By userAluminium-J, Technical Data-Jaluminum alloy, aluminum alloys, Applications, CAD, CFD, Die casting, High pressure die casting, Review, Salt Core, 金型, 자동차
本稿は、「The 13th OpenFOAM Workshop (OFW13), June 24-29, 2018, Shanghai, China」にて発表された論文「TOWARDS THE MODELING OF FLUID-STRUCTURE INTERACTIVE LOST CORE DEFORMATION IN HIGH-PRESSURE DIE CASTING」を基に作成されています。 1. 概要: 2. アブストラクト: 本稿では、高圧ダイカスト(HPDC)プロセスにおける消失塩コアの流体構造連成(FSI)をシミュレーションするための数値モデルの開発と検証について詳述する。OpenFOAM C++ツールボックスを利用し、圧縮性二相流(溶融金属と空気)と変形可能な固体コアとの相互作用を扱うために、fsiFoamソルバーフレームワーク内に新しいソルバークラスFSI::compInterFluidを実装した。このソルバーは標準的なOpenFOAMソルバーと比較してベンチマーク評価された。その後、このモデルは単純化された鋳造形状における塩コアの変形をシミュレーションするために適用され、その結果はコアの変形を示し、溶湯によって加えられる力に関する洞察を提供した。これらのシミュレーション結果は、実際のダイカスト試験から得られた実験データと比較検証され、同等のコア変形を示し、HPDCにおける消失塩コア使用の実現可能性を評価するモデルの潜在能力を確認した。 3. 緒言: 高圧ダイカスト(HPDC)は、自動変速機ハウジングやギアボックス部品などの自動車部品を大量かつ低コストで製造するための重要なプロセスである[1, 2]。HPDCでは、液体金属(通常はアルミニウムまたはマグネシウム)が複雑なゲートおよびランナーシステムを介して、高速(通常50~100 m/s)かつ高圧(最大100 MPa)で金型に射出される。アンダーカットや中空部(例:冷却用またはオイルフローチャネル用)を作成するために消失塩コアを使用することは、現在まで困難であることが証明されている[3, 4, 5, 6]。消失コアの材料として塩を使用するというアイデアは、機械メーカーや自動車会社によって提案されている[7, 8]。これが実際に実行可能かどうかを判断する1つの方法は、数値シミュレーションを用いることである[9]。本稿は、HPDCプロセス中の流体構造連成によるこのような消失コアの変形をモデリングすることに焦点を当てる。 4. 研究の概要: 研究トピックの背景: 本研究は、自動車部品製造に不可欠なプロセスである高圧ダイカスト(HPDC)を背景としている。鋳造部品に複雑な内部形状を作成するために消失塩コアを使用することに対する産業界の関心があり、これによりエンジニアの設計自由度が向上する可能性がある。しかし、過酷なHPDC環境での塩コアの成功裏な実装は、大きな課題に直面している。 従来の研究状況: 従来の研究や産業界の経験によれば、HPDCプロセス内で消失塩コアを使用することは困難であった[3]。塩コアを使用するというアイデアは提案されているものの[7, 8]、鋳造条件下でのその挙動を理解することが重要である。数値シミュレーションは、消失塩コアの実現可能性を評価するための重要なツールとして提案されている[9]。 研究の目的: 本研究の主な目的は、高圧ダイカスト中の消失塩コアの流体構造連成による変形をシミュレーションできる数値モデルを開発し、検証することである。これには、二相流体の複雑な物理現象と変形可能なコアとの相互作用を正確に捉えることができるソルバーの作成が含まれる。 研究の核心: 本研究の核心は、溶融金属と空気の二相流と変形可能な塩コアとの相互作用をモデリングすることである。これには、この流体構造連成(FSI)問題に適したOpenFOAMフレームワーク内の特定のソルバークラスFSI::compInterFluidの開発が含まれる。また、この新しいソルバーのベンチマーク評価と、シミュレーション結果を実験的なダイカスト試験と比較検証するプロセスも含まれる。 5. 研究方法論 研究計画: 本研究は以下のいくつかの段階で計画された: データ収集および分析方法: 流体側モデリング:溶融金属と空気の二相流は、VOF(Volume
Read More
By userAluminium-J, heat sink-Jaluminum alloy, aluminum alloys, CAD, Die casting, Die casting Design, Efficiency, Heat Sink, STP, 금형, 알루미늄 다이캐스팅
本稿は、「Journal of the Korea Academia-Industrial cooperation Society」発行の論文「Heat Analysis for Heat Sink Design Using Finite Element Method」を基に作成されたハンドブックレベルの解説資料です。 1. 概要: 2. Abstract: LEDは低炭素グリーンエネルギーの照明部品として脚光を浴びています。LEDは環境に優しく、効率的で耐久性がありますが、供給電力の80%が熱エネルギーに変換されるため、極端な温度上昇は耐久性を低下させる可能性があります。温度上昇はLED素子の寿命に影響を与えるため、放熱システムは重要です。そこで本論文では、LED電球のヒートシンク形状について熱解析を行い、最適性能を得るための温度制御システムを製品に適用しました。 3. Introduction: LEDは、低炭素グリーンエネルギー時代における照明器具として注目されています。環境調和性、高いエネルギー効率、長寿命といった利点を有しますが、供給電力の80%以上が熱エネルギーに変換されるため、温度上昇が避けられず、これがLED素子の寿命に悪影響を及ぼすため、放熱システムの重要性が増しています。本論文では、ダイカスト製造法を考慮したLED電球用ヒートシンクの様々な形状について熱解析を行い、放熱システムの効率性を分析します。ヒートシンクの製造方法としては、直接押出法とダイカスト法が広く用いられていますが、本研究では特にダイカスト法に適した設計に焦点を当てています。 4. 研究の要約: 研究テーマの背景: LEDは高効率・長寿命である一方、入力エネルギーの約80%が熱に変換されるため、相当量の熱を発生します。この熱はLED照明装置の接合部温度を上昇させ、効果的に放熱されない場合、熱過負荷によるワイヤ断線、層間剥離、はんだペースト接合不良、エポキシ樹脂の黄変などを引き起こし、最終的にLEDの故障や寿命低下につながります[1,2]。したがって、ヒートシンクによる効果的な熱管理が不可欠です。 従来の研究状況: 冷却フィンを用いた受動的放熱技術は、LED電球において広く採用されている技術です。ヒートシンクの一般的な製造方法には、直接押出法とダイカスト法があります。直接押出法では均一な断面のフィンを持つヒートシンクが製造されるのに対し、ダイカスト法では様々な断面やより複雑な形状のヒートシンクの製造が可能です[Fig. 1]。本研究では、G.Liebyによって報告された[7]、[Table 1]に示すようなアルミニウムダイカスト製品の最小肉厚などのダイカストの原理を活用しています。 研究の目的: 本研究の主な目的は、特にダイカスト製造の制約を考慮して設計されたLED電球用の様々なヒートシンク形状について熱解析を行うことです。これらのヒートシンク設計の放熱効果を分析し、LED電球に最適な熱性能を提供する形状を特定することを目標としています。 核心研究: 本研究の核心は、LED電球用の3種類の異なるヒートシンク底部設計(Type (a)、Type (b)、Type (c))に対して、有限要素法(FEM)を用いた過渡熱解析を実施することです。LED電球モデルは、LED素子、PCB、アルミニウムケース、ヒートシンクなどの部品で構成されています[Fig. 3]。ヒートシンクの設計はPro-engineerソフトウェアを用いてモデル化され[Fig. 4]、ダイカストで適用可能な最小肉厚が考慮されています[Table 1]。本研究では、シミュレーションされた動作条件下でのLED素子およびヒートシンクの温度分布を評価し、それらの熱性能を比較します。 5. 研究方法論 研究設計: 本研究では、LED電球用の3つの異なるヒートシンク底部設計([Fig. 4]に示すType (a)、Type (b)、Type (c))の比較分析を行いました。熱平衡状態に達するまでの時間経過に伴う温度変化を観察するために、過渡熱解析を実施しました。ヒートシンクは、ダイカスト製造原理、特にアルミニウム合金の最小肉厚に基づいて設計されました[Table 1]。 データ収集及び分析方法: [Fig. 3]に示すLED電球の構造は、ガラスキャップ、16個のLED素子、PCB、アルミニウムケース、ヒートシンク底部および上部、ソケットから構成されています。これらの構成要素は、Pro-engineerを使用して3Dモデル化されました。アルミニウム、銅、ポリカーボネート、ガラス、GaNの材料特性は、[Table 3]および[Table
Read More
By userAluminium-J, Technical Data-Jaluminum alloy, aluminum alloys, ANOVA, CAD, Die casting, High pressure die casting, High pressure die casting (HPDC), Microstructure, temperature field, 금형, 자동차 산업
本紹介論文は、「Mälardalen University Press Licentiate Theses」によって発行された論文「OPTIMIZATION PRODUCT PARTS IN HIGH PRESSURE DIE CASTING PROCESS」に基づいています。 1. 概要: 2. アブストラクト: 本論文は、統計ツールを用いた実験的観察と数値シミュレーションにより、A380合金の高圧ダイカスト(HPDC)における金型温度の最適化について述べるものです。本研究の目的は、これらの欠陥の発生を最小限に抑え、それによって欠陥のない部品の生産を最大化するための最適な金型温度を決定することです。 HPDCでは、溶融金属が高速(アルミニウム合金の場合40-60 m/s)で金型に射出されます。金型温度は、不良部品の発生率に重要な役割を果たします。したがって、非常に複雑な形状を持つ自動車部品(EF7モーターのラダーフレーム)のHPDCにおける溶融金属の流動パターンを検討し、最適な金型温度を決定しました。 生産プロセスにおける欠陥は、表面欠陥、内部欠陥、寸法欠陥の3つのカテゴリーに分類されます。実験で生産されたサンプルは、存在する欠陥に応じて分類されました。 鋳造欠陥に影響を与えるもう1つの重要なパラメータは冷却速度です。金型温度は、初期段階と最終充填位置で測定されました。実験は、150°Cから250°Cの範囲の金型温度で行われました。その結果、初期段階と最終充填位置の間の金型内の溶融金属の温度差は20〜25°Cでした。 回帰、関係、最大値、最小値、相関、ANOVA、T検定、主成分分析(PCA)、記述統計などの統計ツールを使用して、ダイカスト実験からのデータの解釈を容易にしました。 プロセスの挙動を研究し、影響パラメータに関するより良い知識を得て、必要なパラメータを測定するために、いくつかのケーススタディを実行します。収集されたデータは、次の目的で利用されます。 ProCastソフトウェアを使用して流体の流れと凝固ステップをシミュレーションし、その結果は実験測定によって検証されました。この合金の最適な金型温度は200°C以上であることがわかりました。 実験結果の統計分析により、ラダーフレームのHPDCにおいて、210°Cから215°Cの金型温度範囲内で欠陥が最小化され、良品部品が最大化されることがわかりました。 3. 緒言 (はじめに): 高圧ダイカスト(HPDC)プロセスは、アルミニウム、マグネシウム、銅、亜鉛から部品を製造するために広く使用されている製造方法であり、金型への正確な適合性、良好な機械的特性、低コスト、複雑な形状の部品を製造できる能力などの利点があります。このプロセスは、自動車産業や航空宇宙産業を含む様々な産業で不可欠です。しかし、HPDC部品の品質は、溶湯温度、射出圧力、金型温度、部品の複雑さ、射出速度など、多くのパラメータに影響されます。本研究は、製造された部品の欠陥に対する金型温度の影響を調査することに焦点を当てています。部品の複雑化と最適化の必要性の高まりに伴い、数値解析手法は製造プロセスに関連する物理的問題を解決するための不可欠なツールとなりつつあり、従来の試行錯誤によるアプローチと比較して時間とコストを大幅に削減できます。本論文は、特にダイカストアルミニウム合金とその自動車産業への応用を取り上げ、鋳造形状、製造パラメータ、ダイカストプロセス構成要素間の関係を理解し最適化することで、廃棄物を削減し欠陥を最小限に抑えることを目的としています。 4. 研究の概要: 研究テーマの背景: 高圧ダイカスト(HPDC)は、A380アルミニウムなどの合金を使用し、特に自動車分野で複雑な金属部品を製造するための重要な製造プロセスです。このプロセスでは、溶融金属を高速・高圧で金型に射出します。HPDCはネットシェイプに近い形状での製造や良好な機械的特性といった利点がありますが、最終的な部品品質はプロセスパラメータに非常に敏感です。最適でない条件では欠陥が発生し、コスト増や廃棄物の原因となります。これらのパラメータ、特に金型温度を最適化することは、健全な鋳物を保証するために不可欠です。これらのパラメータ間の複雑な相互作用を理解し最適化するために、数値シミュレーションツールがますます利用されています。 先行研究の状況: 本研究は、HPDCプロセスの物理、凝固理論、および欠陥形成メカニズムに関する既存の知識体系に基づいています。核生成理論(例:古典的ギブスモデル、非古典的モデル)および凝固微細構造の発達に関する確立された理論が、研究の科学的基盤を形成しています。ProCastのような計算ツールを鋳造プロセスにおける流体の流れ、熱伝達、および凝固のシミュレーションに使用することは、十分に開発された分野です。本研究は、これらの確立された原理とツールを適用して、新たに設計された複雑な自動車部品(EF7エンジン用ラダーフレーム)の金型温度を最適化し、欠陥を最小限に抑えるという特定の課題に取り組みます。 研究の目的: 本研究の主な目的は、A380アルミニウム合金の高圧ダイカスト(HPDC)において、欠陥の発生を最小限に抑え、それによって良品部品の生産を最大化するための最適な金型温度を決定することです。具体的な目的は次のとおりです。 核心的研究: 本研究の核心は、HPDCプロセスによって製造されるA380アルミニウム合金自動車部品(EF7モーターのラダーフレーム)の金型温度最適化に関する包括的な調査です。これは、実験的観察と数値シミュレーションの組み合わせによって達成されました。実験は、金型温度(150℃から250℃)と溶湯温度を体系的に変化させながら、欠陥形成を監視することによって行われました。その複雑な形状のために選択されたラダーフレームが試験部品として使用されました。ProCastソフトウェアを使用した数値シミュレーションにより、流体の流れと凝固段階をモデル化し、その結果は実験測定によって検証されました。回帰分析、ANOVA、PCAなどの統計ツールを使用して実験データを分析し、最適なプロセス条件を特定しました。 5. 研究方法: 研究計画: 本研究では、実験と数値シミュレーションを組み合わせたアプローチを採用しました。実験は、工業用HPDC機(IDRA1600)を使用し、A380アルミニウム合金を用いて、EF7モーターの複雑な自動車部品である「ラダーフレーム」を製造する形で行われました。調査した主な変数は金型温度で、150℃から250℃の範囲とし、溶湯温度も監視・制御しました。ProCastソフトウェアを用いて、様々な条件下での金型充填および凝固プロセスをモデル化する数値シミュレーションを実施しました。その後、シミュレーション結果の精度と信頼性を確保するために、実験測定によって検証を行いました。 データ収集・分析方法: データ収集には、初期段階と最終充填位置での金型温度の測定、およびダイ入口(射出開始時)とダイ出口(射出終了時)での溶湯温度の測定が含まれました。信頼性を確保するために各条件で3回の繰り返し実験を行い、合計800回の実験を実施しました。欠陥部品を特定し、X線検査、三次元測定機(CMM)、金属組織検査、目視検査などの様々な分析手法を用いて欠陥の種類(表面、内部、寸法)を決定しました。データ分析は、回帰、関係、最大値、最小値、相関、ANOVA、T検定、主成分分析(PCA)、記述統計などの一連の統計ツールを使用して行われました。ProCastソフトウェアは、流体の流れと凝固のシミュレーションに使用され、温度分布、充填パターン、および潜在的な欠陥箇所に関する洞察を提供しました。 研究課題と範囲: 本論文の範囲は、高圧ダイカスト法を用いて、複雑な形状で欠陥を最小限に抑えたA380アルミニウム合金製部品の製造に焦点を当てています。中心的な研究課題は、鋳造欠陥を最小限に抑えるための金型温度の最適化です。本研究は、非常に複雑な形状を持つ特定の自動車部品(ラダーフレーム)の品質に対する金型温度の影響を調査します。本研究は、実験結果をモデル化し、シミュレーション結果を経験的に確認するために、エンジニアリングProCastソフトウェアを使用した数値シミュレーションと実験作業を組み合わせています。また、ランナーやオーバーフローの位置などの設計パラメータと、金型温度や溶湯温度などの製造パラメータとの関係も探求します。 6. 主要な結果: 主要な結果: 本研究は、複雑なラダーフレーム部品において欠陥を最小限に抑え、A380アルミニウム合金のHPDCによる良品部品の生産を最大化するための最適な金型温度範囲を特定することに成功しました。 図のリスト: 7. 結論:
Read More
By userAluminium-J, Technical Data-JAlloying elements, aluminum alloy, aluminum alloys, Aluminum Casting, CAD, Casting Technique, Die casting, Efficiency, Mechanical Property, Microstructure
本稿は、「Technische Universität Darmstadt」より発行された論文「Influence of Zr, Cr and Sc alloying on the microstructure and mechanical properties of a Al-Mg-Si casting alloy」に基づいています。 1. 概要: 2. 抄録: 本研究では、Sc、Cr、Zrを添加した新しいAl-Mg-Si-Mn鋳造合金を開発し、その微細組織と機械的特性を調査した。Al-Mg-Si-Mn合金の示差走査熱量測定(DSC)により、共晶溶融温度が595℃であることが確認され、Cr、Zr、Scの添加は合金の凝固挙動を変化させなかった。Cr、Zr、Scの微量添加は、主にα-Al相とα-Al15(Mn,Fe)3Si2相から成る微細組織を本質的に変化させなかったが、層間間隔をわずかに変化させた。Scを含まない合金ではAl3ZrおよびAl7Cr金属間化合物が観察され、Scを含む合金ではAl3ScおよびAl3Zr相が観察された。Zr、Cr、Scは主に固溶体を強化した。微小硬度およびナノ硬度測定では、合金グループ内で一貫した傾向が示された。ZrまたはZr+Crの添加は、母材合金と比較して降伏強度および引張強度を大幅に増加させなかったが、Scの添加は引張特性を著しく向上させた。SZ11合金(Sc+Zr)は、S2(Scのみ)合金と同様の結果を示した。鋳造まま状態からの人工時効(T5)処理は、母材合金において析出硬化をもたらさなかった。Scを含まない合金は225℃でのT5処理に最もよく反応し、Scを含む合金は325℃でナノ分散したAl3Sc析出物により最大の効果を得た。高温溶体化処理(T6)は繊維状共晶の球状化を引き起こし、強度を低下させたが延性を向上させた。予想外に、HPDC合金はT6処理に対して延性の面で肯定的な反応を示した。 3. 緒言: 軽量Al合金は、輸送部門における省エネルギーと燃費向上のためにますます重要になっている。Al-Mg-Si系展伸材(6xxx系)は、時効硬化による優れた強度ポテンシャルにより広く使用されている。Al-Si系鋳造合金がアルミニウム鋳物の90%以上を占める一方で、Al-Mg-Si系鋳造合金はそれほど一般的ではないが、良好な鋳造性、耐食性、および鋳放し状態での機械的特性により、自動車および航空宇宙分野での利用が増加している。本論文の目的は、市販のMagsimal®59合金の機械的特性を、Sc、Cr、Zrの合金化によって改善することである。スカンジウム添加は、Al3Sc析出物の形成と結晶粒微細化により強度を大幅に向上させることが知られているが、その高コストが使用を制限している。ジルコニウムは加工性を向上させ、より安価であり、クロムは結晶粒構造制御と靭性向上のために使用される。主な目的は、Sc、Zr、Crを含むAl-Mg-Si合金に関する知識を深め、ScおよびZrの単独添加がAl-Mg-Si合金の微細組織と特性に及ぼす影響を調査し、Zrおよび/またはCrによるScの完全または部分的置換によって同様の機械的特性と析出挙動を得る可能性を探ることである。 4. 研究概要: 研究テーマの背景: アルミニウム合金は、特に輸送分野において、様々な産業で軽量化を実現し、燃料消費と排出物を削減するために不可欠である。熱処理性と良好な特性バランスで知られるAl-Mg-Si合金は、主に展伸材として使用されている。しかし、複雑な形状の製造能力と良好な機械的性能を組み合わせるために、高性能Al-Mg-Si鋳造合金、特に高圧ダイカスト(HPDC)用の合金開発への関心が高まっている。Zr、Cr、Scなどの元素による微量合金化によってこれらの合金を最適化することで、その微細組織と機械的特性を向上させることができる。 従来の研究状況: これまでの研究では、鋳放し状態で良好な機械的特性を示すMagsimal®59、Hydronalium 511、Aural11などの市販鋳造合金を含む、Al-Mg-Si系の利点が確立されている。Sc(大幅な強化、結晶粒微細化)、Zr(加工性向上、Al3Zr析出物)、Cr(結晶粒構造制御、靭性)のアルミニウム合金への個別添加の効果は、主に展伸材や他のAl合金系に関する研究から知られている。しかし、これらの元素を組み合わせた添加、特にSc置換に焦点を当てたAl-Mg-Si 鋳造 合金、とりわけHPDC材に関する包括的な研究は限られている。これらの複雑な多成分合金における相形成を理解するためには、熱力学的モデリングと相図計算が不可欠である。 研究目的: 本研究の主な目的は、スカンジウム(Sc)、ジルコニウム(Zr)、クロム(Cr)の系統的な合金化を通じて、市販のAl-Mg-Si鋳造合金(Magsimal®59)の機械的特性を改善することである。具体的な目的は以下の通りである。 核心研究: 本研究の核心は、Magsimal®59組成をベースに、Zr、Cr、Scを個別および組み合わせて系統的に添加した新しいAl-Mg-Si-Mn鋳造合金の開発と調査であった。これらの合金は高圧ダイカスト(HPDC)によって製造された。研究は以下に焦点を当てた。 5. 研究方法論 研究設計: 本研究は、合金元素Zr、Cr、ScがAl-Mg-Si-Mn母合金(市販のMagsimal®59)に及ぼす影響を系統的に調査するように設計された。これらの元素の濃度を個別に、または組み合わせて変化させた一連の実験合金が開発された(詳細はTable 3.6参照)。すべての合金は、工業的応用に適した条件を確保するために高圧ダイカスト(HPDC)を用いて製造された。本研究では、開発された合金を、鋳放し状態および様々な熱処理条件(T5およびT6)において母合金と比較した。 データ収集・分析方法: 研究テーマ・範囲: 本研究は、Al-Mg-Si-Mn鋳造合金、具体的にはMagsimal®59母材組成に、ジルコニウム(0.1-0.2 wt.%)、クロム(0.1-0.3 wt.%)、スカンジウム(0.1-0.2 wt.%)およびそれらの組み合わせ(例:Cr+Zr、Sc+Zr)を添加したものを対象とした。範囲は以下を含む。 6. 主な結果: 主な結果:
Read More
By userAluminium-J, automotive-J, Technical Data-JAl-Si alloy, aluminum alloy, aluminum alloys, Applications, CAD, Efficiency, Microstructure, Review, 自動車産業, 자동차, 자동차 산업
本紹介資料は、「[Politecnico di Torino (Master of Science Thesis)]」によって発行された論文「[Selective laser melting aluminum alloys for automotive component]」に基づいています。 1. 概要: 2. 抄録: 選択的レーザー溶融(Selective Laser Melting)によって製造されたAlSi10Mgの特性に関する研究が、機械的および形態学的観点から実施されました。SLMおよび一般的なアディティブマニュファクチャリング技術によって実現される部品の本質的な特性の一つが高い異方性であることを考慮し、異なる造形方向が最終製品の特性に及ぼす影響が調査されました。さらに、熱処理を受けた材料と造形まま(as-built)の材料との間の機械的特性の比較、および粉末層の厚さの影響にも焦点が当てられました。この点に関して、AlSi10Mg合金の一連のサンプルがSLMプロセスを通じて作製されました。サンプルは、粉末層の厚さが異なる1つのケースを含む、4つの異なるジョブを通じて実現されました。試験片は2つの異なる造形方向でプリントされ、造形ままおよび処理された試験片の機械的挙動は、引張試験、HBマイクロ硬さ試験、およびシャルピー衝撃試験を通じて研究されました。最終製品の特性は、形状、粒子サイズおよび分布、組成などの粉末特性に依存するため、試験片の作製に使用された粉末も研究対象となりました。 3. 緒言: アディティブマニュファクチャリング(AM)技術、特に選択的レーザー溶融(SLM)は、自動車や航空宇宙などの産業分野でますます不可欠なものとなっており、従来の製造技術に比べて多くの利点を提供しています。主な利点には、重量削減(部品の低密度化、組み立ての必要性をなくす部品の統合)、コスト削減(モデル、システムの設計段階のコスト排除、人件費削減)、およびオンデマンド生産(例:生産中止となった自動車のスペアパーツ)が含まれます。特にSLMは、最大99.9%の高密度金属部品の製造を可能にし、従来のプロセスでは製造できない非常に微細な微細組織と複雑な形状を実現します。この非常に微細な微細組織により、SLMプロセスを通じて作られた部品は、従来の生産プロセスと比較して改善された機械的特性を持つことができます。しかし、AMは、処理時間(速度)、潜在的な欠陥(表面粗さ、寸法精度)、層ごとの成長による固有の異方性、機械の寸法によって制限されるサイズ制限、機械および原材料の高コスト、サポート構造の必要性などの制限に直面しています。当初ラピッドプロトタイピング(RP)として知られていたAMは大幅に進化しましたが、金属部品、特に自動車産業におけるその応用は、ポリマーと比較して比較的新しい開発です。 4. 研究の要約: 研究テーマの背景: アディティブマニュファクチャリング(AM)、特に選択的レーザー溶融(SLM)は、高品質で複雑な金属部品を製造するための成長分野であり、特に軽量で高性能な部品を求める自動車産業に関連しています。AlSi10Mgは自動車用途で使用される一般的な鋳造合金であり、SLMプロセスの候補材料となっています。 先行研究の状況: SLM技術により、微細な微細組織を持つほぼ完全密度のAlSi10Mg部品の製造が可能です。しかし、プロセス誘起の異方性(造形方向による特性の変動)、気孔などの潜在的な欠陥、プロセスパラメータ(レーザー出力、スキャン速度、層厚、スキャン戦略)および後処理(熱処理)が最終特性に及ぼす影響などの課題が存在します。特にアルミニウム合金は、高い反射率、高い熱伝導率、酸化傾向、粉末流動性の問題により困難を伴います。 研究の目的: 本論文は、SLMによって製造されたAlSi10Mg合金の機械的および形態学的特性を調査することを目的としました。研究は以下の影響に焦点を当てました: 中核研究: 本研究では、EOS M290 SLMシステムを使用して、異なる条件(4つの異なる「ジョブ」)下でAlSi10Mgサンプルを製造しました。2つの主要な造形方向(Z軸およびXY平面)が比較されました。サンプルは、造形ままの状態と応力除去熱処理(300°Cで2時間)後の両方で特性評価されました。1つのジョブでは、より厚い粉末層(0.03 mmに対して0.06 mm)が使用されました。開始粉末(2つのバッチ、AおよびB)も特性評価されました。特性評価方法には、密度および気孔率測定、光学顕微鏡(OM)、微細組織および破面分析のための走査型電子顕微鏡(SEM)、相特定および残留応力分析のためのX線回折(XRD)、引張試験、マイクロ硬さ試験(ブリネル)、およびシャルピー衝撃試験が含まれました。 5. 研究方法論 研究設計: 本研究では、異なる条件下でSLMによって製造されたAlSi10Mgサンプルを比較する実験計画を採用しました。主な変数は以下の通りです: データ収集および分析方法: 研究トピックおよび範囲: 本研究は、潜在的な自動車用途向けのAlSi10Mg合金のSLMプロセスに焦点を当てました。範囲には以下が含まれます: 6. 主要な結果: 主要な結果: 図の名称リスト: 7. 結論: AlSi10Mg合金の試験片がレーザービーム溶融(SLM)技術によって製造され、特性評価されました。主要な結論は以下の通りです: 8. 参考文献: 9.
Read More
By userAluminium-J, Salt Core-J, Technical Data-Jaluminum alloy, aluminum alloys, Applications, CAD, Die casting, High pressure die casting, Mechanical Property, Microstructure, Salt Core, 금형
この紹介資料は、「[韓国鋳造工学会誌]」に掲載された論文「[セラミック溶融コアの微세組織と機械的特性]」に基づいています。 1. 概要: 2. 抄録 (Abstract): 本研究は、セラミック粒子の添加による低融点溶融コアの開発に関するものである。高圧ダイカストまたはスクイズキャスティングプロセスにおいて、複雑な内部形状やアンダーカットを必要とする一体型鋳造部品を製造するために、新しい概念の塩コア(salt core)が導入された。セラミック粒子の添加は微細組織の生成を助け、溶融コアの機械的特性を向上させた。高い圧縮強度を有する新しい溶融コア材料の製造のための新技術が確立された。セラミック粒子の添加は溶融コア材料の機械的特性を向上させた。セラミック粒子の割合と機械的強度との間には、60%まで増加する関係が存在した。 3. 序論 (Introduction): ダイカスト法では、メタルコア、コーティングされたシェル(shell)、高融点コアなどが使用されている。これらの方法は、溶湯が浸透したり、コアの強度が弱くて破損したりする現象が起こり、鋳造後の抽出が非常に困難であるという欠点がある。新しい溶融コア(fusible core)は、従来のコアとは異なり、融点が270〜520°C程度の低融点化学塩(salt)を基本素材として使用し、セラミック粒子を添加して強度とコア物性を向上させる[1, 2]。これらのコアは、溶融金属が低速/高速で注入されてもコアが破壊されたり、溶融金属がコア内部に浸透したりしないという利点を持つ。これは、熱伝導率が金型材料である特殊鋼の約1/400程度と非常に低いため、コアが熱変形する前に溶融金属の表面凝固層を形成させることができるため、ダイカストを行っても溶融コアの破壊はなく、溶融コアの複雑な形状をそのまま実現できる。 本研究では、鋳造時に必要な溶融コアの特性を評価した。また、溶融コアの機械的特性を評価しようとした。ダイカスト[3-6]と高圧凝固に該当する溶湯鍛造法(Squeeze casting)は、金型に溶融金属を注入した後、油圧装置を利用して機械的な高圧力を溶湯に加え、定められた金型空間を充填させると同時に50〜200 MPaの加圧下で凝固完了させる鋳造プロセスである[7-13]。このように加圧力が作用する状態で、溶融コアが破壊や崩壊することなく強度を維持しなければならない。新たに開発された溶融コア(fusible core)は、従来のコアとは異なり、融点が270〜520℃程度の低融点化学塩(salt)を基本素材として使用する。熱伝達率が金型材料である特殊鋼の約1/400程度と非常に低いため、コアが熱変形する前に溶融金属の表面凝固層を形成させることができる。したがって、ダイカストプロセスでも溶融コアの破壊はなく、溶融コアの複雑な形状をそのまま実現できるという利点がある。しかし、低融点コアの融点が低いため、製品製造時に複雑な内部が凝固前に溶融する現象が見られる可能性がある。本研究は、このような複雑な形状実現の利点を活かし、溶融コアが溶融する欠点を減らす方策をダイカストプロセスに適用し、適切な溶融コアの製造方法と機械的特性を調査しようとした。低融点化学塩にセラミック粒子の含有量を変化させて強度の変化を分析した。 4. 研究の概要 (Summary of the study): 研究テーマの背景 (Background of the research topic): ダイカストおよびスクイズキャスティングプロセスでは、鋳造部品に複雑な内部形状やアンダーカットを作成するためにコアが必要となることが多い。従来のコア方式は、破損、溶湯浸透、除去困難などの課題に直面している。低融点塩ベースの溶融コアは潜在的な利点を提供するが、高い鋳造圧に耐える十分な機械的強度と、早期溶融を避けるための熱的安定性が必要である。 従来の研究状況 (Status of previous research): 本論文は、セラミック粒子で強化された新しい概念の塩コアを紹介する。一般的なコア技術が存在し[3-13]、溶融塩の特性が知られているが[1]、この研究は特に高圧ダイカストおよびスクイズキャスティング用途向けに機械的特性を改善するために、低融点塩とセラミック添加剤の新しい組み合わせに焦点を当てている。既存のコアの限界と基本的な低融点塩コアの潜在的な問題点から、強化された材料に関するこの調査が必要とされる。 研究の目的 (Purpose of the study): 本研究の目的は、低融点塩ベースにセラミック粒子を添加することにより、新規な溶融コア材料を開発し評価することである。この研究は、これらの新しい溶融コアの製造技術を確立し、高圧ダイカストおよびスクイズキャスティングへの適合性のために機械的特性(特に圧縮強度)を改善し、添加されたセラミック粒子の量と結果として得られるコア強度との関係を理解することを目的とする。 中核研究 (Core study): 研究の中核は、低融点化学塩ベースに様々な重量パーセント(20 wt.%、40 wt.%、50 wt.%、60 wt.%)のセラミック粒子を混合して溶融コアサンプルを製造することであった。これらの異なるコア組成物の機械的特性、特に室温圧縮強度を測定した。さらに、破断したコア表面の微細組織をSEMを用いて分析し、セラミック粒子の添加がコアの内部構造にどのように影響し、その機械的強度と関連しているかを理解した。 5. 研究方法論 (Research Methodology)
Read More
By userAluminium-J, heat sink-J, Technical Data-JAir cooling, aluminum alloy, aluminum alloys, Aluminum Die casting, Applications, CAD, Die casting, Efficiency, 금형, 알루미늄 다이캐스팅
この紹介資料は、「[発行ジャーナル/学会名は論文に記載なし]」によって発行された論文「Efficiency and Cost Tradeoffs Between Aluminum and Zinc-Aluminum Die Cast Heatsinks」に基づいています。 1. 概要: 2. 抄録: 高純度アルミニウムは、常に電子部品からの熱を除去するための優れたヒートシンク材料でした。しかし、特殊な形状の非押出ベースのヒートシンクの製造は、多くの材料ベースの問題を引き起こします。高純度アルミニウムはダイカストが非常に困難であり、通常、ダイカストプロセスを助けるために不純物を添加する必要があります。これらの少量の不純物により、材料の熱伝導係数はほぼ半分に低下します。結果として得られる熱伝導率は、多くの亜鉛ダイカスト材料のそれに非常に近くなります。ダイカストコスト、単価、高電力密度と低電力密度間の効率低下を比較するコストおよび性能分析が、様々な市販の亜鉛、亜鉛-アルミニウム、およびアルミニウムダイカスト材料間で検討されます。この検討は、44個のカスタムチップ(ダイあたり5ワットから55ワット)を利用する世界最速のグラフィックコンピュータであるUNCのPixelFlowの冷却システムの設計に関連して行われました。この9kWの空冷システムは非常にコンパクトで、寸法は18インチ×42インチです。短く高速な信号経路長は、近接して配置されたチップとカード間の熱を除去するための革新的で費用効果の高い方法を必要とします。 3. 序論: コンピュータやその他の電子機器における電力密度の増加により、既製のヒートシンクの選択肢と使用能力は低下しています。低電力(最大3ワット)アプリケーションでは、単純なクリップオンヒートシンクが効果的ですが、プロセッサチップのようなより強力で熱に敏感なコンポーネントには、より高価な鋳造または押出フィンヒートシンクが必要です。最も高価で冷却が困難な電子機器には、液体、伝導、または浸漬冷却が必要ですが、これらは大規模な科学機関や政府以外ではコスト的に法外です。現代の電子パッケージンググループは、現在の安価な空冷システムの限界に達しており、商業的に禁止されている液体または伝導冷却方法の使用を必要とする傾向にあります。商業的に実行可能であり続けるためには、空冷システムの設計者は、システムの実際の空気の流れとヒートシンクの設計に注意を払う必要があります。既製の押出材は安価で、ほとんどの中〜高電力アプリケーションに効果的ですが、部品密度がかなり高い場合、押出材固有の欠点が明らかになります。表面積に対する熱伝導率はそれほど高くなく、多数を直列に配置するとかなりの背圧(back pressure)を引き起こす可能性があります(初期のPixelFlowボード設計における冷却問題を示すFigure 2参照)。既製のオプションが利用できないか不十分な場合、カスタム設計のヒートシンクが必要になります。この論文は特に、UNCのPixelFlowグラフィックコンピュータの冷却課題に対処しており、非効率的な既製設計(1個あたり$2.50)の代わりに、カスタムソリューション(Figure 3)を使用して1個あたりわずか$0.73の費用効果の高い解決策を必要としました。 4. 研究の概要: 研究テーマの背景: 電子部品の電力密度の増加傾向は、単純な既製のヒートシンクよりも高度な熱管理ソリューションを必要とします。コスト上の理由から空冷が好ましい方法ですが、高密度システムではその有効性が課題となります。カスタムヒートシンク設計が重要になります。 従来の研究状況: 標準的なソリューションには、既製のアルミニウム押出ヒートシンクが含まれます。これらは費用効果が高いですが、2Dジオメトリ、熱性能、および高密度構成での空気の流れの妨害(背圧)によって制限されます。液体または伝導冷却のようなより高価なオプションが存在しますが、主流製品には商業的に実行可能でないことがよくあります。カスタムオプションには、機械加工部品、鋳造/機械加工フィン、および完全鋳造ヒートシンクが含まれます。 研究の目的: カスタムヒートシンク用の様々なダイカスト材料(亜鉛、亜鉛-アルミニウム、アルミニウム)を比較するコストおよび性能分析を実施すること。この研究は、高電力、高密度システム(UNCのPixelFlow)の冷却ソリューションを設計する文脈で、熱効率(主に熱伝導率)とコスト(金型費、単価)の間のトレードオフを評価することを目的としています。 研究の核心: この研究は、特定の空気の流れ条件に最適化された複雑な3D形状のヒートシンクを作成するためのダイカストの適合性に焦点を当て、これをより単純な2D押出材と比較対照します。ヒートシンクの性能と製造に関連する材料特性を検討します: 5. 研究方法論 研究設計: この研究は比較分析方法論を採用し、様々なヒートシンク材料(主にダイカストオプション対アルミニウム押出ベンチマーク)を熱性能、製造特性、およびコストに基づいて評価します。UNC PixelFlowグラフィック スーパーコンピュータ プロジェクトの設計要件と経験に大きく依存するケーススタディ アプローチを使用します。 データ収集および分析方法: 様々な合金(Zamak 3、ZA-8、ZA-27、Aluminum 357、Aluminum 380、Brass 360)の材料特性(熱伝導率、熱膨張、密度、融点、引張強度)に関するデータが収集されました。コストデータ(金型費、材料費、5,000個生産時の単価)は、ダイカスターからの見積もりを通じて収集された可能性が高いです(表の注記から示唆される)。温度勾配分析(例:Figure 2 – Heatsink Temperature Gradient)を含む熱性能が評価され、これは熱シミュレーション(シャーシの空気流れ解析にFEAが言及されている、Figure 4)によって情報を得た可能性が高いです。主要な特性とコストを要約するために、「Heatsink Material Comparison Table」が作成されました。
Read More
By userAluminium-J, Technical Data-JAlloying elements, aluminum alloy, aluminum alloys, CAD, Die casting, Efficiency, Magnesium alloys, Microstructure, Review, STEP
本紹介資料は、「Elsevier」によって発行された論文「Sustainability through Alloy Design: Challenges and Opportunities」に基づいています。 1. 概要: 2. 抄録: 過去数十年の刺激的な冶金学的ブレークスルー、そして金属研究のための新しくより高性能な実験的および理論的ツールの開発と広範な利用可能性は、私たちが金属設計の新時代の幕開けを目の当たりにしていることを示しています。歴史的に、新しい金属材料の発見は、人類史における主要な工学的進歩の大部分を可能にしてきました。現在の工学的課題は、私たちの存在に不可欠な複数の産業における技術的進歩をさらに進めるために、新しい金属材料に対する緊急の必要性を生み出しています。しかし、金属加工に関する現在のデータは、冶金産業が私たちの惑星の未来に与える重大な環境影響を明確に示しています。この影響と対応する加工ソリューションが議論されている多数の報告があります。一方、改善された特性の組み合わせを持つ新しい金属材料の設計は、様々な方法で主要な環境課題に対処するのに役立ちます。この目的のために、本レビューの目標は、合金設計によって対処できる最も緊急な持続可能性の課題を議論し、これらの最も重要な課題に焦点を当てるために冶金研究への関心の高まりを調整するのを助けることです。 3. 序論: 金属の世界的な使用は増加しており[1]、その生産による負担が増大し、金属の持続可能性への取り組みの緊急性を浮き彫りにしています[2]。これには、鉱石採掘、金属加工、製品使用、および寿命末期の考慮事項からの影響を考慮したライフサイクル視点が必要です[3]。合金設計は、例えば、より高い動作温度を可能にして熱力学的効率を高めたり、可動部品の質量を削減したり(車両のように、より高い生産負担を使用段階の燃料節約で相殺する[4–7])、代替エネルギー生成に向けたより高い機能性を持つ製品を作成したりすることによって、大きく貢献できます。 全体的な金属使用量は増加していますが、一部の有毒金属(Cd、Pb)の消費量は時間の経過とともに減少または安定しています[8]。ただし、これらの金属の供給は、本レビューの基礎となる金属の鉱石採掘の副産物として持続する可能性があります[9]。金属生産、特に一次生産(世界のエネルギー消費の7〜8%を使用)は、エネルギー消費、温室効果ガス排出(例:鉄鋼およびMg生産におけるCO2)、採掘の影響(健康、景観、廃棄物、水使用)、および使用中の放出(腐食)を通じて環境に大きな影響を与えます[10]。鉄鋼は体積で最も大きな影響を与えます。キログラムあたりの影響が大きい金属には、微量元素(Sc、Re、Ge)が含まれ、Fe、Al、Cuは年間の地球温暖化ポテンシャルに最も貢献します[11]。 合金(例:超合金)における元素の多様性の増加は特性を向上させますが、寿命末期の回収とリサイクルを複雑にします[12, 13]。リサイクルは、熱力学、元素の適合性(Table 1)、および回収が行われるインフラストラクチャによって制限されます[14]。これは、組成的に複雑な合金(CCA)にとって課題となります[15]。資源の利用可能性と材料の重要性も懸念事項であり、特に政治的に不安定な地域に集中している元素(Figure 1)や副産物として採掘される元素についてです[16–20]。 持続可能性を高める機会は、製造効率の向上(例:鉄鋼で25%、Alで40%の歩留まり損失削減 – Figure 2)[21, 22]、潜在的には積層造形[23]を通じて存在します。しかし、最大の機会は、特に鉄鋼のようなユビキタスな材料について、耐久性、信頼性、修復可能性、および再利用性の向上を通じて寿命延長を可能にする合金の設計にあるかもしれません[24]。本レビューは、様々な合金システムにわたる持続可能性を促進するための重要な課題と有望な機会を強調し、環境的、政治的、経済的要因を考慮に入れることに焦点を当てています。 4. 研究の概要: 研究トピックの背景: 金属需要の増加は、その生産と使用に伴う著しい環境フットプリント(世界のエネルギー消費の7-8%、排出物、資源枯渇)と相まって、冶金産業内での持続可能な解決策に対する緊急の必要性を生み出しています。材料のライフサイクル全体にわたる特性と性能に影響を与える合金設計は、これらの持続可能性の課題に対処するための重要な道筋を示しています。 先行研究の状況: プロセス改善(例:生産効率[26, 27]、リサイクル[28, 29]、CO2削減[26, 30]、代替生産[26, 34])を通じた持続可能性改善に関する広範な研究が存在します。環境影響を評価するためのライフサイクルアセスメント手法[3]が確立されています。様々な金属ファミリー内の特定の合金開発努力は、強度、耐熱性、耐久性などの改善された特性を目標としてきました。研究はまた、複雑な合金のリサイクルに関連する課題[13, 14, Table 1]、資源の重要性[16, 17, Figure 1]、および生産影響と使用段階の利点との間のトレードオフ(例:軽量化[7])を強調しています。計算ツール(DFT、CALPHAD、ICME)は合金開発でますます使用されています。 研究の目的: 本レビューは、戦略的な合金設計を通じて効果的に対処できる最も重要な持続可能性の課題を特定し、議論することを目的としています。7つの主要な合金システム(鋼、アルミニウム、チタン、マグネシウム、超合金、形状記憶合金、高エントロピー/複合濃縮合金)にわたる主要な機会を調査し、肯定的な環境影響を最大化するための将来の冶金研究の方向性を示します。焦点は、持続可能性目標の達成において、プロセス改善だけでなく合金設計の役割に具体的に当てられています。 コア研究: 本レビューは、7つのクラスの金属材料に関する持続可能性の課題と合金設計ソリューションを検討します: 5. 研究方法論 研究設計: 本研究は、包括的な文献レビュー方法論を採用しています。広範な出版された科学論文、報告書、データベースから既存の知識と研究結果を統合します。 データ収集および分析方法: 著者らは、金属の生産と使用の持続可能性側面(環境影響:エネルギー消費、排出、資源枯渇を含む)、ライフサイクルアセスメント、リサイクルの課題、資源の利用可能性に関する出版された文献からデータを収集しました。彼らは、7つの主要な合金システム(鋼、Al、Ti、Mg、超合金、SMA、HEA/CCA)内での合金設計戦略に焦点を当てた研究を分析しました。分析には、各合金システムに特有の主要な持続可能性の課題を特定し、これらの課題に対処するために提案または実施された合金設計アプローチをレビューすることが含まれました。調査結果は、有望な機会を強調し、将来の研究の方向性を示すために統合されました。 研究トピックと範囲: 本研究は、材料科学、特に合金設計と持続可能性の交差点に焦点を当てています。範囲は以下を含みます: 6. 主な結果:
Read More
By userAluminium-J, Salt Core-J, Technical Data-Jaluminum alloy, aluminum alloys, Applications, CAD, Die casting, Die Casting Congress, Magnesium alloys, Salt Core, 金型, 금형
本紹介資料は、「METAL 2013」に掲載された論文「UTILIZATION OF ECOLOGICAL FRIENDLY CORES FOR MAGNESIUM ALLOYS CASTINGS」に基づいています。 1. 概要: 2. 抄録: 本研究の目的は、Mg合金の重力鋳造技術において、環境に悪影響を与えない無機材料ベースのコアの利用可能性を判断することです。この寄稿には、これらのコアの準備と処理の分析、および鋳造品の表面欠陥に関する鋳造サンプルの品質、構造、特性への影響が含まれています。本研究で得られた実験データは、他のMg合金鋳造技術にも活用できます。 3. 序論: 現在、穴やキャビティの事前鋳造には、有機樹脂ベースのコア混合物(例:PUR COLD-BOX)が標準として使用されており、迅速な準備、良好な射出性、高い初期強度、良好な崩壊性などの特徴があります。しかし、熱分解時に有機化合物が放出され、鋳造生産の衛生および環境条件を悪化させる問題があります。このため、無機バインダーが再び注目されており、これは生活および作業環境に悪影響を与えずに、有機バインダーと同等の技術的パラメータを提供します。 先進的な技術の一つは、無機塩ベースのコアを使用するもので、特にAl合金などの非鉄合金のキャビティおよび穴の事前鋳造に活用されます。塩コアの使用は1970年代に遡り、1990年代には重力および低圧鋳造法によるディーゼルエンジンピストンの大量生産に結晶性塩コアが広く使用され始めました。製造方法には、結晶性塩の高圧圧縮、塩溶融物の鋳型への注入または高圧射出、あるいは無機(有機)バインダーと共に塩マトリックスを射出する「古典的な」鋳造技術の活用などがあります。2003年以降は、塩溶液または固体結晶状態のNaClの高圧圧縮を活用する方向にコア製造が進み、BEACH BOX、HYDROBONDなどの新技術も登場しています。 塩コアの主な利点は、一般的なコア混合物(PUR CB)に匹敵する高い初期強度、寸法精度および鋳物表面の平滑性、機械的に清掃が困難な穴の事前鋳造の可能性、湿潤なしでの良好な保管寿命などです。また、鋳物キャビティから除去(溶出)された塩を溶液(塩水)から結晶化させ、次のコア製造に再利用する閉鎖的な生態学的サイクルが可能です。重要な点は、鋳造、冷却、凝固の過程で塩がVOCs(揮発性有機化合物)を排出しないことです。コア特性は、準備条件(圧縮圧力の高さ、射出温度など)と基本マトリックス構成(塩の種類、添加剤)を変更することで最適化できます。Al合金鋳造(重力および低圧鋳造)に広く適用可能であり、高圧鋳造技術への適用に関する研究も活発に行われています。 マグネシウム合金は、すべての構造材料の中で最も低い密度、高い比強度、良好な鋳造性などを持ちますが、高温での急激な強度低下、低いクリープ抵抗性、低い弾性係数、高い凝固収縮率、一部の用途での低い耐食性などの欠点もあります。特にマグネシウムの高い酸素親和性のため、溶湯の流れを酸化から保護するために特殊な添加剤(抑制剤)の使用が不可欠です。最も一般的に使用される抑制剤には、硫黄またはその化合物、ホウ酸、尿素ベースの添加剤などがあります。これらの抑制剤は、鋳型雰囲気の酸素ポテンシャルを低下させ、鋳物表面に保護雰囲気を形成してさらなる酸化を防止します。 しかし、硫黄ベースの抑制剤は、保護雰囲気を形成すると同時に、鋳造中に溶湯を介して浸透し、レードル底部に沈殿して精錬剤としても機能します。これらの抑制剤の化学的性質上、マグネシウム合金鋳造は、溶湯-抑制剤システムと酸化雰囲気との相互作用中に放出される化合物(SO₂、NH₃など)により、作業および生活環境の質を低下させる可能性があります。 マグネシウム合金鋳造の主な技術は金型鋳造(圧鋳、低圧鋳造、一部重力鋳造)です。最近では、より高い内部品質を得るための方法が適用されており、半溶融状態での材料処理(Thixocasting)が主流です。それほど複雑でない穴の事前鋳造には、金属コアを活用できます。単一部品生産には、消耗性鋳型(鋳物砂混合物)やセラミックまたは石膏鋳型鋳造が最も頻繁に使用されるでしょう。マグネシウム合金鋳造用の鋳型またはコア混合物としては、様々なバインダーシステムとベントナイト鋳物砂を使用できます。マグネシウム合金の高い反応性と混合物中の水分の存在により、鋳物砂混合物自体にも抑制剤を添加する必要があります。鋳造、冷却、凝固中に鋳型内で複雑な物理化学的プロセスが進行し、様々な酸化状態の化合物(例:硫黄)が形成され、これによりベントナイトバインダーの不活性化が予想され、これは特に水分凝縮領域での引張強度の低下およびその他の混合物パラメータ(例:pH)の変化を引き起こす可能性があります。 4. 研究の要約: 研究テーマの背景: 環境に優しい鋳造プロセスへの要求は、コア用有機バインダーの代替品への関心を高めています。無機塩コアは生態学的利点を提供し、アルミニウム合金に対して確立されています。マグネシウム合金鋳造は、酸素との高い反応性により独特の課題を抱えており、これは抑制剤の使用を必要としますが、抑制剤はベントナイトのような伝統的な鋳型材料と負に相互作用する可能性があります。 従来の研究状況: 塩コア技術は1970年代から開発されており、高圧圧縮や溶融注入/射出などの確立された方法が主にアルミニウム合金に使用されてきました。研究結果は、高い強度、良好な表面仕上げ、リサイクル可能性を示しました。酸化や抑制剤が鋳型特性(特に硫黄ベース抑制剤によるベントナイトバインダーの不活性化)に及ぼす影響を含む、マグネシウム合金鋳造の課題は知られていました。 研究の目的: 本研究は、ベントナイト結合鋳物砂混合物中でマグネシウム合金(特にAZ91)の重力鋳造に無機塩コアを使用することの実現可能性を調査することを目的としました。研究は、塩コアの技術的特性(機械的強度、寸法精度、溶解性、結果として生じる鋳物表面品質)を評価し、硫黄ベース抑制剤がベントナイト鋳物砂混合物の特性に及ぼす影響を評価することに焦点を当てました。 コア研究: 研究の核心は、純粋な化学KCl(N)および2つの異なる添加剤(A、B)を含むKClベースの塩コアを、2つの異なる力(100 kNおよび200 kN)を使用する高圧圧縮法で準備することでした。これらのコアは、硫黄ベース抑制剤を含むベントナイト鋳型にAZ91マグネシウム合金を重力鋳造する際に使用されました。鋳造は2つの温度(700°Cおよび800°C)で行われました。研究では、塩コアの曲げ強度と溶解性、生成された鋳物の表面粗さ(Ra)、および鋳造前後のベントナイト鋳物砂混合物の機械的特性(圧縮強度、割裂強度、湿態引張強度)とpHを測定し、熱分解と抑制剤の効果を評価しました。 5. 研究方法論 研究設計: 本研究は、異なる塩コア配合(純粋なKCl対添加剤AまたはBを含むKCl)を異なる圧縮圧力(100 kN対200 kN)下で準備し比較する実験計画を採用しました。これらのコアは、硫黄ベース抑制剤を含む標準的なベントナイト鋳物砂混合物にAZ91マグネシウム合金を重力鋳造する実際の応用分野でテストされました。効果は、コア特性、鋳造品質、および2つの異なる鋳造温度での熱暴露後の鋳型特性の変化を測定することによって評価されました。 データ収集および分析方法: 研究テーマと範囲: 本研究は、AZ91マグネシウム合金の重力鋳造における高圧圧縮されたKClベースの塩コアの適用に具体的に焦点を当てました。範囲は次のとおりです。 6. 主要な結果: 主要な結果: 그림 및 표 목록: 図表リスト:
Read More
By userAluminium-J, Technical Data-Jaluminum alloy, aluminum alloys, AUTOMOTIVE Parts, CAD, Die casting, Efficiency, High pressure die casting, Microstructure, Permanent mold casting, Review, 금형
本紹介資料は、「Eastern-European Journal of Enterprise Technologies」によって発行された論文「Enhancing side die resistance to thermal shock in automotive casting: a comparative study of FCD550 and SKD6 materials」に基づいています。 1. 概要: 2. アブストラクト: 金型ディスク自動車用途において、FCD550材をSKD6材に置換することにより、サイドダイの熱衝撃耐性を向上させた。主な課題は、生産プロセスの加速によって誘発される熱衝撃によるサイドダイの亀裂であり、これが生産停止や大量の顧客注文への未達につながっていた。本研究は、FCD550よりも熱衝撃によく耐える材料を特定し、それによってサイドダイの耐久性と製造プロセスの全体的な生産性を向上させることを目的とする。研究には、直接生産実験、FCD550およびSKD6材料の分析、ダイ特性の評価、材料変更前後の最終製品属性の評価が含まれた。実験室試験および機械設定トライアルを実施し、生産プロセスを変化させて結果を評価した。結果は、SKD6が金型ディスク自動車用途においてFCD550よりも熱衝撃に対して著しく耐性があることを示している。本研究では、データシートを用いてサイドダイ材料の強度を比較し、既存の冷却条件下で設定パラメータを調整した。実験では、標準温度を520–545 °Cから532–538 °Cに変更し、ソーク時間(soaking time)を最低270–540秒から332秒に短縮した。これにより、ソーク時間が69秒から46秒に、エージング時間(aging time)が190秒から180秒に短縮され、7台の機械全体での鋳造生産性が28日あたり194,870個から213,311個に増加し、サイドダイの亀裂なしに28日あたり200,000個という顧客の要求を満たした。TSD5605G規格に従った5つの製品サンプルの耐久性試験により、品質が顧客仕様を満たしていることが確認された。 3. 序論: 自動車部品製造における材料の熱衝撃耐性の研究は、特に車両が高度化し、厳しい条件に耐える部品への要求が高まる中で、その重要性は非常に大きい[1]。これらの重要な部品の中でも、ディスク自動車ホイールは、大きな荷重と繰り返しの応力に耐える中心的な役割を担っている[2]。その完全性を確保することは、車両性能だけでなく、安全基準の遵守にも不可欠である。製造会社は、高い販売注文と生産性向上の必要性に応えるため、製品品質を維持しながら生産プロセスを最適化するという課題に直面している。しかし、この効率追求は、製造プロセスにおけるサイドダイの亀裂発生に見られるように、意図せずに新たな課題を引き起こす可能性がある。顧客の要求を満たすことを目的とした生産方法の加速は、サイドダイ領域内で熱衝撃問題を引き起こし、亀裂や製品品質の低下を招いている[3]。これらの課題に対処するためには、熱衝撃を理解することが最も重要である。急激な温度変化は材料に機械的応力を誘発し、構造破壊につながる可能性がある[4]。したがって、サイドダイのような金型材料の熱衝撃耐性を向上させることは、生産能力を強化し、製品の完全性を維持するために不可欠である。本研究では、従来のFCD550材料と、向上した熱衝撃耐性を含む有望な特性を持つSKD6合金を比較することにより、サイドダイの熱衝撃耐性を向上させる方法を調査し、製造効率と部品の耐久性を改善することを目指す。 4. 研究概要: 研究テーマの背景: 自動車ホイールディスクのような自動車部品には、高い耐久性と動作応力に対する耐性が求められる。生産要求の増加は、製造プロセスの加速を必要とするが、これがダイカスト金型、特にサイドダイ領域において熱衝撃を引き起こし、亀裂や生産停止につながる可能性がある[3]。本研究の対象は、自動車ホイールディスク製品の生産に使用されるサイドダイの熱衝撃耐性である。 先行研究の状況: 先行研究では、ダイ材料における微小亀裂や関連現象[5]が特定され、熱伝導率[6]、焼戻し効果[7]、熱応力モデリング[10]などの側面が調査されてきた。しかし、加速された鋳造プロセスにおける熱衝撃によって直接引き起こされる亀裂という特定の問題は、大部分が未解決のままであった[9, 10]。SKD6鋼の特性(高熱動作性、良好な靭性、耐侵食性)は知られているが[10, 11, 12]、この特定の用途においてFCD550と比較して熱衝撃を緩和する潜在能力は評価が必要であった。 研究目的: 本研究の目的は、PSD3Kディスク自動車ホイールタイプ製品の生産において、サイドダイの熱衝撃耐性を向上させ、それによって製品の完全性と品質を維持しながら製造プロセスを加速することである。目的は以下の通りであった: 研究の核心: 本研究は、ディスク自動車ホイール鋳造用のサイドダイ用途におけるFCD550とSKD6材料の比較分析を行った。材料選定は、熱衝撃耐性に関連する特性(硬度、組成、特にバナジウム含有量)に焦点を当てた標準データシート(表1-4)の比較に基づいて行われた。SKD6が選定された。SKD6を用いてサイドダイを製作し(図1、図2)、その化学組成を検証した(表5)。冷却システムのコンセプトを視覚化した(図3)。ダイカストマシンを用いて実験的トライアルを実施し、FCD550とSKD6サイドダイの性能を比較した。初期トライアルでは既存の設定を使用し、その後SKD6ダイ用にパラメータ(温度、ソーク/エージング時間)を最適化した(表6、図8)。性能は、ダイと製品の目視検査、硬さ試験(図6)、微細構造分析(図5)、気孔率シミュレーション(図7)、サイクルタイム測定、およびTSD5605G規格に従った最終製品品質試験を通じて評価された。 5. 研究方法 研究デザイン: 本研究では比較実験デザインを採用した。以下の内容を含む: データ収集・分析方法: 研究対象と範囲: 本研究は、自動車ディスクホイール(PSD3Kタイプ)の高圧ダイカストに使用されるサイドダイの熱衝撃耐性向上に特化して焦点を当てた。範囲は以下を含む: 6.
Read More