料を電気抵抗炉で溶解し、30Kの過熱度で永久鋳型に鋳込んだ。強度を決定するために4点曲げ試験を実施した。KBrおよびNaBrの最大ウィスカ添加率は約10 vol%であり、ウィスカ添加量の増加に伴い強度は約25 MPaまで直線的に増加した。これらの塩とは対照的に、NaClはホウ酸アルミニウムウィスカで強化できなかった。SEM-EDX局所分析の結果、NaCl中の凝集したウィスカ近傍でのみマグネシウム不純物が検出され、NaCl中のマグネシウム不純物が強度にある程度影響を与えることが示唆された。高純度NaCl (99.5%)は実際にホウ酸アルミニウムウィスカで強化でき、最大ウィスカ添加率は約7.6 vol%で、最大強度はウィスカ添加に伴い約20 MPaまで直線的に増加した。 3. 緒言: 消失性中子を利用したダイカストプロセスは、複雑なアンダーカット形状を有する製品の製造法として注目されている。一般的にダイカスト法は、金型を利用した鋳造法の中で生産性、製造コストに最も優れているものの、成形に消失性中子を必要とするアンダーカット品への適用は困難であった。しかし、鋳物の需要の多くを占める自動車部品への要求として製品の軽量化や機械的強度の向上、部品点数の低減によるコスト削減などがあり、アンダーカット品のダイカスト化が近年ますます切望されるようになってきている。通常ダイカストプロセスでは、溶湯の高速射出時に中子に大きな衝撃力がかかるために消失性中子には高い強度が要求される。一方で、鋳造後の製品から熱処理なしで短時間に中子を除去できることも同様に重要である。つまり、中子は強度と除去性を兼ね備えていなければならず、こうした消失性中子として砂中子 [Ref. 1, 2]、金属置き中子 [Ref. 3, 4]、プラスチック中子、ソルト中子 [Ref. 5-7] などがこれまでに提案されている。この中でソルト中子は、コンクリート並みの高強度を有しかつソルト自身が水溶性であるために除去性も極めてよいという点で優れていることが報告されている。ソルト中子の成形方法には焼結法と溶融成形法があるが、形状自由度の点で溶融成形法は優位であるにもかかわらず、これまであまり研究されていない。そこで前報 [Ref. 7] では、塩化カリウムをセラミックウィスカ・粒子で強化し溶融成形したソルト中子の強度について検討し、ホウ酸アルミニウムウィスカを強化材に用いると特異的に高強度が得られ、ダイカストへの使用に適していることを報告した。そこで本報では、塩化カリウムと化学的に似た性質をもつアルカリハライド類である塩化ナトリウム、臭化ナトリウム、臭化カリウムについてもホウ酸アルミニウムウィスカによる強化が可能かどうかについて検討した。 4. 研究の概要: 研究テーマの背景: 本研究は、特に自動車部品向けの高圧ダイカストにおいて、複雑なアンダーカット形状を製造するための、高強度で容易に除去可能な消失性中子の必要性に取り組んでいる。ソルト中子は有望であるが、最適な性能を得るための強化についてはさらなる調査が必要である。 従来の研究状況: 従来の研究では、溶融成形によりホウ酸アルミニウムウィスカで強化されたKClベースのソルト中子が高い強度を示すことが示唆されていた [Ref. 7]。しかし、この強化方法が他のアルカリハライドに適用可能かについては十分に理解されていなかった。ソルト中子の製造方法としては焼結法と溶融成形法が知られており、溶融成形法は形状自由度に優れるものの、研究はあまり進んでいなかった。 研究の目的: 本研究の目的は、溶融成形時にホウ酸アルミニウムウィスカが異なるアルカリハライド塩(NaCl、KBr、NaBr)に及ぼす強化効果を調査し、それらの性能を以前に研究されたKClベースの中子と比較すること、特にNaClの強化における不純物の影響に焦点を当てることであった。 研究の核心: 研究の核心は、様々な量のホウ酸アルミニウムウィスカで強化された3種類のアルカリハライド(工業用NaCl、KBr、NaBr、および高純度NaCl)からソルト中子を調製することであった。これらの材料を溶解し、永久鋳型に鋳造した。得られたソルト中子の機械的強度は、4点曲げ試験を用いて決定した。ウィスカの分散、破壊挙動、および特にNaCl中の不純物の役割を理解するために、SEMおよびEDXを含む微細構造解析を実施した。 5. 研究方法論

Read More

Fig. 1: Schematic of the rheo pressure die casting system, showing its functional parts

A356 Al合金のダイ充填およびレオ圧力ダイカストシステムを用いたステアリングナックル部品の開発に関する研究

この紹介論文は、「Journal of Materials Processing Technology」によって発行された論文「Studies on Die Filling of A356 Al alloy and Development of a Steering Knuckle Component using Rheo Pressure Die Casting System」に基づいています。 1. 概要: 2. 抄録: 本研究では、レオ圧力ダイカスト (RPDC) システムの一部として、半凝固スラリーのダイ充填を調査するために、数値流体力学 (CFD) モデルを開発する。ダイ充填キャビティは自動車のステアリングナックルのものに対応し、スラリーはA356アルミニウム合金で作られる。CFDシミュレーションで使用されるレオロジーモデルは実験的に決定される。現在の数値モデルから得られた結果には、ダイキャビティ内のスラリーの流動場、粘度変化、固相率分布、ダイ充填段階中のキャビティ内凝固中の温度および圧力分布が含まれる。本研究の主な目的は、開発された部品の望ましい微細構造および機械的特性のためのゲーティング配置、注入温度、および射出条件を決定することである。当該合金スラリーのダイ充填能力に対する射出条件の影響を研究するために、最終射出速度を2~3.2 m/sの間で変化させて5つの射出プロファイルを研究する。本研究の知見を裏付けるために、凝固した部品の異なる位置からサンプルを取得することにより、主に光学顕微鏡およびマクロ硬度測定の形で、微細構造形態および構造特性相関を研究した。 3. はじめに: 自動車産業における燃費向上のための要求は、自動車部品の軽量化、特に他の軽量自動車部品と比較して優れた強度対重量比および伸び値を必要とするサスペンション部品の軽量化に向けた努力を動機付けている。アルミニウムおよびマグネシウム合金の鍛造や従来のダイカストなどの伝統的な製造プロセスは、多段階の処理ステップ、一貫性のない機械的特性、デンドライト微細構造、および液体偏析などの課題を提示する。半凝固ダイカスト、特にレオダイカスト (RDC) およびその変形であるレオ圧力ダイカスト (RPDC) は、改善された構造的完全性と費用対効果を備えた、健全でニアネットシェイプの部品を製造するための有望なワンステップソリューションとして浮上している。これらのプロセスの成功は、複雑なダイキャビティの適切な充填を保証するために、ほぼ球状の初晶粒子を持つ半凝固スラリーの調製に大きく依存する。多くの研究がチクソダイカスト (TDC) およびRDCを調査してきたが、RPDCにおけるダイ充填のCFDシミュレーション、特に実験的検証を伴うものは比較的少ない。本研究は、CFDシミュレーションを用いてA356 Al合金ステアリングナックルのRPDCプロセスパラメータを最適化し、実験作業によって検証することにより、このギャップを埋めることを目的とする。 4. 研究の概要: 研究トピックの背景: 主な動機は、燃費を向上させるための軽量自動車部品の必要性である。伝統的に鋼鉄または鋳鉄で作られていた自動車のサスペンション部品は、アルミニウムおよびマグネシウム合金を使用して開発されている。しかし、これらの軽合金の従来の製造方法では、しばしば欠陥や特性のばらつきが生じる。 従来の研究状況: 従来の研究では、従来のグラビティダイカスト (GDC)、高圧ダイカスト (HPDC)、スクイズキャスティング、およびチクソダイカスト (TDC) やレオダイカスト

Read More

Fig. 4: High pressure die casting test geometry shows critical sections which appear in real life engine blocks. The disc shaped casting indicates

高圧ダイカスト用新規耐摩耗性過共晶AlSi4Cu4FeCrMn合金

本紹介論文は、「International journal of metalcasting」に掲載された論文「New Wear Resistant Hypereutectic AlSi4Cu4FeCrMn Alloys for High Pressure Die Casting」に基づいています。 1. 概要: 2. 要旨: 本稿では、高圧ダイカスト(HPDC)に適した新しい耐摩耗性過共晶アルミニウム-シリコン合金を開発するための革新的なコンセプトを紹介する。従来の過共晶AlSi17Cu4Mg合金は、良好な耐摩耗性を提供するものの、高い鋳造温度と初晶シリコンの研磨性のためにHPDCにおいて課題を抱えている。提案されたアプローチは、鋳造温度を下げるためにシリコン含有量を17 wt.-%から14 wt.-%に低減し、鉄を添加して硬質のα-Al15Fe3Si2金属間化合物を形成することで、減少した初晶シリコンの体積分率を補償し、トライボロジー特性を向上させるものである。クロム(Cr)およびマンガン(Mn)の添加は、コンパクトなα相金属間化合物の形成を促進し、有害なβ-Al5FeSi板状晶の生成を回避するために用いられる。本研究では、これらの新しいAlSi14Cu4FeCrMn合金のスラッジ形成、微細構造、機械的特性、およびHPDCプロセス性を調査し、一体型エンジンブロックなどの用途において、鋳造性と耐摩耗性が向上した可能性を示している。 3. 緒言: 過共晶AlSi17Cu4Mg合金は、耐摩耗性が重要視される鋳物、例えば空調用コンプレッサーハウジングや一体型エンジンブロックなどに適用される。これらの合金は、低い熱膨張係数、ならびに室温および高温での良好な機械的特性も有している。これらの合金の高い耐摩耗性は、凝固中に形成される初晶シリコン結晶(硬度最大1148 HV)に由来する。過共晶Al-Si合金製のエンジンブロックは、鋳鉄ライナー付きのハイポ共晶Al-Siブロックと比較して軽量化を実現し、燃料消費量の削減、ひいてはCO2排出量の低減につながる[1]。過共晶Al-Si合金製の一体型エンジンブロックは、ダイ充填時の乱流が少ないため、低圧ダイカストプロセスによってのみ製造されている[2]。高圧ダイカストは最も生産性の高い鋳造プロセスの1つであるが、高圧ダイカストプロセスによる一体型エンジンブロックの製造は、以下の理由により制限されている: 4. 研究の概要: 研究テーマの背景: 本研究は、特にエンジン部品のような高い耐摩耗性が要求される用途向けの過共晶Al-Si合金に焦点を当てている。これらの合金は有益である一方、高圧ダイカスト(HPDC)での使用は、高い鋳造温度や金型摩耗といった、高いシリコン含有量に関連する問題によって制約を受けている。 先行研究の状況: 先行研究によれば、微細な初晶シリコン粒子の均一な分布が、シリンダーブロック表面の最適な特性を得るための鍵であり、これは従来、リンの添加によって達成されてきた。しかし、リンはシリコンの析出温度を上昇させ、鉄が存在すると有害なβ板状晶の形成を促進する可能性がある[6]。鉄(Fe)はアルミニウム鋳造合金における最も一般的な有害不純物である。典型的な二次Al-Si合金は、通常0.2 wt.-%から0.8 wt.-%の範囲の鉄レベルを含んでいる。高圧ダイカストでは、溶融Al合金が鋼製ダイに焼き付くのを防ぐために鉄がしばしば添加される。鉄は固溶アルミニウムへの溶解度が非常に低く、凝固中に様々なタイプの複雑な金属間化合物相を形成する。これらの金属間化合物鉄相の複雑な形状は、鋳造性、さらには合金の機械的特性に大きな影響を与える。Al-Si合金では、Al5FeSi相(β相としてよく知られている)とα-Al8Fe2Si相(通常スラッジとして知られている)が存在する。β-Al5FeSi相は非常に大きく硬い板状の形状をしており、機械的特性、特に延性に悪影響を与える。機械的特性の劣化の度合いは、体積分率と板状晶のサイズに依存する。両方のパラメータは、溶湯中の鉄含有量と凝固条件の関数である。冷却速度がβ相の長さに重要な影響を与えることはよく知られている。通常の鋳造条件と中程度の鉄レベルでは、β相は50 µmから500 µmの範囲のサイズに成長することがある。非常に高い冷却速度で凝固した少量の鉄を含む合金では、金属間化合物粒子は通常10 µmから50 µmのサイズを有する。さらに、β相の板状形態は、凝固中の供給困難を引き起こし、収縮気孔形成の傾向を高めることが予想される[7]。鋳造性および機械的特性に対する鉄のこの有害な影響を回避するために、β相の板状形態をよりコンパクトなα相に変換する必要がある。ここでは、マンガンが鉄の影響を中和し、β板状晶を金属間化合物α相形態に改質するための合金元素として広く使用されている。Siと共にMnが存在する場合、一次α-Al15(Fe,Mn)3Si2相は、コンパクト、星形、樹枝状、またはチャイニーズスクリプト結晶として現れることがある。α相のすべての形態は、β相よりも機械的特性に対する害が少ない。しかし、α相のコンパクトな形態が最良の解決策である。Al-Si-Fe溶湯へのMnとCrの複合添加は、コンパクトな形で成長するα相の析出にもつながる可能性がある。ここで、鉄はMnとCrによって部分的に置換され、α-Al15(Fe,Mn,Cr)3Si2相を形成する。約815 HVの高いマイクロ硬度のため[8]、α相は初晶シリコンに加えて耐摩耗性化合物として機能することができる。しかし、Al-Si溶湯中の複雑な金属間化合物α-Al15(Fe,Mn,Cr)3Si2粒子は、高い析出温度と溶湯よりも高い密度を有し、炉の底にスラッジとして沈降し、炉の有効容量を減少させる可能性がある。スラッジの形成は、溶湯中のMnとFeの減少により、合金のダイ焼き付き傾向を高める可能性もある[9]。スラッジ形成はしばしば工業的に発生し、溶湯の化学組成と炉温度の2つの変数に依存する。Fe、Mn、Crの量が増加すると、スラッジ形成温度が上昇し、炉内の溶湯温度に達することがある。したがって、元素の量は溶湯中で制限されなければならず、α相の析出温度が溶湯温度を超えないようにする必要がある。一方、これらの元素は、Si粒子の減少した体積分率を補償するコンパクトなα粒子の高い体積分率を得るために溶湯中に望まれる。ここでは、最適値を見つける必要がある。JorstadとGobrechtはスラッジ現象を研究し、Al-Si-Cu合金用のスラッジファクター(SF)を定義した。これは、スラッジ形成を引き起こす可能性のあるFe、Mn、Crの臨界比を決定するために使用できる[10,11]。このファクターは式(1)から計算される:Sludge Factor = Fe + 2 x wt. % Mn + 3 x wt. %Cr (1)スラッジファクターが高いほど、スラッジ形成温度が高くなり、ショットチャンバーとダイの摩耗に有害な結果をもたらす溶融および鋳造温度の上昇につながる。 研究目的: 本研究の目的は、高圧ダイカスト用に特別に調整された新しい耐摩耗性過共晶AlSi合金を開発することであった。既存の合金の限界を克服するための目的は以下の通りである:

Read More

Figure 1: Filling of an engine rocker cover with fluid coloured by speed.

SPH法による複雑形状鋳造品のシミュレーション

新次元の湯流れ解析:SPH法が実現する欠陥予測とダイカストプロセスの革新 本テクニカルブリーフは、[P.W. Cleary氏、J. Ha氏、M. Prakash氏、T. Nguyen氏]によって執筆され、[Shape Casting: The John Campbell Symposium, TMS (The Minerals, Metals, & Materials Society)]([2005年])で発表された学術論文「[Simulation of casting complex shaped objects using SPH]」に基づいています。HPDCの専門家であるCASTMANが、業界関係者の皆様のために要約・分析しました。 キーワード エグゼクティブサマリー 課題:なぜこの研究がHPDC専門家にとって重要なのか ハイプレッシャーダイカスト(HPDC)は、自動車、家電、電子機器産業において、大量かつ低コストの部品を製造するための重要なプロセスです。しかし、30~100 m/sという高速で溶湯を複雑な形状の金型キャビティに射出するため、湯流れは激しく三次元的になり、溶湯の著しい分裂(フラグメンテーション)や飛散(スプラッシング)を伴います。 これにより、空気の巻き込みによるポロシティ(巣)や、湯流れの合流不良によるコールドシャットといった鋳造欠陥が発生しやすくなります。どの部分が先に充填され、どこが最後に充るか、そしてエアベンドの配置が適切かどうかが、健全な鋳造品を得るための鍵となります。これらの複雑な現象を正確に予測し、ゲートシステムや金型設計を最適化することは、長年の課題でした。本研究で紹介されるSPH法は、この困難な課題に対する効果的な解決策を提示します。 アプローチ:SPH法の解明 本研究で用いられた平滑化粒子流体力学(SPH)法は、従来のグリッドベースの解析手法とは一線を画す、粒子ベースのラグランジュ的アプローチです(Ref. [1])。 この手法では、流体を固定されたメッシュやグリッドで計算するのではなく、物理的特性(質量、温度、密度など)を持つ多数の「粒子」の集合体としてモデル化します。これらの粒子は、ナビエ・ストークス方程式に従って互いに相互作用しながら自由に動き回ります。SPH法の最大の利点は、溶湯の飛散や分裂といった複雑な自由表面の挙動を、特別な処理を必要とせず、自然かつ容易にモデル化できる点にあります。本研究では、このSPH法を用いて、複数の工業用部品の充填プロセスを3次元でシミュレーションしました。 ブレークスルー:主要な研究結果とデータ 本論文では、SPHシミュレーションが実際のHPDCプロセスをいかに詳細に予測できるかを示す、4つの工業用部品の事例と熱解析の検証結果が提示されています。 あなたのHPDC業務への実践的な示唆 本研究の結果は、理論的な興味に留まらず、現場の製造プロセス改善に直結する多くの実践的な知見を提供します。 論文詳細 Simulation of casting complex shaped objects using SPH 1. 概要: 2. 抄録: ハイプレッシャーダイカスト(HPDC)における幾何学的複雑性と高流速は、著しい自由表面の分裂と飛散を伴う強力な三次元流動を引き起こす。HPDCのモデル化に特に適したラグランジュ的シミュレーション技術が、平滑化粒子流体力学(SPH)である。材料は固定グリッドではなく自由に動き回る粒子で近似され、複雑な自由表面運動を伴う流動の正確な予測を可能にする。本稿では、ドアロックプレートの亜鉛鋳造からエンジンロッカーカバーのアルミニウム鋳造まで、4つのSPHシミュレーション事例を示す。これらは流体自由表面、特に分裂とボイド形成の範囲において前例のない詳細さを示す。SPHは収縮、供給、一部のポロシティ生成、表面酸化物形成の予測など、鋳造予測に他の魅力的な特徴も持つ。熱伝達と凝固を組み合わせた流動予測は、ショートショットを用いて検証される。最終的な凝固鋳造品の全体的特徴は予測と良好に一致する。これらの結果は、SPHモデリングが、大規模な自動車鋳造品に対して妥当な計算時間で等温および熱シミュレーションの両方を実行でき、高い予測精度を提供するレベルに達したことを示している。 3. 序論の要約:

Read More