Tag Archives: Aluminum Casting

Fig. 4 - Porosity identify by a) X-ray on components from the first experimental activity, b) FEM simulations, c) X-ray on components from the final experimental activity (optimization of process parameters)

高圧ダイカストにおける新しいレオキャスティングアプローチ:HPDCエンジニアとR&Dマネージャーのための品質向上とコスト削減

この技術概要は、[Giovanni Cecchel, Antonio Fabrizi, Paolo F. Bariani]による学術論文「[High Pressure Die Casting of Rheocast Aluminium Alloys using a New Industrial Approach]」([La Metallurgia Italiana])に掲載されたものです。本論文はCASTMANがAIの支援を受け、技術専門家向けに分析・要約しました。 Keywords Executive Summary 多忙なプロフェッショナル向け30秒概観 The Challenge: Why This Research Matters for HPDC Professionals 高圧ダイカスト(HPDC)は、大量生産される自動車部品やエレクトロニクス部品の製造において、高い生産効率とコスト優位性から広く利用されています。しかし、従来のHPDCプロセスでは、高速な金型充填によって引き起こされる激しい乱流と高い熱勾配が、空気の巻き込みによるガス欠陥や酸化物の介在物を引き起こすという固有の課題を抱えていました。これらの欠陥は、鋳造部品の機械的特性を損ない、特に溶接や熱処理といった二次加工の適用を困難にしていました。その結果、HPDC部品は構造部品や熱処理を必要とする高性能アプリケーションでの使用が制限され、特定の設計要件を満たすためには砂型鋳造や低圧鋳造などの代替プロセスに頼らざるを得ない状況でした。この研究は、HPDCの生産効率を維持しつつ、これらの内在する欠陥を克服し、より高品質で機能性の高いHPDC部品を製造するための革新的なアプローチを模索するものです。これは、HPDCの適用範囲を拡大し、より demanding な業界ニーズに応える上で極めて重要です。 The Approach: Unpacking the Methodology 本研究では、従来の溶融金属ではなく、半溶融状態のアルミニウム合金スラリーを使用する新しいレオキャスティングHPDCアプローチを採用しました。使用された合金は、標準的なEN AB 46100アルミニウム合金でした。このプロセスは、まず、射出チャンバーに導入される前に、誘導炉で溶融金属を半溶融状態のスラリーに変換することから始まります。このスラリーは、液相率が約50〜70%の範囲に制御され、球状化した固体粒子が液相中に均一に分散した非デンドライト組織を特徴とします。 実験は、主に自動車産業で使用されるクラッチハウジング部品の製造を通じて行われました。この部品は、冷却速度が高く、非常に薄い壁を持つ複雑な形状をしており、従来のHPDCでは欠陥が生じやすい典型的なケースです。レオキャスティングHPDCでは、スラリーの温度、射出速度、加圧プロファイルなどのプロセスパラメータが、欠陥の発生を最小限に抑え、均一な微細構造を確保するために最適化されました。 鋳造された部品は、非破壊検査(X線検査)によって内部欠陥の有無が評価され、引張試験によって機械的特性(引張強度、降伏強度、伸び)が測定されました。さらに、熱処理および溶接後の部品の挙動も評価され、従来のHPDC部品との比較が行われました。この徹底的なアプローチにより、新しいレオキャスティングプロセスの有効性が多角的に検証され、その産業的応用可能性が裏付けられました。 The Breakthrough: Key Findings & Data 本研究で最も重要な発見は、新しいレオキャスティングHPDCアプローチが、従来のHPDCと比較して、鋳造部品の内部品質と機械的特性を大幅に向上させることを実証した点です。 [H3]

Read More

Fig. 3. Examples of dense ceramic components of manufacturing equipment for semiconductor devices and liquid crystal display panels.

自動車および産業分野における日本の構造用セラミックスの応用

自動車から半導体製造装置へ:日本における構造用セラミックス市場の進化と最新動向 このテクニカルブリーフは、学術論文「Automotive and industrial applications of structural ceramics in Japan」(著者:Akira Okada氏、掲載誌:Journal of the European Ceramic Society、2008年)に基づいています。ダイカストおよび鋳造の専門家のために、CASTMANのエキスパートが要約・分析しました。 キーワード エグゼクティブサマリー 課題:なぜこの研究が専門家にとって重要なのか 構造用セラミックス(アルミナ、窒化ケイ素、炭化ケイ素など)は、軽量性、高温での化学的・熱的安定性、優れた耐摩耗性といった、金属材料にはない多くの利点を持っています。しかし、その強力な化学結合は、脆性破壊を引き起こす原因ともなり、信頼性が要求される構造部品への応用を長年困難にしてきました。1980年代には、日本の「セラミックフィーバー」に後押しされ、自動車エンジン部品などへの応用が試みられましたが、多くの挑戦はコストや信頼性の壁に直面しました。現代のエンジニアや研究開発担当者にとっての課題は、「セラミックスの優れた特性を、どの分野で、どのようにすれば経済的に見合う形で最大限に活用できるのか?」という点にあります。この論文は、その問いに対する過去から現在までの日本の答えを明確に示しています。 アプローチ:研究の概要 本研究は、特定の実験を行うものではなく、1980年から2007年頃までの日本における構造用セラミックスの市場データ、技術開発の歴史、そして具体的な製品応用事例を網羅的に調査・分析したレビュー論文です。著者は、市場統計データ(論文中 Table 1, 2)を基に市場の変遷を定量的に示し、半導体製造、鉄鋼、アルミ鋳造、自動車といった主要産業分野ごとに、セラミックスがどのように採用され、どのような技術的進歩によってその応用が実現したかを、具体的な製品写真(論文中 Figure 1-10)と共に解説しています。このアプローチにより、技術開発の成功と失敗の要因、そして市場の需要がどこにシフトしていったのかを浮き彫りにしています。 発見:主要な研究結果とデータ 本稿では、日本における構造用セラミックスの応用に関するいくつかの重要なトレンドが明らかにされています。 実務への示唆:あなたのオペレーションへの応用 この研究結果は、セラミックスの導入を検討している現場の技術者や管理者に、実践的なヒントを提供します。 論文詳細 Automotive and industrial applications of structural ceramics in Japan 1. 概要: 2. アブストラクト: 本稿は、日本における構造用セラミックスの現状をレビューする。1980年頃まで、これらの材料の成功した応用は、耐摩耗部品や非常に低い応力下で動作する構造部品に限られていた。より高い応力下で使用される機械部品にセラミックスを適用するために長年にわたり多大な努力がなされ、ターボチャージャーロータやグロープラグなど、窒化ケイ素の自動車部品への応用に成功した。しかし、近年の窒化ケイ素製自動車部品の市場は期待されたほど大きくはない。触媒用のコーディエライトハニカムや炭化ケイ素製のディーゼルパティキュレートフィルタが、日本でより重要な応用となりつつある。日本の構造用セラミックス市場が1985年以来着実に成長していることは注目に値し、その主要な応用は自動車エンジンの排ガス浄化装置と半導体製造装置の部品である。本レビューで要約される日本の構造用セラミックスの最近の応用には、半導体・液晶デバイス製造用の真空プロセスチャンバー、製鋼用の耐摩耗セラミックス、光学レンズ成形や切削工具、アルミ合金鋳造用の耐火管、そして自動車関連の応用が含まれる。 3. 序論: アルミナ、窒化ケイ素、炭化ケイ素、ジルコニアなどの構造用セラミックスは、鋼と比較して、軽量、高温での化学的・熱的安定性、優れた耐摩耗性といった利点を持つ。しかし、セラミックスの強力な化学結合は、脆性破壊の原因となる信頼性の低い機械的特性にもつながり、構造部品への応用を制限してきた。1980年代には、破壊力学の応用や製造プロセスの改善により、窒化ケイ素がターボチャージャーロータなどの自動車部品に成功裏に適用された。しかし、1990年代には自動車エンジンへの応用は減少し、代わりに高純度アルミナが半導体や液晶ディスプレイの製造装置部品へと応用を拡大した。本稿は、日本における構造用セラミックスの応用の最近の進歩をレビューする。 4. 研究の要約: 研究の背景: 構造用セラミックスは、その優れた特性にもかかわらず、脆性という根本的な課題により、応用範囲が限定されてきた。1980年代の日本では「セラミックフィーバー」と呼ばれるほどの強い関心を集め、特に自動車エンジンなどの高応力部品への応用が期待されたが、その後の市場は期待とは異なる形で発展した。 従来の研究の状況: 従来の研究開発は、セラミックスの破壊靭性の向上、欠陥生成の抑制、部品設計による応力低減、欠陥検出技術の進歩に焦点を当ててきた。これらの技術的進歩が、窒化ケイ素の自動車部品への応用を可能にした。

Read More

Figure 0.2: (a) The geometrical dimensions and (b) the thickness distribution (mm) of the 2020 Ford explorer aluminium shock tower.

薄肉構造アルミニウム車体鋳物の大量生産のための費用対効果の高いプロセスルート

この記事では、[RWTHアーヘン大学]が発行した論文「A cost-efficient process route for the mass production of thin-walled structural aluminum body castings」を紹介します。 1. 概要: A cost-efficient process route for the mass production of thin-walled structural aluminum body castings 本記事では RWTH Aachen University で発行された論文 「A cost-efficient process route for the mass production of thin-walled structural aluminum body castings」を紹介します。 1. 概要: 2. 概要または序論 In order

Read More

Fig. 3.1 Shrinkage prediction by Modulus Method 5)

Al-Si合金金型鋳造品のポロシティ欠陥に関する研究

鋳造シミュレーションとニヤマクライテリオン活用によるアルミニウム合金のポロシティ欠陥低減への実践的アプローチ この技術概要は、MINAMI Rin氏による学術論文「Research on Porosity Defects of Al-Si Alloy Castings Made with Permanent Mold」(2005年)に基づいています。本稿は、HPDC(ハイプレッシャーダイカスト)専門家のために、株式会社STI C&Dのエキスパートが要約・分析したものです。 キーワード エグゼクティブサマリー 課題:なぜこの研究が鋳造専門家にとって重要なのか 長年にわたり、鋳造技術者はアルミニウム合金鋳物のポロシティ欠陥という問題に直面してきました。これらの微小な内部空孔は、ガス巻き込みや凝固収縮に起因し、特に引張強度や疲労寿命といった機械的特性を著しく低下させます(参考文献(1), (2))。エンジン部品のような高い信頼性が求められる製品において、ポロシティの発生は歩留まりの低下やコスト増に直結する深刻な課題です。従来、この問題への対策は経験則や試行錯誤に頼ることが多く、時間とコストがかかるプロセスでした。本研究は、この古くからの課題に対し、コンピュータシミュレーションという科学的アプローチを用いて、欠陥の予測と対策を体系化することを目的としています。 アプローチ:研究方法の解明 本研究では、ポロシティ形成のメカニズムを解明し、その予測精度を高めるために、多角的なアプローチを採用しました。 まず、過去の研究(第2章、第3章)を網羅的にレビューし、ポロシティ形成の理論的背景と既存の予測手法(モジュラス法、クライテリオン関数法など)を整理しました。その上で、特に鋼の鋳造で実績のある「ニヤマクライテリオン(G/R¹/²)」がAl-Si合金にも適用可能かどうかに焦点を当てました。 次に、商用の鋳造シミュレーションソフトウェア(AdStefan3D)を用いて、ニヤマクライテリオンの計算に最適な条件(計算タイミング、冷却速度の定義など)を特定するための基礎的な計算を実施しました(第5章)。 最終段階として、実際の製造現場で問題となっていた具体的なポロシティ欠陥(アルミピストンのリングキャリア周りのポロシティ、インゲート部のT字形状部のポロシティ)を対象としたケーススタディを行いました(第6章)。これにより、シミュレーションによる原因特定から対策立案、そしてその効果検証までの一連のプロセスを実証しました。 ブレークスルー:主要な研究結果とデータ 本研究は、Al-Si合金鋳物のポロシティ欠陥を管理するための、データに基づいた具体的な知見を明らかにしました。 HPDCオペレーションへの実践的な示唆 本研究の成果は、鋳造現場のさまざまな役割に対して、具体的で実践的な指針を提供します。 論文詳細 Research on Porosity Defects of Al-Si Alloy Castings Made with Permanent Mold 1. 概要: 2. 要旨: 本論文は、Al-Si合金の金型鋳造におけるポロシティ欠陥に関する研究である。ポロシティ形成のメカニズム、予測手法、そして鋳造プロセスにおける様々な制御パラメータの影響について包括的に調査した。特に、コンピュータシミュレーションとニヤマクライテリオンを用いてポロシティを予測し、低減する手法に焦点を当てている。実際の製造現場で発生した問題をケーススタディとして取り上げ、シミュレーションによる原因究明と対策立案の有効性を実証した。 3. 序論: Al-Si合金鋳物は、その優れた特性から多くの産業製品に使用されているが、ポロシティ欠陥が発生しやすいという問題を抱えている。ポロシティは機械的特性、特に疲労寿命を著しく低下させるため、その制御は極めて重要である。本研究は、ポロシティ欠陥を量産段階で低減するための実用的な対策を見出すことを目的とし、近年の鋳造シミュレーション技術の進展を背景に、特に熱的パラメータに基づくポロシティ予測クライテリオンの有効性を検証する。 4. 研究の要約: 研究トピックの背景: ポロシティは、溶湯中の溶解ガス(主に水素)の放出と、凝固に伴う体積収縮を補うためのフィード(給湯)不足が複合的に作用して発生する。特にAl-Si合金のような凝固温度範囲が広い合金では、デンドライト(樹枝状晶)間が複雑な流路となり、フィードが困難になるため、ポロシティが発生しやすい。 従来の研究の状況:

Read More

Fig.6 Microstructure of material 1.6356-UTPA 702; a) 2nd layer of clad; b) 1st layer of clad; c) HAZ

Renovation of moulds for high-pressure casting of aluminium by laser cladding

レーザークラッディング技術による高圧ダイカスト金型の寿命延長と性能向上 このテクニカルブリーフは、Janette Brezinová氏とMiroslav Džupon氏によって執筆され、「INTERNATIONAL SCIENTIFIC JOURNAL “MACHINES. TECHNOLOGIES. MATERIALS”」(2023年)に掲載された学術論文「Renovation of moulds for high-pressure casting of aluminium by laser cladding」に基づいています。HPDC(ハイプレッシャーダイカスト)の専門家のために、株式会社STI C&Dのエキスパートが要約・分析しました。 キーワード エグゼクティブサマリー 課題:なぜこの研究がHPDC専門家にとって重要なのか 高圧ダイカストは、自動車産業や航空宇宙産業において不可欠な製造プロセスです。しかし、670~710℃の溶融アルミニウムを高速・高圧で金型キャビティに射出するため、金型は極めて過酷な環境にさらされます。特に、金型表面は鋳造ごとに急激な温度変化(約400℃から700℃へ)による熱衝撃を受け、圧縮応力と引張応力が繰り返し発生します。 この結果、Figure 1で示されるように、熱疲労による微細な亀裂(ヒートチェック)が発生し、最終的には金型の損傷や鋳造品質の低下につながります。摩耗した金型は、生産性を維持するために補修または交換が必要となり、これはメーカーにとって大きなコスト負担となります。この研究は、レーザークラッディングという先進的な補修技術を用いて、この根本的な課題に対する効果的かつ経済的な解決策を提示するものです。 アプローチ:研究手法の解明 この研究では、高圧ダイカスト金型の補修効果を定量的に評価するため、以下の体系的なアプローチが取られました。 ブレークスルー:主要な研究結果とデータ 本研究により、レーザークラッディングによる金型補修の有効性を示す、いくつかの重要な知見が得られました。 HPDCオペレーションへの実践的な示唆 この研究成果は、実際の製造現場におけるプロセス改善に直接応用できる可能性を秘めています。 論文詳細 Renovation of moulds for high-pressure casting of aluminium by laser cladding 1. 概要: 2. 論文要旨: 本稿は、アルミニウム合金を用いた高圧鋳造用金型の摩耗分析に焦点を当てた研究結果を提示する。アルミニウム合金の高圧鋳造用金型部品を修理・再生するため、硬度44-48 HRCに調整された寸法150x130x30 mmのグレード1.2343(Dievar)基材上に実験的な溶接サンプルを作成した。表面処理には、BEO D70集光光学系を備えたTruDisk 4002ソリッドステートディスクレーザーを使用した。追加材料として、Mat.No.1.2343(Dievar)、Mat.No.1.6356(Dratec)、およびMat.No.1.6356(UTPA 702およびNIFIL NiCu7/Dievar)ワイヤーが使用された。溶接部の断面における微細構造の検査には光学顕微鏡技術が用いられた。微小硬度測定は、500gの荷重をかけたビッカース圧子を用い、圧痕間の相互インデンテーション距離を0.4mmとして実施した。

Read More

Figure 2.1: Porsche 911- rear Longitudinal rail (Magna BDW technologies Soest GmbH).

薄肉構造アルミニウムボディ鋳物の大量生産のための費用効率の高いプロセスルート

本入門論文は、[‘Ergebnisse aus Forschung und Entwicklung, Band 28’]が発行した論文【”薄肉構造アルミニウムボディ鋳物の大量生産のための費用効率の高いプロセスルート”】の研究内容を紹介するものです。 1. 概要: 2. Abstract (要約) 自動車分野におけるCO2排出量削減の継続的な要求に応えるため、いくつかの方法が研究され、現在も活発に研究されています。自動車業界で採用されているアプローチの1つは、車両の軽量化であり、重い鋼板部品をより軽量で機能的に統合されたアルミニウム鋳造品に置き換えることです。しかし、薄肉構造ボディ鋳物の大量生産にこのアプローチを適用すると、主に高価な原材料(アルミニウム合金)の使用により、部品コストが上昇し、経済的でなくなる可能性があります。したがって、本論文では、この提案を費用効率の高い方法で実行するための可能な手段を調査することが重要であると考えました。2020年型フォードエクスプローラーショックタワーの生産における主要なコスト要因を決定するために、最初にコスト計算調査が実施されました。続いて、この調査結果に対する詳細な調査が行われました。HPDCおよびRheoMetalプロセスに関する調査。 3. 研究背景: 研究テーマの背景: 自動車分野におけるCO2排出量削減の継続的な要求は、車両の軽量化を必要としています。重い鋼製部品を、より軽量で機能的に統合されたアルミニウム鋳造品に置き換えることが重要なアプローチです。(要約および導入部より) 先行研究の状況: 先行研究では、アルミニウム鋳造の使用を含む、車両の軽量化と燃費向上を目的としたさまざまなアプローチが検討されてきました。本文書では、高圧ダイカスト(HPDC)、半凝固鋳造(チクソキャスティングおよびレオキャスティングを含む)、自動車構造用アルミニウム合金、および鋳造品質に対するプロセスパラメータの影響に関する多数の研究が参照されています。(導入部および理論的背景より) 研究の必要性: 薄肉構造アルミニウムボディ鋳物の大量生産は、アルミニウム合金のコストが高いため、経済的ではない可能性があります。したがって、これらの鋳物を製造するための費用効率の高いプロセスルートを調査するための研究が必要です。(要約および論文の目的より) 4. 研究目的と研究課題: 研究目的: 薄肉構造アルミニウムボディ鋳物の大量生産(1,000,000〜2,000,000個)のための費用効率の高いプロセスルートを開発すること。(論文の目的より) 主要研究内容: 5. 研究方法論 研究デザイン: コスト分析、プロセス最適化、材料特性評価、機械的試験を含む比較実験研究。 データ収集: 分析方法: 研究範囲: 薄肉構造アルミニウムボディ鋳物の製造におけるHPDCおよびRheoMetalTMプロセスの調査。費用効率、機械的特性、耐衝撃性、およびリベット接合性に焦点を当てています。2020年型フォードエクスプローラーショックタワーをケーススタディとして使用します。 6. 主要研究結果: 主要研究結果と提示されたデータ分析: List of figure names: 7. 結論: 研究結果の概要: 1. コスト分析: 2. HPDCプロセスと材料評価: 3. RheoMetal™プロセスと材料評価: 4. 新合金開発 (MYFORD): 5. HPDCとRheoMetal™の比較

Read More

Electric powertrain components that require temperature control. The components with a red background are particularly suitable for direct cooling.

Eモビリティにおける画期的進歩:複雑な冷却チャネルをダイカストハウジングに直接統合

この技術概要は、Dirk Lehmhus、Christoph Pille、Dustin BorheckらがGiesserei(2018年)に発表した学術論文「Leakage-free cooling channels for Die-cast housing components」に基づいています。これは、CASTMANの専門家がGemini、ChatGPT、GrokなどのLLM AIの支援を受け、HPDC専門家のために分析・要約したものです。 キーワード エグゼクティブサマリー 課題:この研究がHPDC専門家にとって重要な理由 自動車産業がEモビリティへとシフトするにつれて、効果的な熱管理が最重要課題となっています。バッテリーパック、パワーエレクトロニクス、トラクションモーターなどの主要コンポーネントはかなりの熱を発生させ、最適な性能と寿命を維持するために高度な冷却が必要です(初期画像参照)。高圧ダイカスト(HPDC)は、これらのコンポーネントが必要とする軽量で複雑なハウジングを製造するのに理想的なプロセスですが、内部冷却チャネルの統合は常に大きな課題でした。 何十年もの間、エンジニアはもどかしい限界に直面してきました。補強されていない標準的なアルミニウムチューブを鋳込もうとすると、溶融金属の莫大な圧力と熱で潰れてしまうことがよくあります(Image 1参照)。代替の解決策には、それぞれ独自の欠点があります。 この研究は、一体型ダイカスト部品内に幾何学的に複雑で漏れのない冷却チャネルを直接作成し、性能と経済効率を両立させる新しいアプローチを検証することで、この重要な産業ニーズに対応します。 アプローチ:方法論の解明 この課題に取り組むため、「CoolCast」プロジェクトでは、チューブ技術の開発者であるMH Technologies、ダイカスト専門企業のae group ag、金型メーカーのSchaufler Tooling GmbH、シミュレーション専門企業のRWP GmbH、そしてFraunhofer IFAMが協力し、業界のリーダーたちが集結しました。 研究の中心となったのは、特許取得済みのZLeakチューブ技術です。この革新的なアプローチは、水溶性の外層と、粗粒で媒体が浸透可能な内層コアからなる、独自の二層式コアで満たされたアルミニウムチューブインサートを使用します(Image 2参照)。この充填材は、HPDCプロセスに耐えるために必要な構造的安定性を提供し、後で簡単に洗い流すことができます。 研究チームは、Bühler-SC/N-66ダイカストマシンを使用して厳密な実験プログラムを実施しました。彼らは特殊な金型(Image 3参照)で様々なチューブインサートをテストし、主要なパラメータを変化させました。 物理的な試験と並行して、チームはWinCast expertシミュレーションソフトウェアを使用して、金型充填、凝固、熱応力をモデル化しました。シミュレーション結果は、溶湯流れの進行を検証するための断続ショット(interrupted shot)テストを含む実験データと比較して検証されました(Image 4参照)。 画期的な成果:主要な研究結果とデータ この研究により、この技術の産業応用における実現可能性と予測可能性を示す、いくつかの重要な発見が得られました。 HPDC製品への実用的な示唆 この研究は、先進的なダイカストコンポーネントに取り組むエンジニアや設計者にとって、直ちに適用可能な洞察を提供します。 論文詳細 Leakage-free cooling channels for Die-cast housing components 1. 概要: 2. 要旨 (Abstract): 電気自動車コンポーネントの出力密度の増加は、高度な熱管理ソリューションを必要とします。本稿は、犠牲充填材を用いたアルミニウムチューブインサートである「ZLeakチューブ」技術を使用して、高圧ダイカスト(HPDC)コンポーネントに複雑な媒体輸送冷却チャネルを直接統合することの実現可能性を調査します。物理的な鋳造試験と数値シミュレーションの組み合わせを通じて、この研究は、鋳造圧力、ピストン速度、予熱などのプロセスパラメータが、チューブインサートの安定性、圧縮、および変位に与える影響を分析します。この研究は、この技術がHPDC条件下で安定しており、その挙動がシミュレーションツールを使用して予測可能であることを検証し、電気モーターやパワーエレクトロニクスハウジングなどの用途向けに、統合された漏れのない冷却機能を備えた一体型の軽量ハウジングの設計と製造への道を開きます。 3. 緒言

Read More

Gambar 1. Hasil Simulasi Proses Casting pada Konfigurasi Awal

試行錯誤から精密鋳造へ:鋳造シミュレーションによるHPDC品質の最適化

この技術概要は、Trio Yonathan Teja Kusuma、Gunawan Budi Susilo、M Zulhan Iswandaによる学術論文「Pengendalian Kualitas Produk Downlight dengan Implementasi Simulasi Die Casting」(REKAYASA, Journal of Science and Technology、2023年)に基づいています。HPDC専門家のために、CASTMANの専門家が要約・分析しました。 キーワード エグゼクティブサマリー 課題:この研究がHPDC専門家にとって重要な理由 高圧ダイカストにおいて無欠陥生産を達成することは、絶え間ない挑戦です。湯じわ、ひけ巣、ブローホール、割れといった欠陥は、重大な経済的損失につながり、製品の信頼性を損なう一般的な障害です。これらの問題は、多くの場合、不適切なプロセスパラメータや金型設計に起因します。 本研究は、ADC12アルミニウム製のダウンライト部品(モデルNN511)を生産する製造業者が直面していた、喫緊の現実的な問題に取り組んでいます。この工程は高い不良率に悩まされており、特に湯じわが全欠陥の52%を占める最大の原因でした。これは、安定したプロセスウィンドウを見つけるために、貴重な時間と材料を消費する高コストな試行錯誤アプローチであり、業界の多くの人々にとって馴染み深いシナリオです。この研究は、より科学的でコスト効率の高い前進の道筋を示しています。 アプローチ:方法論の解明 この課題に取り組むため、研究者たちはプロセスシミュレーションに注目しました。この研究は、強力なシミュレーションソフトウェアであるInspire Castを用いて、ダイカストプロセスを分析・最適化することに焦点を当てています。 その方法論は、以下の主要なステップで構成されています。 この「シミュレーション第一」のアプローチにより、研究者たちは新しいプロセスパラメータを仮想的に検証し、性能の低い元の設定と直接比較することができました。 ブレークスルー:主要な発見とデータ シミュレーション結果は、欠陥の原因と提案された解決策の有効性について、明確で実行可能な洞察を提供しました。 貴社のHPDC製品への実践的示唆 本研究の知見は、実際の製造オペレーションを強化するために直接適用できる貴重な教訓を提供します。 論文詳細 Pengendalian Kualitas Produk Downlight dengan Implementasi Simulasi Die Casting 1. 概要: 2. 抄録: ダイカストは、空圧/油圧エネルギーで駆動されるピストンを用いて溶湯を金型に射出・充填する鋳造プロセスです。構成が正しくない場合、欠陥が発生し、結果として得られる製品が望ましい設計と一致しないことがあります。ダイカストプロセスでは、湯じわ、ひけ巣、ブローホール、反り、アンダーカットなど、いくつかの欠陥が一般的に発生します。コンピュータの助けを借りて、これらの問題が軽減されることが期待されます。Inspire Castを使用して射出プロセスを可視化することで、ダイカストプロセスの分析が容易になります。このソフトウェアの助けを借りて、より良い構成を作成し、機械に実装することができます。しかし、結果は異なります。ソフトウェアでのシミュレーションでは、異なるゲートからの溶湯流が再結晶温度である665°Cを上回っているため、2つの溶湯流が合流する際により良く硬化・融合するはずであるとされています。しかし、新しい構成を機械に実装した後、プロセスの欠陥率は、既存の構成の6%と比較して、構成1で23%、構成2で13%と依然として高いままでした。しかし、このソフトウェアを導入することで、新しい材料のための新しい構成を見つけるための試行錯誤プロセスのコストを削減することができます。 3. 緒言: 本稿は、ダイカストを多様な金属製品を生産するための主要な製造プロセスとして位置づけることから始まります。業界における主要な課題は、湯じわ、ひけ巣、ブローホール、ポロシティといった欠陥が頻繁に発生することであると強調しています。これらの欠陥は、しばしば不適切な金型設計や不正確な射出プロセス構成によって引き起こされます。緒言では、高圧ダイカストの複雑な流体力学を可視化・分析するための現代的な解決策としてコンピュータシミュレーションを提示し、それによってエンジニアがこれらの一般的な問題を軽減できるようにするための研究の舞台を設定しています。 4.

Read More

Figure 1. Thermogenerator: (a) view from the structured side, (b) view through the transparent BSG-substrate.

マイクロマシン加工された熱電発電機の金属部品への直接統合:埋め込みプロセスの技術的側面

鋳造プロセス中に半導体デバイスを直接統合する技術:歩留まり28%を達成した画期的なアプローチ この技術概要は、A. Ibragimov氏らによって執筆され、「1st Joint International Symposium on System-Integrated Intelligence 2012: New Challenges for Product and Production Engineering」で発表された学術論文「Micromachined Thermogenerator Directly Integrated into Metal Parts: Technological Aspects of the Embedding Process」(2012年)に基づいています。ハイプレッシャーダイカスト(HPDC)の専門家のために、CASTMANの専門家が要約・分析したものです。 キーワード エグゼクティブサマリー 課題:なぜこの研究がHPDC専門家にとって重要なのか 金属部品にセンサーや電子部品などの機能要素を直接統合することは、製品のインテリジェント化や高機能化に向けた重要な技術です。これにより、センサーは測定対象と直接接触して感度が向上し、電子部品は堅牢な金属ケーシングによって外部環境から保護されます。しかし、特にアルミニウムのような高融点金属の鋳造プロセスは700°C以上にも達するため、繊細な半導体デバイスをその過酷な環境下で生き残らせることは極めて困難な課題でした。 これまでの試みとして、厚い保護層で覆ったRFIDチップの埋め込み(Ref. [1-2])や、鋼製基板上に形成した薄膜ひずみセンサー(Ref. [3-4])などがありましたが、前者はセンサーとしての感度が低く、後者は一般的な半導体技術との互換性がないという制約がありました。本研究は、これらのギャップを埋め、一般的な半導体デバイスを溶融金属から成形される部品に直接埋め込む可能性を実証することを目的としています。 アプローチ:研究方法の解明 この課題を克服するため、研究者らはSeebeck効果を利用した熱電発電機(TG)を実証デバイスとして選択しました(Figure 1)。このTGは、主にホウケイ酸ガラス(BSG)の基板とその表面に形成されたSi-金属熱電対で構成されています。BSG基板の非晶質構造と熱電対の波状形状が、鋳造プロセスに伴う熱機械的ストレスを緩和する役割を果たします。 研究は段階的に進められました。 ブレークスルー:主要な発見とデータ この綿密なアプローチにより、研究者らはいくつかの重要な発見をしました。 HPDCオペレーションへの実践的な示唆 この研究成果は、実際の製造現場における「スマート鋳造」の実現に向けた貴重な知見を提供します。 論文詳細 Micromachined Thermogenerator Directly Integrated into Metal Parts: Technological Aspects of

Read More

Fig. 1. The geometrical shape of fragment of studied surface, topography of 3D surface, sand cast alloys; A) EN AC-AlSi12(b), B) EN AC-AlSi9Cu3(Fe)

Stereometry specification of anodization surface of casting aluminium alloys

本紹介論文は、「Journal of Achievements in Materials and Manufacturing Engineering」誌に掲載された論文「Stereometry specification of anodization surface of casting aluminium alloys」に基づいています。 1. 概要: 2. 抄録: 目的: 本研究の目的は、鋳造法および陽極酸化処理パラメータがアルミニウム鋳造合金上に形成される陽極酸化皮膜の特性に及ぼす影響を提示することです。設計/方法論/アプローチ: FRT社のレーザープロファイル測定ゲージMicroProfを用いて、圧力ダイカストおよび砂型鋳造によって鋳造された2種類のアルミニウム鋳造合金について調査を実施しました。結果: 研究には、アルミニウム鋳物上に得られた陽極酸化皮膜の化学組成、形状、および粗さの影響分析が含まれていました。研究の限界/含意: アルミニウム鋳造合金の陽極酸化皮膜に関する研究に貢献します。実用的意義: 実施された調査は、特にアルミニウム鋳造合金の耐食性向上を目的とした、将来の陽極酸化プロセスの最適化の方向性など、今後の研究分野を示しています。独創性/価値: 例えば、過酷な環境下で使用される建築構造物、電子部品、航空宇宙産業および自動車産業における建設部品の材料としての応用可能性が広がります。 3. 緒言: 近年、世界の多くの科学センターにおいて、様々な産業分野でのアルミニウム合金の使用が継続的に増加しており、アルミニウムおよびその合金、ならびにアルミニウムマトリックス複合材料の製造技術も発展しています[1-5]。陽極酸化皮膜は、アルミニウム製の電子部品、家庭用品、器具の部品、庭園用家具、観光・スポーツ用品、自動車付属品、アルミニウム建材の要素などに適用される保護・装飾機能を持ちます。酸化物皮膜は、コンデンサの電極用に設計されたアルミニウム箔にも製造されます。硬質陽極酸化皮膜は、航空宇宙産業および自動車産業に応用できます。アルミニウム基板に強固に結合した陽極酸化皮膜は、耐食性があります。耐食性は、皮膜中の細孔やピット、または有害な合金形成元素や不純物、特に銅や不純物の存在によって低下する可能性があります。アルミニウムと銅の金属間化合物相は、陽極酸化中に溶解し、皮膜の硬度と厚さを低下させ、多孔性を増大させます。形成された酸化膜の厚さに対する陽極酸化皮膜の厚さの増加は、1Vあたり約0.001 µmです。多孔質で導電性の皮膜は、電解液によって溶解される基本層から形成されます。基本層は、表面層に変換されるのと同じ速度で進行するアルミニウム酸化物の形成によって同時に回復されます。このようにして、基本層はほぼ一定の電圧でその厚さを維持します。形成プロセス中、アルミニウム酸化物は質量要素のわずかな増加と体積の増加を示します。酸化物皮膜は基板に非常に強く固定されています。酸化物皮膜の溶解は、pH 8.8を超える塩基性溶液またはpH 4.0未満の酸性溶液でのみ可能です[13-15]。 4. 研究の概要: 研究トピックの背景: アルミニウム合金の使用は、アルミニウム、その合金、およびアルミニウムマトリックス複合材料の製造技術の進歩とともに、様々な産業で継続的に増加しています[1-5]。陽極酸化皮膜は、電子部品、家庭用品、自動車付属品、航空宇宙および自動車産業を含む広範な用途で、保護および装飾目的でアルミニウムに適用されます。 従来の研究状況: 陽極酸化皮膜は、アルミニウム基板に固定されると耐食性があることが知られています。しかし、この耐性は、細孔、ピット、または銅などの有害な合金形成元素によって損なわれる可能性があり、これらは陽極酸化中に溶解し、硬度と厚さを低下させ、多孔性を増加させる可能性があります。これらの皮膜の形成と特性、それらの厚さの増加(1Vあたり約0.001 µm)および溶解特性が研究されてきました[12, 13-15]。 研究の目的: 本研究の目的は、鋳造アルミニウム合金の陽極酸化プロセスで作製された陽極酸化皮膜の特性を調査し、電解液および鋳造方法が得られた陽極酸化皮膜に及ぼす影響を評価することです。(出典: “Stereometry specification of anodization surface of casting aluminium alloys”, Section 1. Introduction)

Read More