Tag Archives: aluminum alloys

Figure: 6.4 Fill time for the 1st experiment

複雑なハウジングのダイカストにおける品質と効率の向上

この紹介論文は、Anveshana’s International Journal of Research in Engineering and Applied Sciencesに掲載された論文「IMPROVING QUALITY AND EFFICIENCY IN DIE CASTING OF COMPLEX HOUSINGS」の研究内容です。 1. 概要: 2. 概要 (Abstract) 生態学的バランスを提供するために、燃料消費を削減する新しい技術が開発されています。これらの新しい技術の中で、アルミニウムやマグネシウムなどの軽合金の使用は、自動車用途において非常に重要になっています。軽量性、リサイクル性、機械加工性、耐食性の面でのアルミニウム合金の利点により、これらの合金の適用分野が増加しました。アルミニウムの用途は、自動車だけでなく、航空宇宙、スペースシャトル、海洋、防衛用途でも増加しています。製造方法によると、アルミニウム合金は一般的に、鋳造、板金、鍛造、押出に分類されます。アルミニウムダイカスト合金は、一般的にサスペンションシステム、エンジン、ギア部品の製造に使用されます。この研究では、自動車産業におけるアルミニウムダイカスト合金の使用の重要性を強調しています。アルミニウムダイカスト合金の開発に関する研究とこれまでの傾向もまとめられています。 3. 研究背景: 研究テーマの背景: 以前の研究の状況: 研究の必要性: 4. 研究目的と研究課題: 研究目的: 主要な研究: 5. 研究方法 6. 主要な研究結果: 主要な研究結果と提示されたデータ分析: 図のリスト: 7. 結論: 主要な調査結果の要約: 8. 参考文献: 9. 著作権: この資料は、上記の論文を紹介するために作成されたものであり、商業目的での無断使用は禁止されています。 Copyright © 2025 CASTMAN. All rights reserved.

Figure 4.5: Tensile bar die casting in which hot shear specimens were taken from the middle of the reduced section of the tensile bars.

アルミニウム高圧ダイカストにおける高温強度がはんだ付けを低減する

この紹介論文は、[Open Access Dissertation] が発行した [“High Temperature Strength Reduces Soldering In Aluminum High Pressure Die Casting”] 論文の研究内容です。 1. 概要: 2. 概要 高圧ダイカスト (HPDC) の欠陥であるダイはんだは、鋳造材の局所的な部分が金型表面に付着し、時間の経過とともに蓄積する局所的な付着現象です。これにより、金型を修理する必要があり、プロセスに追加コストが発生し、部品価格に転嫁されます。歴史的には、はんだ付けは潤滑剤、コーティング、および合金の化学組成の変更によって緩和されてきましたが、依然として発生しています。 トレスカ摩擦熱機械モデルは、鋳物と金型表面の間の局所的な界面せん断応力が鋳物の局所せん断強度を超えると、はんだ付けが発生することを示唆しています。温度の関数としてのこれらのせん断強度の比率は、はんだを予測することが示されています。これまでの研究は、摩擦係数を低減し、それによって界面せん断強度を低減することに焦点を当てており、はんだ付けに関する鋳物の強度を高める作業は行われていませんでした。合金の化学組成は、はんだ付け挙動に影響を与えることが示されていますが、Al-Fe金属間化合物が一般的に受け入れられているはんだ付けメカニズムであるため、間違った理由です。 トレスカ摩擦モデルをサポートするために、化学組成を変更することによって高温強化メカニズムを調査しました。まず、マグネシウムの添加により、いくつかのアルミニウムHPDC合金の固溶強化およびオロワン強化メカニズムの改善を定量化し、合金の高温せん断強度を向上させました。次に、改善された合金せん断強度をトレスカモデルに適用し、はんだ付けを誘発するように設計された実験室規模のパーマネントモールドと実規模のHPDC生産試験を使用して試験し、その結果は新しいはんだ付けメカニズムを示しています。最後に、はんだと鋳造表面のチルゾーンまたは「スキン」との関係を調査し、議論します。 3. 研究背景: 研究テーマの背景: アルミニウム高圧ダイカスト (HPDC) は、高強度、薄肉鋳物を製造するために広く使用されているプロセスですが、鋳造合金が金型表面に付着するダイはんだ付けに悩まされています。これにより、費用のかかる金型メンテナンスが必要になり、生産性が低下します。 先行研究の状況: 研究の必要性: 既存のはんだ付け緩和戦略は不十分です。合金組成、高温機械的特性、およびはんだ付け現象の関係をより深く理解して、より効果的なソリューションを開発する必要があります。 4. 研究目的と研究課題: 研究目的: 高温強化メカニズムとトレスカ摩擦モデルへの影響に焦点を当てて、HPDC アルミニウム合金の強度が接着とはんだ形成に及ぼす影響を調査すること。 主要な研究: 5. 研究方法 6. 主要な研究結果: 主要な研究結果と提示されたデータ分析: 図のリスト: 7. 結論: 主要な調査結果の要約: この研究は、合金組成とプロセス パラメータを慎重に制御することで、はんだを軽減できることを示しました。 今後の研究の可能性のある分野: 8. 参考文献: 9.

Read More

Figure 1. Car body concepts as a function of production volume.

自動車製造における高強度アルミニウム合金

本紹介論文は、IOP Publishing が発行した「High strength aluminum alloys in car manufacturing(自動車製造における高強度アルミニウム合金)」の論文の研究内容です。 1. 概要: 2. 概要(Abstract) 近年、自動車製造に対しては、顧客側からの要求と、有害排出物を削減して環境保護を強化し、安全性、快適性、経済性を向上させるための法的要件の両面から、多くの要件が課せられています。これらのしばしば相反する要件を満たすために、軽量設計原則の適用が最も広く適用されている解決策の 1 つです。板金成形によって製造される車体要素に特に有効な、低コスト製造による軽量自動車構造物の製造には、2 つの主要なトレンドがあります。軽量合金材料、特にさまざまなアルミニウム合金の適用は、軽量車体構造の要件を満たすためのもう 1 つの可能な解決策と見なされています。アルミニウムは鋼材よりも軽量化の可能性がさらに高いですが、アルミニウムは鋼よりも成形性が低いです。アルミニウムのような軽い材料で鋼を置き換えることは、費用がかかり、簡単ではありません。これは、最近、アルミニウム合金の熱間成形が研究活動の最前線に登場した主な理由の 1 つです。この論文では、「軽量車両の大量生産のための低コスト材料処理技術」と題された共同欧州プロジェクト内で得られたいくつかの最近の結果を紹介します。 3. 研究背景: 研究テーマの背景: 自動車製造における主な開発トレンドは、顧客の要求 (低燃費、安全性、機能性、快適性の向上) と、より厳格な法的要件 (有害排出物の削減、衝突安全性の向上) によって推進されています [1]。軽量化は、これらの相反する要件を満たすための重要な戦略です。 以前の研究の現状: 従来、鋼は BIW (Body in White) 製造における主要な材料でした。しかし、高張力鋼 (DP 鋼、TRIP 鋼、XHSS、UHSS など) のさまざまな世代を含む開発が行われてきました [図 2]。特にアルミニウムのような軽量合金材料の適用は、効果的な解決策と見なされています。 研究の必要性: アルミニウムは室温での成形性が鋼よりも低いため、直接的な代替は困難で費用がかかります。これにより、アルミニウム合金の熱間成形に関する研究が推進されています。 4. 研究目的と研究課題: 研究目的: 材料およびプロセス開発を含む要件を満たすための主な可能性をレビューし、将来の自動車製造ソリューションの可能性と開発動向を比較すること。共同欧州プロジェクト (軽量車両の大量生産のための低コスト材料処理技術) で得られた最近の結果を紹介すること。 コア研究: 車体製造におけるアルミニウム合金の使用時に発生する課題、特に室温での鋼と比較したアルミニウムの低い成形性に対処することに焦点を当てています。 5.

Read More

Figure 9- Left: Schematics of a conventional HPDC cold chamber machine [14]; Right: Typical layout of a component produced by a cold chamber machine [15].

高圧ダイカストによるZamak合金

この紹介論文は、[FEUP FACULDADE DE ENGENHARIA UNIVERSIDADE DO PORTO] によって発行された論文「高圧ダイカストによるZamak合金(High Pressure Die Casting of Zamak alloys)」の研究内容です。 1. 概要: 2. 要約 / 序論 高圧ダイカスト (HPDC) プロセスは、特に自動車分野で著しい進歩を遂げています。アルミニウム合金が一般的に使用されますが、優れた表面品質と高い生産性から、亜鉛合金、特にZamakが注目を集めています。本論文は、Zamak合金のHPDCについて、乱流による湯流れに起因するポロシティ欠陥を低減するための湯口システムの最適化に焦点を当てて調査します。また、部品品質をさらに向上させるための真空技術の適用についても調査します。 溶融金属の充填プロセス中に大量の空気が発生することは、気孔率に関連する欠陥につながる重大な問題です。 真空技術は、空気の巻き込みに関連する欠陥を克服するために使用されています。 3. 研究背景: 研究テーマの背景: HPDC は、溶融金属を再利用可能な金型に高圧および高速で射出する金属鋳造プロセスです。このプロセスには、コールドチャンバーマシンとホットチャンバーマシンの 2 種類のダイカストマシンがあります。 ホットチャンバーマシンは、亜鉛、スズ、鉛、および一部のマグネシウム合金などの低融点合金に使用されます。 既存の研究の状況: 既存の研究では、HPDCにおけるポロシティの問題、特にZamak合金における問題が指摘されています。湯口システムとプロセスパラメータの最適化は既知のアプローチですが、設計者の経験に依存することがよくあります。 真空アシストHPDCは、アルミニウムやマグネシウム合金には広く使用されていますが、亜鉛合金にはあまり一般的ではありません。 Zamak合金の真空システムの詳細設計に関する文献は限られています。 研究の必要性: Zamak合金は、亜鉛を主成分とし、アルミニウム、銅、マグネシウムを続く特定のファミリーです。 高密度と低温での高いクリープ速度が、これらの合金を使用する際の 2 つの主な問題です。 これにより、「軽量」市場での使用が制限されます。 これらの理由から、これらの欠点を克服するための新しい方法が必要であり、それによってZamak合金がより広い市場シェアを持つことができます。 湯口システムの設計は、金型の製造だけでなく、製造されるコンポーネントの品質とコストにも影響を与えるため、重要なタスクです。 4. 研究目的と研究課題: 研究目的: 本論文は、スプレッドシートベースの計算方法を利用して、Zamak合金のHPDCにおける湯口システム設計へのより科学的なアプローチを開発することを目的としています。 また、真空技術を詳細に調査し、Zamak 合金の高圧ダイカスト プロセスにおけるその適用可能性を調査することも目的としています。 主な研究: 5. 研究方法

Read More

Figure 3. Mould surface repaired by TIG welding

高圧ダイカスト金型補修技術

本紹介内容は MTSM2017 で発行された「High pressure die casting mould repair technologies」の研究内容です。 1. 概要: 2. 要旨 / はじめに 本論文は、高圧ダイカスト金型の補修に最も一般的に使用される技術を紹介するものです。高圧ダイカスト (HPDC) は、鋳造欠陥、表面粗さ、長い製造時間、薄肉断面の制限、寸法精度など、従来の鋳造における問題を効果的に解決します。HPDC の永久金型に一般的に使用される材料は、高合金熱間工具鋼であり、多くの場合 H13 (ASTM) が使用されます。使用中に、金型表面は、主に熱亀裂によって損傷します。補修は金型の寿命を延ばし、製造コストを削減します。 3. 研究背景: 研究テーマの背景: 金型は、HPDC プロセスにおいて最も複雑で高価な構成要素です。 既存の研究の状況: 先行研究では、HPDC 金型における最も重要な摩耗メカニズムは熱疲労であることが示されています。鋳造サイクル中の極端な温度変動は、表面の亀裂を引き起こします。 研究の必要性: これらの過酷な条件のため、高合金鋼が金型材料として使用されます。HPDC 金型は高価で複雑であるため、金型の寿命を延ばし、製造コストを削減するための補修技術の研究が不可欠です。 4. 研究目的と研究課題: 研究目的: 高圧ダイカスト金型を補修するための最も一般的な技術を説明すること。 主要な研究: この論文の主な研究は以下を説明します: 5. 研究方法 研究デザイン: これはレビュー論文であり、既存の知識と実践を統合しています。 データ収集方法: 文献レビューと既存の技術文書の分析。 分析方法: さまざまな補修技術の説明的な分析と比較。 研究対象と範囲: 範囲は、高圧ダイカスト金型の補修、特に H13 のような高合金工具鋼で作られたものに限定されます。 6. 主要な研究結果: 主要な研究結果: 提示されたデータの分析:

Read More

Figure 1. Calculated isothermal section at 298 K for MgAl-Ca alloy system [3].

マグネシウムパワートレイン鋳造部品(MPCC)プロジェクトにおける基礎研究の必要性

本紹介内容は、TMS (The Minerals, Metals & Materials Society) が発行した「Fundamental Research Needs for the Magnesium Powertrain Cast Components (MPCC) Project」の研究内容です。 1. 概要: 2. 要約 / 序論 要約 (Abstract)マグネシウムパワートレイン鋳造部品プロジェクト(MPCC)は、米国エネルギー省と米国自動車研究評議会(US Council for Automotive Research)が共同で後援するプロジェクトであり、マグネシウム集約型エンジン製造の実現可能性と実用性を判断することを目的としています。このプロジェクトは、V6エンジンの技術的および経済的要求事項を決定することを目指しています。新しく開発されたいくつかの高温マグネシウム合金が、これらの要求事項を満たすでしょう。このプロジェクトの追加の目的は、パワートレイン部品におけるマグネシウム合金および鋳造プロセスの使用に関する、基礎的な科学的課題を特定することです。研究分野は次のとおりです:マグネシウム合金開発(構造-特性関係)、相平衡および計算熱力学、クリープ変形機構、鋳造(凝固)挙動、腐食、リサイクル。MPCCプロジェクトのこの目的は、北米における新しいマグネシウム科学研究を促進し、既存の研究を強化することです。 序論 (Introduction)マグネシウムは、自動車の燃費を向上させることができます。自動車のパワートレインにマグネシウムを使用するには、より高い動作温度(150〜180℃)で性能が向上した合金が必要です。マグネシウムパワートレイン鋳造部品プロジェクト(MPCC)は、自動車のパワートレインにおけるマグネシウム合金の使用の準備状況を判断するために開始されました[1]。 3. 研究背景: 研究テーマの背景: 既存の研究状況: 研究の必要性: 4. 研究目的と研究課題: 研究目的: 主要研究: 5. 研究方法 研究デザイン: データ収集方法: 分析方法: 研究対象と範囲: 6. 主な研究結果: 主な研究結果: 提示されたデータの分析: 図のリスト: 7. 結論: 主要な結果の要約:

Read More

Fig. 3 - Hydrogen removal to gas bubbles in a degasser.

アルミニウム精錬技術に関する最終報告書

本紹介内容は、Government of Canadaが発行した「Final Report on Refining Technologies of Aluminum(アルミニウム精錬技術に関する最終報告書)」の研究内容です。 1. 概要: 2. 要約 / 序論 アルミニウム精錬は、自動車産業などの厳しい品質要求を満たすために重要です。この報告書は、フラックス処理、浮遊選鉱、ろ過という3つの主要な精錬プロセスについて詳しく説明しています。これらのプロセスは、前処理るつぼ/鋳造炉、脱ガス装置、ろ過装置で順次実行されます。アルカリ金属、非金属介在物、溶存水素などの不純物は、アルミニウムの特性を著しく低下させます。この報告書は、これらの不純物を低減する技術に焦点を当てています。 3. 研究背景: 研究テーマの背景: 特に自動車産業におけるアルミニウムの使用増加に伴い、より高い純度レベルが求められています。アルカリ金属(ナトリウム、カルシウム、リチウム)、非金属介在物、溶存水素などの不純物は、アルミニウム合金の機械的特性を損ないます。 既存研究の状況: 歴史的に、精錬には塩基性フラックス(塩化アルミニウム)と機械的パドリングが含まれていました。AlcanのTAC(Treatment of Aluminum in Crucible)プロセスは、特殊なローターとフッ化アルミニウム塩を使用してこれを改善しました。ランスを介して導入される塩素を使用したガスフラックス処理も開発されました。回転ガスインジェクション(RGI)は、効率をさらに向上させました。 研究の必要性: 既存の方法には限界がありました。パドリングは非効率的であり、ランスフラックス処理は攪拌不良と高い塩素排出の問題があり、初期の固体フラックス法は商業的な清浄度基準を満たすことができませんでした。また、厳格な環境規制により、塩素の使用を削減する必要がありました。 4. 研究目的と研究課題: 研究目的: 溶融アルミニウム精錬のための既存および新規技術を要約および評価し、さまざまな不純物の除去効果と環境への影響を中心に説明すること。 主要研究内容: 下記主要研究内容について説明します。 5. 研究方法 研究デザイン: 既存の精錬技術に関する文献レビューと分析。 データ収集方法: 公開された論文、特許、技術報告書のレビュー。 分析方法: さまざまな精錬方法に関する情報の定性的比較と総合。 研究対象と範囲: 範囲は、アルミニウム鋳造工場で使用される前処理、脱ガス、ろ過プロセスを含み、不純物除去とプロセス効率に焦点を当てています。 6. 主要研究結果: 主要研究結果: 提示されたデータの分析: 図表リスト: 7. 結論: 主要な調査結果の要約: 研究の学術的意義: さまざまな情報源からの情報を統合し、アルミニウム精錬技術に関する包括的な概要を提供します。 実用的な意義:

Read More

Conceptualization of Mega-Casting Concepts

自動車車体工業化のためのメガキャスティングにおける活動分野

本紹介内容は27. – 29. SEP 2022 | BAD NAUHEIM, GERMANY, Car Body Parts – from development to productionで発行された「自動車車体工業化のためのメガキャスティングにおける活動分野(Fields of Action in Mega-Casting for the Industrialization of Automotive Car Bodies)」の研究内容です。 1. 概要: 2. 要約 / 序論 自動車産業は、技術、変化する顧客行動、および強化された規制などの要因によって推進される変革プロセスを経験しています。高圧ダイカストプロセスであるメガキャスティングが登場し、自動車の車体生産を変える可能性を秘めています。この論文は、メガキャスティングの機会とリスクを提供することを目的としています。 3. 研究背景: 研究テーマの背景: 従来の自動車のホワイトボディ(BIW)生産には、高い投資とツーリングコスト、および限られた製品の柔軟性を伴うプレス工場と車体工場が含まれます。 既存の研究状況: メガキャスティングに関する文献は確認されていません。自動車産業におけるアルミニウム高圧ダイカスト(HPDC)の現在の用途には、主に中型から高級、スポーツ、高級車、およびSUVのショックタワーや縦方向ビームなどの構造部品が含まれます。最大4ktのダイロック力と30〜180秒のサイクル時間を含む、コールドチャンバーダイカストのサイクルが説明されています。[12] 研究の必要性: メガキャスティングは自動車産業で注目を集めています。自動車産業の製品-生産システム全体に対するメガキャスティングの影響を理解する必要があります。 4. 研究目的と研究課題: 研究目的: 自動車車体工業化の文脈におけるメガキャスティングに関連する活動分野を分析すること。 主要な研究課題: 5. 研究方法論 研究デザイン: 複数の方法を組み合わせたアプローチが採用され、以下が含まれます。 データ収集方法: 分析方法: 研究対象と範囲:

Read More

Fig. 3 Optical images of grain refined alloy samples using Al-5Ti-1B at only one magnification (750 ppm Ti,150 ppm B)

スクイーズ鋳造A356合金の微細組織および機械的特性に及ぼす造粒剤および改質剤添加の影響

この論文の要約は、”Effect of Addition of Grain Refiner and Modifier on Microstructural and Mechanical Properties of Squeeze Cast A356 Alloy”と題された論文に基づいており、”Transactions of the Indian Institute of Metals”にて発表されました。 1. 概要: 2. 研究背景: 自動車、航空宇宙、防衛などの産業において、アルミニウム-シリコン (Al-Si) 合金、特にA356グレードは、低密度と、高強度、優れた鋳造性、優れた熱伝導性、良好な耐食性および耐摩耗性などの有利な特性の組み合わせにより、広く利用されています。先行研究では、重力ダイカストAl-Si合金の機械的特性は、ホウ素やチタンなどの造粒剤、およびストロンチウムなどの改質剤の添加によって改善されることが示されています。加圧鋳造法であるスクイーズ鋳造も、アルミニウム合金の機械的特性を向上させることが知られています。 しかし、既存の研究では、マスター合金を用いて造粒および改質された鋳造Al合金へのスクイーズ鋳造の適用に関する包括的な研究には限界があります。したがって、これらの複合プロセスの影響をさらに調査する必要があります。したがって、この研究は、Al-Si合金に対する造粒および改質と組み合わせたスクイーズ鋳造の影響を調査するために不可欠です。 3. 研究目的と研究課題: 4. 研究方法 5. 主な研究結果: 6. 結論と考察: 7. 今後のフォローアップ研究: 8. 参考文献: 9. 著作権: この資料は上記の論文に基づいて要約されたものであり、商業目的での無断使用は禁止されています。Copyright © 2025 CASTMAN. All rights reserved.

Figure 8. Developed Al-6Zn-2Mg-1.5Cu alloy propeller

低圧ダイカストAl-Zn-Mg-Cu合金プロペラの開発 パートII:プロセス最適化のためのシミュレーション

この論文概要は、Materials (MDPI) に掲載された論文「Development of Low-Pressure Die-Cast Al-Zn-Mg-Cu Alloy Propellers Part II: Simulations for Process Optimization」に基づいています。 1. 概要: 2. 研究背景: 高性能レジャーボートプロペラの需要は着実に増加しています。ステンレス鋼プロペラは優れた特性を持つ一方で、製造コストが高く、加工が困難です。鋳造アルミニウム合金は製造が容易ですが、材料特性により低出力用途に限られます。高強度アルミニウム合金は、機械的特性とコスト効率のバランスを取り、有望な代替材料となります。 先行研究パートIにおいて、著者らはプロペラ製造に適したAl-6Zn-2Mg-1.5Cu合金を開発し、低圧ダイカスト(LPDC)におけるハブとブレードの接合部でのホットテアリングが重要な課題であることを明らかにしました。従来の重力鋳造法では、高強度アルミニウム合金の鋳造欠陥を制御することが難しく、高品質な製品の製造を妨げています。したがって、LPDCプロセスを最適化し、ホットテアリングを克服し、これらのプロペラの安定した量産体制を確立することが重要です。量産ラインでの試行錯誤によるプロセス調整には限界があるため、効率的なプロセス最適化にはシミュレーション技術が不可欠です。 3. 研究目的と研究課題: 4. 研究方法 5. 主な研究成果: 6. 結論と考察: 7. 今後のフォローアップ研究: 8. 参考文献: 9. 著作権: この資料は上記の論文に基づいて要約されたものであり、商業目的での無断使用は禁止されています。Copyright © 2025 CASTMAN. All rights reserved.