Tag Archives: 알루미늄 다이캐스팅

Fig. 20 Waveforms obtained in RQTS for various rotor faults

ダイカスト銅ローター用ローター品質試験システムの設計と開発

本紹介内容はIEEEで発行された論文 “Design and Development of Rotor Quality Test System for Die-Cast Copper Rotors” の研究内容を紹介するものです。 1. 概要: 2. 概要 / 導入 概要 – 銅ローターモーターは、最新のモーターと同等の優れた効率を発揮し、電気自動車用途に適格となる高い温度に対応できることが市場で周知されています。重金属であるダイカスト銅ローターの製造には、信頼性の高いローター生産のために絶対的な注意が必要です。本論文では、銅ダイカスト加工における一般的な欠陥を特定し、3段階検査における十分な監視方法を提案します。最終段階は、銅ダイカストローターに見られるほとんどの問題を検出するローター品質試験システムで構成されています。このローター品質試験システム分析は、ローター製造プロセスを最適化し、不良ローターをモーターアセンブリに取り付ける状況を回避するのに役立ちます。 I. 導入 電気自動車(EV)への世界的な関心が拡大するにつれて、自動車エンジニアは、材料使用量の削減、サイズの小型化、重量の軽減によって利点を得ることができるモーター製造のための特殊材料を探しています。近年、希土類材料の希少性と、永久磁石モーターにおける高温での磁石性能への懸念から、ダイカスト銅ローターモーターへの関心が高まっています。銅ローター誘導モーターは、小型化、高出力密度、システム全体、効率、耐久性の点で、パラレルハイブリッド電気自動車にとって実行可能な選択肢であると思われます[1]。高圧ダイカストは、ダイカストローターの製造において最も経済的なプロセスであり、1930年代からアルミニウムが選択材料となっています。銅の高い導電率を利用して、ローターにアルミニウムの代わりに銅を使用することは、EV用途向けのエネルギー効率の高いモーターを開発するための確固たる戦略であることが証明されています。かご形誘導電動機のダイカストローターバーでアルミニウムを銅に置き換えることは、ローターI²R損失の低減という点で大きな利点があり、最終的には効率と省エネが向上します。ローターI²R損失の低減は、モーターの動作温度を低下させます。銅ダイカストプロセスはアルミニウムダイカストプロセスと同一ですが、温度と圧力の増加による追加の製造上の課題により、銅ダイカストローターの製造は困難になります。銅の溶融コストと溶融銅の取り扱い費用は、アルミニウムの約3倍高いと推定されています。ダイカスト銅ローターモーターの製造にかかる高コストは、入力電力消費量の削減、メンテナンス費用の削減、長寿命化による省エネによって相殺されます[2]-[7]。新しいダイカストローターの構造には、モーターの動作を危険にさらす可能性のあるさまざまな欠陥があります。ローターの欠陥は、異常な発熱、追加の高調波の存在、アークの発生、振動や騒音の発生、モーターの速度やトルクの変動を引き起こします。ダイカスト銅ローターの問題は、モーターの望ましくない性能につながり、信頼性が低下し、頻繁なサービスが必要になります。ローターの欠陥による誘導電動機の全故障は、約10%と推定されています[8]。銅で製造されたダイカストローターは、製造時にさまざまな欠陥を引き起こす可能性があります。問題の中には、肉眼では検出できないほど見えないものもあれば、特定されていない問題もあります。 3. 研究背景: 研究テーマの背景: 電気自動車(EV)への世界的な関心が高まるにつれて、自動車エンジニアは、材料の使用量、サイズ、重量を削減できるモーター製造用の特殊材料を模索しています。ダイカスト銅ローターモーターは、希土類材料の入手可能性の低さと、永久磁石モーターにおける高温での磁石性能への懸念から、近年注目を集めています。銅ローター誘導モーターは、小型、高出力密度、効率、耐久性の点で、ハイブリッドEVにとって実行可能な選択肢です。高圧ダイカストは、従来アルミニウムを使用してきたローター製造において経済的です。高い導電率を持つ銅は、エネルギー効率の高いEVモーターにとって確固たる代替材料です。ダイカストローターバーでアルミニウムを銅に置き換えることは、ローターI²R損失を大幅に削減し、効率と省エネを向上させ、モーターの動作温度を低下させます。しかし、銅ダイカストはアルミニウムダイカストと類似していますが、より高い温度と圧力のため、製造上の課題があります。溶融銅を溶融および処理するコストは、アルミニウムよりも約3倍高くなります。製造コストは高くなりますが、ダイカスト銅ローターモーターは、省エネ、メンテナンスの削減、長寿命化により費用対効果が高くなります。 既存研究の現状: ダイカストローターの欠陥は、モーターの動作を損ない、異常な発熱、高調波、アーク、振動、騒音、速度/トルク変動などの問題を引き起こす可能性があります。これらの問題は、モーターの信頼性を低下させ、サービス要求を増加させます。ローターの欠陥は、誘導電動機の故障の約10%を引き起こすと推定されています。銅ダイカストローターは、さまざまな製造上の欠陥が発生しやすく、その一部は目に見えません。既存のローター品質監視方法には、固定子電流周波数成分を分析することにより、破損したバーや偏心などの欠陥を検出するオンライン手法である電流シグネチャ分析(MCSA)が含まれます。ただし、MCSAは複数の欠陥が存在する場合に使用が難しく、モーターが組み立てられて動作している必要があります。結果は他のモーターコンポーネントの影響を受け、専門家の解釈が必要です。これらの方法は、ダイカスト銅ローターの定量的な品質評価を提供せず、完全な組み立て前の製造中に適用することはできません。グラウラーテスト、タップテスト、浸透探傷試験、超音波探傷試験、抵抗試験などの分解されたモーター検出方法が存在しますが、特に内部欠陥などのすべてのタイプの欠陥を検出する上で限界があり、大量生産中の包括的な品質評価には適していません。 研究の必要性: 製造現場でのローター品質評価には、モーターコンポーネントに依存しない直接的な試験方法が必要です。RMFA、グラウラーテスト、超音波探傷試験などの現在の分解された検出方法は、すべての欠陥タイプを検出すること、および電気的、磁気的、絶縁性、構造的特性を含む完全なロータースタック評価を提供することに限界があります。高圧および高温を伴うダイカスト銅ローターの製造プロセスは、電気的、磁気的、絶縁性、構造的な変動を引き起こし、多孔性、ラミネーション短絡、スキュー角度偏差、導電率低下などの問題につながる可能性があります。これらの問題は、銅ローターの利点を打ち消し、モーターの効率と性能を低下させる可能性があります。既存の試験手順は、ダイカスト銅ローターのすべての問題を詳細に評価するには不十分です。これらの問題に対処し、製造を最適化し、不良ローターがモーターアセンブリに取り付けられるのを防ぐには、包括的な3段階検査プロセスが必要です。 4. 研究目的と研究課題: 研究目的: 本研究の目的は、ダイカスト銅ローター用のローター品質試験システム(RQTS)を設計および開発することです。このシステムは、製造中に発生する銅ダイカストローターの一般的な欠陥を検出し、それによってローター製造プロセスを最適化し、不良ローターを使用したモーターの組み立てを防ぐことを目的としています。RQTSは、さまざまな欠陥タイプを検出する際の限界に対処し、生産ラインでの品質管理を可能にすることにより、既存の方法と比較して、ローター品質のより直接的かつ包括的な評価を提供することを目的としています。 主要な研究課題: 5. 研究方法 研究デザイン: 本研究では、ローター品質試験システム(RQTS)を作成するために、設計および開発アプローチを採用しました。これには、電磁誘導原理に基づくシステムの概念化、ハードウェアコンポーネント(電磁センサー、ローター駆動システム、データ収集システム)の設計、および信号分析と品質評価のためのソフトウェアの開発が含まれていました。このシステムは、重量試験、超音波試験を使用したエンドリングの欠陥検出、および最終RQTS試験を含む3段階検査プロセス用に設計されました。RQTSを検証するために、意図的に欠陥が導入されたプロトタイプローターが製作されました。 データ収集方法: RQTSは、電磁センサーを使用して、磁場内で回転するときにローターバーに電圧を誘導します。ローターバーの物理的状態を反映する誘導電圧波形は、センサーのピックアップコイルによってキャプチャされます。NI PCI-5922デジタイザーボードを備えたデータ収集システム(DAQ)は、センサーコイルからのアナログ信号を取得および調整するために使用されます。近接センサーは、周波数分析用の速度入力を提供します。取得した波形は、NI LabVIEWで開発されたカスタムソフトウェアを使用して処理および分析されます。 分析方法: 取得した波形は、NI LabVIEWで開発されたソフトウェアを使用して、時間領域と周波数領域の両方で分析されます。最初に、高周波ノイズを除去するために、バターワースローパスデジタルフィルターが適用されます。FFTを使用した周波数分析は、ローターバー通過周波数を特定し、欠落しているバーを検出するために実行されます。FFTスペクトルの振幅分析は、ローター欠陥の重症度を評価するために使用されます。統計的比較は、事前定義された基準に対してローター品質を評価するために実装されています。ソフトウェアは、ローター品質パーセンテージを計算し、設定された基準に基づいて合格/不合格の判定を提供します。欠陥のあるローターからの波形パターンは、特定の欠陥タイプを識別するために基準波形チャートと比較されます。 研究対象と範囲: 本研究は、誘導電動機用のダイカスト銅ローターに焦点を当てています。開発されたRQTSは、調整可能なチャックおよびテールストックアセンブリ、および適応可能な電磁センサー設定を通じて、さまざまなローターサイズと重量に適用できるように設計されています。一般的なダイカスト銅ローターの欠陥をシミュレートするために製造されたプロトタイプローターは、RQTSのテストと検証のための主要な対象として機能します。研究の範囲には、RQTSハードウェアおよびソフトウェアの設計、開発、検証、およびダイカスト銅ローター製造に関連するさまざまなローター欠陥を検出する能力の実証が含まれます。 6. 主な研究成果: 主要な研究成果:

Read More

Figure 3: Worn solid half of the mould part - mould insert

論文タイトル

この入門論文は、[Acta Mechanica Slovaca]によって発行された論文「”Use of Duplex PVD Coatings to Increase the Life of Moulds and Cores for die Casting of Aluminium Alloys in the Automotive Industry”」の研究内容を紹介するものです。 1. 概要: 2. 概要または序論 本稿では、自動車産業向け部品を対象とした高圧アルミニウムダイカストにおける金型およびコアの寿命延長を目的とした研究成果を詳述する。手法としては、Uddeholm Dievar金型鋼の表面に局所的なインパルス加熱を3段階の加熱速度で適用した。表面処理後、構造解析を実施し、続いてLarc技術を用いてPVD nACRo³コーティングを施した。コーティング品質の評価は、スクラッチ試験およびメルセデス試験によって行った。レーザー処理とnACRo³コーティングを施した後の表面微細形状は、ISO 25 178に準拠して評価した。その後、コーティングされた表面を680 ± 20℃の温度でAl-Si系合金溶融液に120分および300分間浸漬した。実験の結果、金型表面の耐性が著しく向上したことが確認された。 序論では、自動車産業におけるアルミニウムおよびプラスチック鋳造品の重要性を強調しており、これらは主にダイカストおよび射出成形用の金属金型を用いて製造されている。ダイカスト金型は、通常、クロムまたは工具鋼でできており、29~48 HRCの硬度に熱処理されており、金型の寿命は大量生産の生産性に大きく影響する重要な要素である。金型の損傷は、用途によって異なり、一般的な損傷として、工具表面に微細な亀裂のネットワークまたは個別の亀裂として観察される熱疲労亀裂がある。熱疲労亀裂の発生は、表面材料が小さな破片の形で失われる原因となる。その他の一般的な損傷原因としては、構造的なノッチによる引張亀裂、工具への鋳造合金の局所的な凝着(はんだ付け)、溶融金属またはプラスチックの鋳造によって助長される鋼のエロージョンなどがある。プラスチック射出成形金型は、より低い運転温度にさらされるが、圧力サイクルはより厳しく、そのため機械疲労損傷や過負荷による破損が発生する可能性がある [1]。アルミニウム合金鋳造用の金型部品およびコアは、高温下で適切な物理的および機械的特性を備えている必要があり、これらの特性は、熱的および機械的応力、ならびに金型とアルミニウム合金溶融液との界面での相互作用によって基本的に定義される。特に、アルミニウム合金溶融液による金型キャビティの乱流から分散充填への高速性、溶融液によって金型部品に発生する高い流体力学的圧力、および金型部品表面の比較的高温は、金型およびコアの寿命を著しく短縮する可能性がある。これらの現象はすべて、エロージョン、アブレーション、腐食、および金型の熱疲労のメカニズムによって、成形部品の表面劣化を引き起こし、それぞれが同時に作用する。 3. 研究背景: 研究課題の背景: アルミニウムおよびプラスチック鋳造品は自動車産業において極めて重要であり、主にダイカストおよび射出成形によって金属金型を用いて製造されている。ダイカスト金型は、通常、クロムまたは工具鋼でできており、29~48 HRCに熱処理されており、その寿命と生産効率に影響を与える重大な課題に直面している。金型寿命はダイカストの生産性における重要な要素であり、鋳造品または金型の用途に応じてさまざまな種類の金型損傷によって大きく影響を受ける。熱疲労亀裂は一般的な破損モードであり、工具表面に微細な亀裂のネットワークまたは個別の亀裂として現れ、材料の損失につながる。その他の損傷原因としては、構造的不規則性による引張亀裂、はんだ付け(鋳造合金の局所的な凝着)、および鋼のエロージョンなどがある。これらの劣化メカニズムは、アルミニウム溶融液射出中の高い流体力学的圧力と温度によって悪化し、エロージョン、アブレーション、腐食、および熱疲労を引き起こす [2]。 既存研究の現状: 現在の産業界では、工具や機械部品の表面保護と処理に重点が置かれている。しかし、最終表面仕上げ方法の進歩は遅れている。最終表面処理方法の研究開発は、主に学術機関や専門の研究室に集中している [6]。より優れた特性を実現し、新たな応用を可能にする革新的な表面仕上げ技術が開発されている。表面の前処理は、適切なコーティングの堆積を保証し、望ましい耐用年数と耐久性を達成するために不可欠である [7]。金属の加圧鋳造用工具および金型の摩耗は、主に熱疲労、研磨、浸食、および溶融金属の金型機能表面への腐食作用に起因し、表面形状の変化や溶融物の固着を引き起こす [8]。 研究の必要性: 金型表面の劣化を軽減するための潜在的な解決策として、溶融アルミニウムと接触する部品の表面処理が挙げられる。過酷な鋳造条件(熱的および化学的作用)により、金型表面は損傷を受けやすく、金型寿命は重要な懸念事項となっている。PVDコーティングの堆積に続いて、熱処理された工具のレーザー硬化は、耐性を高めるための有望なアプローチである。この方法は、コーティング前のレーザー前処理を利用して、より優れた表面接着特性を実現する [9]。ヨーロッパの自動車生産のかなりの部分を占めるスロバキア共和国の自動車産業は、より軽量で経済的、かつ環境に優しい車両に戦略的に焦点を当てている。鋼鉄部品を軽金属合金、特に費用対効果の高いダイカスト技術 [10] によって製造されたアルミニウム鋳造品に置き換えることが、重要な戦略となっている。合金特性、金型設計、および運転パラメータを含むダイカスト技術の最適化は、生産効率と鋳造品質にとって不可欠である。金型設計と技術寿命は決定的な要因であり、鋳造品質の要件と技術パラメータの許容範囲によって制限される

Read More

CAE modelling of cast aluminium in automotive structures

CAEモデリングされた自動車構造の鋳造アルミニウム

本記事では、リンショーピング大学が発行した論文 [“CAE modelling of cast aluminium in automotive structures”] をご紹介します。 1. 概要: 2. 概要または序論 自動車産業では、自動車メーカーがコンピュータ支援エンジニアリング(CAE)ソリューションの結果に基づいてエンジニアリング上の意思決定を行い、プロトタイピングとテストを、コストのかかる反復プロセスから最終的な検証および妥当性確認ステップへと変革することが強く推進されています。コンポーネントの材料特性と環境条件の変動性、および複雑なシステムの根底にある物理学に関する知識の欠如は、決定論的なCAEモデルのみに基づいて信頼性の高い予測を行うことを非現実的にすることがよくあります。そのような分野の1つが、鋳造アルミニウムコンポーネントのCAEモデリングです。これらの鋳造アルミニウムコンポーネントは、その称賛に値する機械的特性により、自動車産業で大きな関連性を獲得しています。鋳造アルミニウム合金の利点は、製造プロセスにおける確立された合金システム、その機能的完全性、および比較的軽量であることです。ただし、製造プロセス中に得られる気孔と微小空孔の存在は、特定の材料挙動を構成し、鋳造材料のモデリングにおける課題を確立します。さらに、材料の低い延性は、破壊を予測するための高度な数値モデルを要求します。 本修士論文の主な焦点は、鋳造アルミニウム合金コンポーネントであるスプリングタワーの、落下塔試験のモデリング手法を調査し、予測された挙動を物理試験結果で検証することです。ボルボ・カー・コーポレーションは現在、MATFEMが提供する鋳造アルミニウム部品の材料モデルを使用しており、この論文では、コンポーネントレベルの試験用の材料モデルを検証するために調査されています。 この目的を達成するために使用された方法論は、落下塔でコンポーネントレベルの試験を実行するための境界条件を開発し、明示的ソルバーLS-DYNAでさまざまなモデリング手法を使用して見つかった得られた結果とこれらを相関させることでした。したがって、シミュレーション結果は主要な設計変更によって影響を受ける可能性があるため、落下塔の正確で現実的なモデリングが重要です。スプリングタワーの詳細な有限要素モデルは、物理試験中に行われた観察から開発されました。洗練されたモデルは、スプリングタワーの既存のモデルと物理試験からの観察と良好な一致を示しました。 3. 研究背景: 研究トピックの背景: 自動車産業では、コンピュータ支援エンジニアリング(CAE)ソリューションの結果に基づいてエンジニアリング上の意思決定を行うことが大きく推進されています。この動きは、プロトタイピングとテストを、コストのかかる反復プロセスから最終的な検証および妥当性確認ステップへと変革することを目的としています。しかし、材料特性、環境条件の変動性、および複雑なシステム物理学に関する知識の不足は、決定論的なCAEモデルのみに基づいて信頼性の高い予測を行うことをしばしば困難にしています。重要な分野の1つは、鋳造アルミニウムコンポーネントのCAEモデリングです。鋳造アルミニウムコンポーネントは、その機械的特性、機能的完全性、および軽量性により、自動車産業でますます重要になっています。鋳造アルミニウム合金は有利である一方で、製造に起因する気孔や微小空孔のためにモデリング上の課題があり、特定の材料挙動や低い延性につながり、破壊予測には高度な数値モデルが必要となります。 既存研究の状況: ボルボ・カー・コーポレーション(VCC)は、鋳造アルミニウム部品にMATFEMが提供する材料モデルを使用しています。このモデル、MFGenYld+CrachFEMは、FEソフトウェアに組み込まれており、多数のクーポン試験から導き出されたパラメータを持っています。しかし、これらの材料カードは、VCCの鋳造アルミニウムコンポーネントに対して排他的に検証されていません。2012年にVCCで同じ鋳造アルミニウムコンポーネントに対して行われた以前の落下試験は、最適でないセットアップのため、望ましい結果が得られませんでした。接着剤とバインドベルトを使用したこの以前のセットアップでは、衝撃時にスプリングタワーが水平方向に移動し、固定具の剛性問題を示し、荷重に耐えることができませんでした。試験結果は、予想される破壊がなく、延性のみを示しました。 研究の必要性: MATFEM材料モデルの検証は、特にVCCでのコンポーネントレベルの試験において、FEシミュレーションにおける鋳造アルミニウムコンポーネントへの適用性を保証するために必要です。シミュレーション結果は設計変更によって大きく影響を受ける可能性があるため、落下塔試験の正確で現実的なモデリングが重要です。決定論的なCAEモデルが鋳造アルミニウムコンポーネントの挙動を予測する上で限界があることと、信頼性の高い破壊予測手法の必要性と相まって、改良されたCAEモデリング手法の研究が必要となります。以前の決定的な落下試験は、衝撃荷重下での鋳造アルミニウムコンポーネントの構造的完全性を正確に評価するために、より堅牢な試験セットアップとモデリングアプローチの必要性を強調しています。 4. 研究目的と研究課題: 研究目的: 本修士論文の主な目的は、自動車用途における鋳造アルミニウム構造物のCAEモデリング手法を研究、検証、および改善することです。これには、スウェーデンのヨーテボリにあるボルボ・カーズで使用されている現在のモデリングおよびシミュレーション技術を調査し、鋳造アルミニウム部品、特にスプリングタワーのコンポーネントレベルの試験用の材料モデル(MFGenYld+CrachFEM)を検証することが含まれます。 主要な研究: 主要な研究は、落下塔試験用の鋳造アルミニウム合金コンポーネントであるスプリングタワーのモデリング手法の調査に焦点を当てています。これには、落下塔でのコンポーネントレベルの試験のための境界条件を開発し、明示的ソルバーLS-DYNAでさまざまなモデリング手法を使用して得られた結果とこれらの試験を相関させることが含まれます。研究には、物理試験からの観察に基づいて、スプリングタワーの詳細な有限要素モデルを開発することも含まれます。 研究仮説: 5. 研究方法 研究デザイン: 本研究では、実験的検証とCAEシミュレーションを中心とした方法論を採用しています。これには、鋳造アルミニウム製スプリングタワーコンポーネントの物理的な落下塔試験と、LS-DYNAを使用した有限要素(FE)シミュレーションによる実験結果の相関関係が含まれます。この研究では、CAE予測の精度を向上させるために、FEモデルと試験セットアップを反復的に改良します。 データ収集方法: データは、衝撃質量と試験リグに取り付けられた加速度計を使用した物理的な落下塔試験から収集されました。加速度計からのチャネルデータはMETApostにインポートされ、ノイズを除去するためにフィルタリングされ、力、速度、および変位データを取得するために処理されました。力と変位の曲線がプロットされ、分析と比較が行われました。 分析方法: 明示的なFEA(LS-DYNAを使用)をシミュレーションに採用しました。MFGenYld+CrachFEM材料モデルを使用しました。シミュレーションは、シェル要素モデルとソリッド要素モデルの両方で、要素定式化(ELFORM02、ELFORM13、ELFORM16)、メッシュサイズ、および摩擦係数を変更して実行されました。結果は、シミュレーションからの力-変位曲線、破壊位置、およびピーク力を実験データと比較することにより分析されました。METApostは、後処理、塑性ひずみの可視化、および破壊指標としての要素削除の識別に使用されました。 研究対象と範囲: 研究対象は、ボルボ自動車構造で使用されている鋳造アルミニウム合金製スプリングタワーコンポーネントです。範囲は、コンポーネントレベルでのこの単一コンポーネントのCAEモデリングの分析と検証に限定されています。衝撃速度と方向を変えて、2つの荷重ケースを調査しました。この研究は、自動車の耐衝撃性に関連する落下塔試験条件とCAEシミュレーションパラメータに焦点を当てています。 6. 主な研究結果: 主要な研究結果: 提示されたデータの分析: 図の名前リスト: 7. 結論: 主要な調査結果の要約: 本研究では、特に鋳造アルミニウムコンポーネントの場合、CAE結果と物理試験を相関させるために正確な試験セットアップを開発することの重要性を実証しました。MFGenYld+CrachFEM材料モデルは、適切なモデリング手法を適用した場合、物理結果とFE結果の間で良好な相関関係を示しました。荷重ケース1の試験セットアップは、荷重ケース2と比較してより良い選択肢でした。シェル要素モデルとソリッド要素モデルの両方が、妥当な精度の破壊予測を提供しました。ソリッド要素シミュレーションはより正確でしたが、メッシュ依存性が高く、計算コストが高くなりました。ソリッド四面体メッシュの改良は結果を改善しましたが、シミュレーション時間を増加させました。これは、選択的質量スケーリングを明示的な有限要素解析に適用することで部分的に相殺できます。完全積分シェル定式化(ELFORM16)は、計算コストが高いにもかかわらず、縮退積分要素よりも破壊予測に適していました。摩擦係数は、正確なシミュレーション結果を得るために慎重に検討する必要がある重要なパラメータでした。 研究の学術的意義: 本研究は、特に自動車の耐衝撃性シミュレーションにおける、鋳造アルミニウムコンポーネントのCAEモデリングに関する知識体系に貢献しています。シェル要素とソリッド要素のモデリングアプローチ、要素定式化、メッシュ感度、および境界条件と摩擦の影響の詳細な比較分析を提供します。調査結果は、衝撃荷重下での鋳造アルミニウムの構造挙動を予測するためのさまざまなモデリング手法の長所と短所を強調し、この分野の研究者やエンジニアに貴重な洞察を提供します。 実用的な意味合い: 本研究は、鋳造アルミニウム自動車構造物のCAE解析に関与するエンジニアに実用的なガイドラインを提供します。力-変位曲線の相関関係については、ELFORM16を備えたシェル要素モデルが効率的で正確であることが示唆されています。正確な破壊位置予測、特に複雑な形状やスキニングなどの局所的な効果については、計算コストは高くなりますが、細かいメッシュを備えたソリッド要素モデルが望ましいです。この研究では、信頼性と予測性のある鋳造アルミニウムコンポーネントの結果を得るために、材料モデルを実験的に検証し、CAEシミュレーションで試験セットアップと摩擦パラメータを慎重に検討する必要があることを強調しています。選択的質量スケーリングは、精度を大幅に損なうことなく、計算効率を最適化するために使用できます。

Read More

ALUMINIUM DIE CASTING: LUBRICATION TECHNOLOGY AND TRENDS

ALUMINIUM DIE CASTING: LUBRICATION TECHNOLOGY AND TRENDS

この論文は、[‘Chem-Trend L.P’]が発行した[‘ALUMINIUM DIE CASTING: LUBRICATION TECHNOLOGY AND TRENDS’]に基づいて紹介文が作成されました。 1. 概要: 2. 概要またははじめに 概要:自動車産業における燃費効率向上の推進は、自動車メーカーが鋼鉄を軽量金属部品に置き換えることで自動車の重量を削減しようと努めるにつれて、アルミニウムダイカストの継続的な成長につながっています。より大きく、より複雑な部品が鋳造されるようになり、これは品質と生産性の向上を追求するダイカストメーカーに新たな課題をもたらしました。本稿では、これらのトレンドがダイおよびプランジャーの潤滑に与える影響を検証し、潤滑技術がこれらの要求を満たすためにどのように進化してきたかについて考察します。 3. 研究背景: 研究トピックの背景: 高圧ダイカストは、アルミニウムやマグネシウム合金のような軽金属から複雑な機械部品を製造するための非常に一般的なプロセスであり、特に自動車産業において、組立ラインやジャストインタイム生産環境における迅速かつ信頼性の高い部品生産の要求に応えるために普及しました。インド経済の急速な成長も、レクリエーショナルビークル、電動工具、電気機械、電子部品、家庭用品など、さまざまな分野でダイカスト製品の需要を増加させています。 既存研究の現状: 自動車産業が燃費効率向上のために軽量化を追求する中で、より大型で複雑なアルミニウムダイカスト部品を製造する傾向は、課題を提示しています。部品の複雑化は、均一な内部ダイ冷却を妨げ、ダイ表面温度の上昇につながります。従来、スプレー前のダイ表面温度は250℃から350℃の範囲でしたが、現在では高温部のダイでは400℃に達する一方、低温部では220℃程度になることがあります。この温度差は、局所的なホットスポットや半田問題を発生させ、ダイ表面の冷却のためにダイ潤滑剤への依存度を高めます。しかし、スプレー前の温度が高いほどライデンフロスト効果が悪化し、効果的な冷却と潤滑がより困難になり、潤滑剤の噴霧量を増やす必要が生じ、サイクルタイムとコストが増加します。 研究の必要性: 燃料費の高騰と厳しい環境規制により、自動車産業は鋼鉄をアルミニウムやマグネシウム鋳物に置き換えることで車両重量を削減しようとしています。この変化は、エンジンブロックやドアフレームのようなより大型で複雑な部品を製造するためのアルミニウム合金と鋳造技術の絶え間ない革新と相まって、ダイ表面温度の上昇と複雑化によってもたらされる課題を克服するために、ダイ潤滑技術の進歩を必要としています。既存の潤滑方法では、より高いダイ温度でのライデンフロスト効果が課題となっており、アルミニウムダイカストの生産性と部品品質を維持するための革新的なソリューションが必要です。 4. 研究目的と研究課題: 研究目的: 本論文の目的は、アルミニウムダイカストのトレンド、特に大型化・複雑化する部品の製造が、ダイおよびプランジャーの潤滑に与える影響を検証することです。さらに、これらの新たな要求に対応し、ダイカスト作業における品質と生産性を向上させるために、潤滑技術がどのように進化してきたかについて考察することを目的としています。 主な研究内容: 主な研究内容は、高圧ダイカストにおけるダイ表面温度の上昇とライデンフロスト効果によってもたらされる課題の理解と軽減に焦点を当てています。これには以下が含まれます。 研究仮説: 本研究は、ダイ潤滑剤のライデンフロスト温度を上昇させるか、または高温で迅速に皮膜を形成できる潤滑剤を開発することにより、より大型で複雑な部品に関連するダイ表面温度の上昇があっても、ダイカストの生産性を向上させ、半田のような欠陥を低減できるという仮説に基づいています。具体的には、新しい潤滑剤配合物が、冷却効率、高温での皮膜形成、および要求の厳しい条件下でのダイカスト性能の点で、従来の潤滑剤よりも優れているかどうかを検証します。 5. 研究方法 研究デザイン: 本研究では、新しいダイ潤滑剤配合物の性能を従来の潤滑剤と比較評価するために、実験計画法を採用しています。実験室実験と実地試験が含まれます。実験室実験では、ライデンフロスト温度、冷却曲線、および制御された温度での皮膜形成などの基本的な側面に焦点を当てています。実地試験は、実験室での知見を実際の運転条件下で検証するために、工業用ダイカスト環境で実施されます。 データ収集方法: データ収集方法には以下が含まれます。 分析方法: 分析方法には以下が含まれます。 研究対象と範囲: 本研究は、アルミニウム高圧ダイカスト用のダイ潤滑剤に焦点を当てています。実験室実験は、ステンレス鋼板上で水とさまざまな潤滑剤配合物を使用して実施されました。工業試験は、エンジンブロックを製造する北米のダイカストメーカーや小型多キャビティダイカストメーカーなど、顧客のダイカスト施設で実施されました。研究の範囲は、ダイ潤滑剤とその冷却、皮膜形成、ダイ密着性、およびアルミニウムダイカストにおける半田などの鋳造欠陥の低減への影響の評価に限定されています。 6. 主な研究結果: 主な研究結果: 提示されたデータの分析: 図のリスト: 7. 結論: 主な調査結果の要約: 本研究では、ライデンフロスト温度を大幅に上昇させ、最新のアルミニウムダイカストで遭遇する高温ダイ表面温度での皮膜形成を改善する新しいダイ潤滑剤材料の開発に成功しました。これらの新しい潤滑剤は、冷却効率の向上を示し、スプレー時間とサイクルタイムの短縮の可能性につながります。工業試験では、これらの潤滑剤が半田形成、キャビティ内ビルドアップ、およびオーバースプレーを効果的に低減し、生産性の向上と、研磨や洗浄などのダイメンテナンス要件の削減につながることが確認されました。 研究の学術的意義: 本研究は、高圧ダイカストにおけるダイ潤滑の基礎的な理解、特にダイ温度の上昇と複雑な部品形状の文脈において貢献します。効率的な冷却と欠陥低減を達成するために、ダイ潤滑剤のライデンフロスト温度と皮膜形成特性の重要性に関する経験的証拠を提供します。本研究は、ますます要求が厳しくなるダイカスト条件下での従来のダイ潤滑剤の限界を浮き彫りにし、これらの限界を克服するための高度な潤滑剤配合物の可能性を示しています。 実際的な意義: これらの新しい高性能ダイ潤滑剤の開発と検証は、ダイカスト業界に大きな実際的な意義をもたらします。これらの潤滑剤を使用すると、次のことが可能になります。 研究の限界と今後の研究分野: 本論文では、限界や今後の研究分野については明示的に述べられていません。ただし、潜在的な限界には次のものが考えられます。 8.

Read More

Fig.1 Connection of Rear Suspension to Body experımental procedure

アルミニウム高圧ダイカストのリアフレームレールへの応用

本要約は、[‘European Mechanical Science’] に掲載された [‘アルミニウム高圧ダイカストのリアフレームレールへの応用 (Aluminium High Pressure Die Casting Application on Rear Frame Rails)’] 論文に基づいて作成されました。 1. 概要: 2. 概要または序論 自動車産業における競争の激化と環境規制の強化により、自動車メーカーは従来の鋼鉄などの構造材料の代わりに、より高い機械的特性と軽量化性能を備えた材料を使用する傾向にあります。アルミニウム合金は鋼鉄よりも3倍軽量であるため、この用途の良い例です。アルミニウムは優れた耐久性能を持つため、車体構造設計への使用が提案されており、適切な形状と熱処理を適用することで、機械的特性は構造部品に有効となります。鋳造プロセスは、トポロジー最適化を可能にし、板金プレスに比べて強度と重量の比率が優れる、より複雑な形状を作成できます。リアレール強化サポートブラケットは、トポロジー最適化されたアルミニウムダイカスト部品を適用できる車体構造 (Body In White) の最も適切な部品の1つです。従来の強化サポートブラケットでは、必要な剛性と耐久性を確保するために複数の鋼板プレス部品が使用されており、設計、成形性、および組立の観点から、より複雑な構造となっています。本研究では、既存のソリューションと同等の性能を得るために、高圧鋳造法によって設計および製造された新しい部品を研究します。さらに、より優れた機械的特性を得るために、さまざまな熱処理をテストし、最適な熱処理サイクルを決定しました。新しい設計は、仮想検証ツールを使用して既存の設計と比較され、比較結果が提示されています。 3. 研究背景: 研究テーマの背景: 自動車産業における安全基準の強化により、新世代の車両の車体構造は、衝突時の構造的完全性とエネルギー吸収能力を向上させる必要があります。同時に、新たな環境規制により、炭素排出量も削減する必要があります。エンジンとトランスミッションの効率、車両重量、空気力学、転がり抵抗は、炭素排出量と燃料消費量に影響を与える主要な要因です。車両重量を100kg削減すると、kmあたり9gのCO₂削減効果が得られます。したがって、車両重量の削減は、CO₂排出量削減のための最も効果的な手段であり、同時に安全性、走行品質、および全体的な性能を維持するために不可欠です。自動車構造は車両総重量の約40%を占めるため、車体構造の軽量化は、燃費向上、有害排出物の削減、および原材料の節約を達成するための重要な方法です。 既存研究の現状: 車体重量の削減のために、アルミニウム、マグネシウム、複合材料などのさまざまな設計手法と革新的な材料オプションが模索されています。アルミニウムは、コスト効率、加工性、耐食性、リサイクル性、および自動車産業での広範な使用により、車体重量の削減に最も適した材料として強調されています。アルミニウム合金は、自動車用途において鋼鉄よりも、低密度(鋼鉄の7.87 gr/cm³に対して2.7g/cm³)、単位重量あたりのより高い衝撃エネルギー吸収、およびラジエーターコアや熱交換器の用途に役立つ優れた熱伝導率など、いくつかの利点を提供します。 研究の必要性: 現在の車両設計では、リアサスペンションサポートブラケットは通常、総重量2.7kgの3枚の鋼板で構成されています。これらの部品は、多数のスポット溶接と構造用接着剤で接合されており、車両重量と製造コストの増加につながっています。性能と安全性を維持または向上させながら、重量とコストを削減するための代替材料と製造プロセスの探求が必要です。 4. 研究目的と研究課題: 研究目的: 本研究の主な目的は、構造性能と安全性を損なうことなく、軽量化とコスト効率を達成するために、アルミニウム合金と高圧ダイカストを使用してリアレールサスペンションサポートブラケットを再設計することです。 主要な研究課題: 主要な研究課題は、以下の点に焦点を当てています。 研究仮説: 本研究では、以下の仮説を設定します。 5. 研究方法: 研究デザイン: 本研究では、設計と検証のアプローチを採用しています。当初は、サスペンション接続部の荷重条件に基づいてアルミニウムブラケットの最適な設計を生成するために、トポロジー最適化を利用しました。最適化のための設計空間は、U字型断面部材内で定義されました。有限要素法(FEM)は、サスペンションジョイントポイントにX、Y、Z方向に単位荷重を印加してトポロジー最適化に使用されました。 データ収集方法: 本研究では、主に性能評価のために仮想検証ツールを利用しています。Silafont-36アルミニウム合金の材料特性とさまざまな熱処理に関する実験データを使用して、仮想シミュレーションを実行しました。 分析方法: 以下の仮想分析手法を使用しました。 研究対象と範囲: 本研究は、乗用車のリアサスペンションサポートブラケットに焦点を当てています。研究対象の材料は、高圧ダイカストで加工されたSilafont-36(AlSi10MnMg)アルミニウム合金です。範囲は、設計、材料選択、熱処理最適化、およびアルミニウムダイカストブラケットの仮想検証を含みます。 6. 主な研究成果: 主要な研究成果:

Read More

Figure 3.2.1.3 Room temperature tensile properties of H-13 steel in relation to hardness and Charpy V-notch impact energy (Ref. 44)

航空宇宙および高性能合金データベース 鉄 • FeUH H-13

この論文の紹介は、”CINDAS LLC” によって発行された “Aerospace and High Performance Alloys Database Ferrous • FeUH H-13 August 2008” に基づいて作成されました。 1. 概要: 2. 抄録または序論 1.0 Generalこの中合金、マルテンサイト系、空冷硬化型、超高強度鋼は、組成、熱処理、および多くの特性において H-11 および H 11 Mod と類似しています。鋼種 H-11、H-11 Mod、および H-13 は、航空機および着陸装置の用途において重要な、優れた耐熱衝撃性を持ちながら 300 ksi の極限引張強度まで熱処理できる能力など、いくつかの特性を示します。これらの鋼種は通常、オーステナイト化し、空気、不活性ガス、油、または熱塩浴で冷却することにより硬化されます。焼戻しを行うと、焼戻し曲線に二次硬化の極大を示し、1050~1100F で二重または三重焼戻しを行うと、通常、高い室温極限引張強度 (220~250 ksi) と良好な破壊靭性および室温および高温での最大疲労強度を兼ね備えた高硬度 (44~48 Rc) を発現します。H-13 鋼は、超高強度用途の構造用鋼としては H-11 Mod ほど一般的に使用されていませんが、入手可能性やわずかに優れた耐摩耗性、および H-13 のその他の特性が利点となる場合には H-11 Mod の代替として使用できます。 3. 研究背景: 研究トピックの背景: 既存研究の現状:

Read More

Figure 3 - View of the mold where the core pins were assembled for industrial tests

高圧ダイカスト金型の寿命延長に関する研究

This paper introduction was written based on the [‘Increasing the lifespan of high-pressure die cast molds subjected to severe wear’] published by [‘Surface & Coatings Technology’]. 1. 概要: 2. 概要または序論 自動車部品への複合材料の組み込みが増加しているにもかかわらず、高圧ダイカストは依然として複雑な形状の自動車部品を費用対効果の高い方法で得るための最も有用な製造技術の1つです。自動車産業は高い生産ケイデンスと高品質の製品を必要とすることは周知の事実です。したがって、生産と管理のあらゆる側面を最適化するための体系的なアプローチが常に取られています。 燃料ポンプ本体、スロットルボディ、EGRバルブ、サポートブラケットなど、自動車部品に一般的に使用されるアルミニウム合金には、通常、高い研磨性を示すシリコンが含まれています。高温および高速でのアルミニウムの流れは、摩耗、時にはアブレージョンとエロージョン効果の組み合わせにより、深刻な摩耗を引き起こします。 本研究では、典型的な深刻な摩耗問題のある2つの金型を選択し、関連する摩耗メカニズムを詳細に調査しました。その後、この目的に最適なコーティングを慎重に選択し、コーティング適用による有効な利点を試験するために金型の最も重要な部分のいくつかをコーティングし、耐摩耗挙動と関連する摩耗メカニズムを分析しました。並行して、実験室試験と工業試験の間に相関関係を描けるかどうかを調査するために、トライボロジー試験も実施しました。走査型電子顕微鏡(SEM)とエネルギー分散型分光法(EDS)を積極的に使用して、コーティングと観察された摩耗メカニズムを特性評価しました。実験室トライボロジー試験では、それぞれ接触部に低荷重と中荷重を課すことを試みるボールスキャッタリング試験とブロックオンリング試験を実施しました。有望な結果が得られ、特定のコーティングがこの応用分野で他のコーティングよりも優れた挙動を示すと結論付けることができました。 3. 研究背景: 研究トピックの背景: 自動車部品への複合材料の組み込みが増加しているにもかかわらず、高圧ダイカストは依然として複雑な形状の自動車部品を費用対効果の高い方法で得るための最も有用な製造技術の1つです。しかし、これらの部品を製造するために使用される金型は、高圧、急速な温度変動、および高速で移動する溶融金属からのエロージョンなどの非常に厳しい条件に常にさらされています。高圧ダイカストプロセスでは、ショットスリーブの充填、高速キャビティ充填、補助的な高圧の適用、冷却と凝固、金型開閉と部品の突き出し、金型冷却、および新しい射出サイクルに対応する潤滑という手順が考えられます[1]。通常の溶融金属の投入速度は20〜60 m/sであり、アルミニウム合金の種類に応じて温度は約700℃です[2]。これらの金型のメンテナンスまたは交換には多大なコストがかかり、製造業者は寿命を延ばすための最良の解決策を見つける必要があります。工業環境および作業条件は、エロージョン、腐食、摩耗、熱疲労などの熱間工具鋼のいくつかの破損メカニズムを誘発する能力を高めます[3]。 既存研究の現状: 近年、さまざまなタイプの破損メカニズムを理解するためにいくつかの研究が行われてきました[2, 4-7]。ダイへのアルミニウム射出は、アルミニウムはんだ付けメカニズムにより、最も過酷なプロセスの1つです。溶融アルミニウムは金型表面と化学反応を起こし、アルミニウムダイカストの破損メカニズムにつながります[4, 8]。このため、金型寿命を短縮するメカニズムを防ぐためのコーティングを構築するために、多くの研究が行われてきました[1, 3, 9-16]。セラミックコーティングは、通常、特定の破損メカニズム、特にヒートチェックの発生を回避するために使用されます。ただし、他のコーティングも金型寿命の改善に貢献する可能性があり、コストはこの種の用途で最も重要な要素ではない可能性があります[11]。 1997年、Wang [14]は、当時の現在のコーティング、すなわちTiN、TiAlN、CrNについて、さまざまな熱間工具鋼とマレージング鋼を使用して、溶融アルミニウム腐食、靭性抵抗、硬度、熱変化などのさまざまな側面を分析し、コーティングが金型寿命をどのように改善できるかについて広範な研究を発表しました。この研究により、TiNは酸化温度が低いため適切なソリューションではないことがわかり、H13またはMarlok鋼は、コーティングされている場合、高圧射出成形に考慮でき、特に衝撃靭性と腐食およびエロージョン挙動の改善が望ましい場合に考慮できると結論付けています。この研究はParkとKim [16]によって裏付けられており、彼らはTiNが500℃で酸化し始め、他の研究されたコーティング(TiAlNとTiSiN)は700℃までの酸化抵抗がはるかに優れていると結論付けています。さらに、TiNは600℃を超える温度で解離する傾向があることは周知の事実です[17, 18]。これらの最後のコーティングは優れた機械的特性も示しましたが、TiSiNは中温に適しており、TiAlNコーティングは高温に最適です。しかし、Dobrzanskiら[10]が行った試験では、TiNコーティングは、室温での同じピンオンディスク試験条件下で、X37CrMoV5-1型熱間工具鋼よりも5倍優れた耐摩耗性を達成することがわかりました。また、500℃で行われた同じ試験でも同様でした。Tentardiniら[8]も、アルミニウムダイカストに関して同じTiNおよびCrNコーティングを使用して同様の研究を実施しましたが、今回はH13鋼とAnviloy® 1150を基板として使用しました。これらの研究者は、CrNコーティングが鋳造プロセスにおけるアルミニウム合金とのはんだ付けメカニズムに関してTiNコーティングよりも優れた挙動を示すことを発見しました。さらに、Guziliaら[1]もはんだ付け現象を調査し、TiN、CrN、TiCnコーティングを使用すると、アルミニウム合金と鋼金型の間のはんだ付けを回避でき、鋳造アルミニウム合金の堆積層を観察できると結論付けました。これにより、金型への損傷が軽減され、急速な劣化が回避されます。これは、コーティングが溶融アルミニウムと金型鋼表面間の反応を防ぐ物理的バリアとして機能するためです。さらに、Heimら[12]もアルミニウムダイカストにおけるはんだ付け現象を研究し、TiN、TiCN、TiBN、TiAlCNなどのコーティングもその厄介な問題を防止すると結論付けています。 同じコーティングに基づいて、いくつかの新しいコーティングアーキテクチャがテストされており、具体的には多層コーティング[19]を使用しています。異なる層は、熱バリア(外層–希土類酸化物コーティング)、拡散バリア(中間層–TiAlNコーティング)、薄い接着層(内層Tiコーティング)など、異なる役割を担うことを意図しています。このようにして、基板の熱疲労抵抗は大幅に向上し、液体アルミニウムを使用した4000回の熱サイクル後に観察できます。同様のアプローチはBobzinら[20]によって実施され、AISI H11鋼基板上で多層CrN/AlN/Al2O3コーティングをテストし、Al2O3を最上層としています。また、2つの工業用コーティングが、アルミニウムダイカストマシンでの5884回のアルミニウムショットを含む、同じ試験条件下でその研究で使用されました。CrN/AlN/Al2O3は、他のコーティングと比較して興味深い挙動を示し、金型寿命を大幅に改善しました。コーティングの相変態は、金型内で到達した温度に起因すると報告されています。ただし、わずかに異なるアプローチもMuller [15]によって研究されており、彼は金型表面のプラズマ窒化前処理を使用し、続いてTiBN、CrN、W-C:H膜などのPVDまたはPACVDコーティングを使用し、プラズマ窒化前処理が表面マクロ硬度と臨界荷重を同じPVDまたはPACVDコーティングを施した表面に対して相対的に改善すると結論付けています。一方、Rodríguez-Baracaldo [21]は、窒化前処理と(Ti0.7Al0.3)Nコーティングの組み合わせを研究し、2つの窒化前処理鋼と(Ti0.6Al0.4)Nコーティングのみを提供した他の鋼と比較し、室温および高温(600℃)で摩耗試験を実施しました。室温では摩耗挙動に有意差は見られませんでしたが、高温ではそうではなく、窒化前処理鋼は(Ti0.6Al0.4)Nコーティングを提供し、最良の耐摩耗挙動を示し、(Ti0.6Al0.4)Nコーティングでコーティングされた前処理鋼および非前処理鋼と比較して、最後に最悪の耐摩耗挙動を示しました。また、Tomaslewskiら[22]によって異なるアプローチが調査され、AISI M2相当の高速鋼を基板として使用して、MoとTiAlNを共堆積させました。得られた準多層膜はTiAlN/(TiAl)1-x –

Read More

The high-pressure die cast nodes in Castasil-37 for the ASF of the Lamborghini Gallardo Spyder a) rear connection node

自動車産業用ダクタイルアルミニウム高圧ダイカスト合金の進歩

論文概要: この論文の概要は、la metallurgia italiana によって発行された「PROGRESS IN DUCTILE ALUMINIUM HIGH PRESSURE DIE CASTING ALLOYS FOR THE AUTOMOTIVE INDUSTRY」に基づいて作成されました。 1. 概要: 2. 抄録または序論 今日のダイカストプロセスは、エンジンクレードル、クロスメンバー、スペースフレーム構造のノードなど、高品質が要求される部品の鋳造に使用されています。これは、優れた機械的特性を備えた設計合金への挑戦を示しています。高い延性(伸び > 12 %)を必要とする衝突関連部品の場合、これらの特性を満たすための選択肢の1つは、低鉄Al-Si合金をT4またはT7調質に熱処理することです。しかし、熱処理は部品の歪みやブリスターにつながり、製造業者のコストが増加する可能性があります。2番目の選択肢は、アズキャスト状態でこれらの要件を満たすAl-Mg合金タイプですが、これらの合金は鋳造が容易ではありません。研究は、容易に鋳造できるAl-Si合金システムを使用して開始され、アズキャスト調質Fですでに高い伸び(> 12 %)と降伏強度(> 120 MPa)を目標とし、長期的な時効挙動を示さないことを目指しました。本論文では、1990年代初頭に始まり、最初のシリーズのスペースフレームアルミニウム車で重要性を増し、アズキャスト状態で適用された構造部品へと継続し、鋼鉄や熱処理されたアルミニウム設計に代わる軽量部品の増加する未来に近づいている技術的進歩について議論します。 3. 研究背景: 研究テーマの背景: 自動車産業は、新しいダイカスト合金の開発と生産の原動力となっています。技術的な観点から見ると、標準的なアルミニウム合金の適用分野は限られています。これらの合金は主に、単純な要求特性、通常は軽量と特定の降伏強度を持つ部品に使用されています。図1の定性的な評価に示すように、標準的な合金には限界があります。 既存研究の現状: 現在、Al Si9Cu3タイプ(226)合金は、延性や優れた耐食性に関する要求がない部品に主に使用されています。Al Si12合金は、永久金型に鋳造した場合にある程度の延性を提供しますが、顕著な降伏強度は持ちません。その中間には、他の妥協点が見つかる可能性があります。 研究の必要性: 高圧ダイカストに適しており、アズキャスト状態で優れた延性と降伏強度を発揮できるアルミニウム合金が強く求められています。これにより、特に複雑な自動車構造部品の場合、コストがかかり、変形を引き起こす可能性のある熱処理の必要性がなくなります。このような合金の開発は、特に安全性が重要で軽量化が求められる自動車産業におけるダイカストの応用を拡大するために不可欠です。 4. 研究目的と研究課題: 研究目的: 本論文の主な目的は、1990年代初頭から現在の応用例に至るまで、自動車産業用ダクタイルアルミニウム高圧ダイカスト合金の開発と応用の技術的進歩について議論することです。 主要な研究課題: 本論文で探求する主要な研究分野は、Silafont®-36、Magsimal®-59、Castasil®-37などの特定のダクタイルアルミニウム合金の開発と特性評価に焦点を当てています。これらの合金は、自動車構造部品における機械的性能、耐食性、および鋳造性の向上という高まる要求に対応するように設計されています。 研究仮説: この研究は暗黙のうちに、慎重な合金設計とプロセス最適化を通じて、アルミニウム合金は以下を達成するように調整できるという仮説に基づいて進められています。 5. 研究方法 研究デザイン: 本論文は、自動車分野における特定のダクタイルアルミニウムダイカスト合金の進化と実装を紹介する記述的かつ応用指向のアプローチを採用しています。この分野の進歩を示すために、事例研究と合金特性評価を提示します。 データ収集方法: 本論文は、議論された合金の機械的特性データ、化学組成、および微細構造分析の提示に依存しています。このデータは図と表を通じて提示され、実験的試験と産業応用から得られたものと推定されます。 分析方法: 分析は主に定性的および比較分析であり、以下の点に焦点を当てています。

Read More

Fig. 1. Mold thermal evolution during pre-heating cycles simulation

高圧ダイカストシミュレーションのための簡略化モデル

本論文概要は、[‘高圧ダイカストシミュレーションのための簡略化モデル’]と題された論文を、[‘Procedia Engineering, The Manufacturing Engineering Society International Conference, MESIC 2015’]にて発表された内容に基づいて要約したものです。 1. 概要: 2. 研究背景: 研究トピックの背景: 金属鋳造プロセスの数値シミュレーションは、本質的に複雑なタイプのシミュレーションです。高圧ダイカスト (HPDC) シミュレーションは、工業プロセスが連続的な製造サイクルに基づいており、部品形状が複雑で、合金が非常に高速で射出されるため、さらなる課題があります。これらの要因が複合的に作用し、計算時間が長くなり、複雑なケースでは数日かかることもあります。 既存研究の現状: 数値シミュレーションは、金属鋳造業界で広く採用されているツールです。詳細なモデルは正確なプロセス予測に不可欠ですが、ある程度の精度を犠牲にしても迅速なソリューションが必要となる状況が発生します。この速度に対するニーズは、初期提案段階、設計代替案の迅速な評価、そして特にシミュレーションモデルの反復的な調整プロセスにおいて顕著です。 研究の必要性: HPDCシミュレーションでは、精度と計算効率のバランスを取ることが最も重要です。実験データとの相関関係を持たせるために反復的なシミュレーションを伴うシミュレーションモデルの調整の反復的な性質は、詳細なモデルを使用すると時間がかかりすぎる可能性があります。したがって、許容できない精度損失なしに、より高速な計算時間を提供する簡略化されたモデルを調査し、検証することは、実際のアプリケーション、特にモデル調整ワークフローにおいて不可欠です。 3. 研究目的と研究課題: 研究目的: 本研究は、HPDCシミュレーションモデルを簡略化するためのさまざまな方法論を調査し、議論することを目的としています。本研究では、これらの簡略化の利点と欠点を評価し、計算速度と金型および鋳造部品の熱的挙動の予測精度とのトレードオフに焦点を当てています。 主要な研究課題: 本論文で取り組む主要な研究課題は以下のとおりです。 研究仮説: 中心となる仮説は、簡略化されたHPDCシミュレーションモデルは、特に熱的挙動の予測において、妥当なレベルの精度を維持しながら、計算時間を大幅に短縮できるということです。本研究では、この仮説を検証し、関連するトレードオフを定量化するために、特定の簡略化手法を探求します。 4. 研究方法論 研究デザイン: 本研究では、比較方法論を採用しています。簡略化されたモデルの精度は、詳細な3Dシミュレーションモデルから得られた結果と比較して評価します。参照モデルとして機能するこの詳細モデルは、以前の研究で実験結果に対してすでに検証されています。 データ収集方法: データは、商用有限要素ソフトウェアであるProCASTを使用して実行された数値シミュレーションを通じて収集されます。このソフトウェアは、数値流体力学 (CFD) と熱伝達解析を組み合わせてHPDCプロセスをシミュレーションするために使用されます。収集された主要なデータは、シミュレーション中の金型および鋳造部品内の特定の点における温度プロファイルです。 分析方法: 分析は、さまざまなシミュレーションシナリオにおける温度結果と計算時間を比較することに焦点を当てています。これらのシナリオには以下が含まれます。 簡略化されたモデルの精度は、詳細な3Dモデルの結果からの温度予測の偏差を定量化することによって評価されます。計算時間は、簡略化によって達成された計算効率の向上を評価するために直接比較されます。 研究対象と範囲: 本研究は、単純な円筒形キャビティ (Ø50 mm、長さ250 mm) を持つプロトタイプ金型を使用したHPDCプロセスに焦点を当てています。射出された合金は、一般的なアルミニウムダイカスト合金であるAlSi9Cu3であり、金型材料はH13鋼です。調査された簡略化は次のとおりです。 5. 主な研究結果: 主要な研究結果: データ解釈: 図のリスト: 6. 結論: 主な結果の要約:

Read More

Fig. 1 Process flow of die casting operation

高容量ダイカストにおける合金とエネルギー利用のモデリング

本論文概要は、[‘Springer-Verlag Berlin Heidelberg’]によって発表された論文[‘高容量ダイカストにおける合金とエネルギー利用のモデリング’]に基づいて作成されました。 1. 概要: 2. 抄録または序論 ダイカストは、資本とエネルギーの両集約的なハイテク製造プロセスとして広く認識されています。ダイカストにはいくつかの経済的および環境的利点がありますが、製品鋳造に必要な高いエネルギー消費は注意を払う必要があります。ダイカストプロセス内の操業および設計上の決定は、総エネルギー使用量と二酸化炭素換算排出量に大きな影響を与える可能性があります。これに対処するために、本稿では、材料の流れを表し、最もエネルギー集約的なステップでの資源消費を測定する吸収状態マルコフ連鎖(ASMC)モデルを提案します。このモデルは、意思決定者が新しい設備の購入などの設計オプション、投資戦略、および操業上の調整を検討するのを支援するように設計されています。論文では、モデルの実装に必要なデータ要素と、エネルギー関連排出量を分析するために必要な参照データを明記しています。モデルの実際的な応用は、特定の製品設計の決定に関する過去の事例研究を用いて示されています。さらに、この事例研究に基づいてモデルの規範的な応用を検討し、モデルの多様な分析サポート能力を強調しています。 この記事では、自動車産業などの分野で一般的な、最小限の切り替えやその他の割り込みで通常操業される鋳造工場における、高容量、少量多品種のダイカスト操業に焦点を当てています。ダイカスト部品は、「米国で製造された製品の90%に見られます(NADCA 2012)」。ダイカストプロセスは、鋳物の長い耐用年数と容易なリサイクルなどの環境上の利点を含め、多くの利点を提供します。ダイカスト操業内で発生するスクラップ金属の大部分は、再溶解によって再利用されます。アルミニウム合金は最も一般的なダイカスト金属であり、「米国のダイカスト操業で使用されるアルミニウムの大部分は、消費後のリサイクル材です(NADCA 2012)」。リサイクル材を使用して高品質の製品を大量に確実に生産できる能力は、ダイカストが主要な製造プロセスであり続けることを保証します。 しかし、これらの利点にはコストが伴います。特に、ダイカスト操業は非常に高いエネルギー需要があります。合金を溶解するために必要な高温と、合金をダイに押し込むために必要な高圧は、どちらも大量のエネルギーを必要とします。プロセスで使用される射出圧力は、通常「14,000〜140,000 kPa(Groover 2004)」の範囲です。2002年には、米国のダイカストプロセスは推定「100兆kJのエネルギーを使用しました(Eppich and Naranjo 2007)」。100兆kJは、おおよそ、米国で5番目に大きい都市であるフィラデルフィアのすべての住宅および商業ビルが年間使用するエネルギー量に匹敵します(City of Philadelphia 2012)。高いエネルギー消費と多大な設備投資コストは、投資と操業の意思決定の重要性を強調しています。 3. 研究背景: 研究テーマの背景: ダイカストは、エネルギー集約型の製造プロセスとして認識されています。ダイカスト操業に関連する多大なエネルギー消費は、最適化戦略が必要となる重要な懸念事項です。特に自動車製造などの産業におけるダイカストの広範な応用を考慮すると、そのエネルギーフットプリントに対処し、軽減する必要性が差し迫っています。 既存研究の現状: 既存の研究では、ダイカストプロセスの多大なエネルギー需要を認識しています。既存の研究は、ダイカスト内のエネルギー消費量の定量化と、潜在的なエネルギー削減領域の特定に焦点を当ててきました。しかし、ダイカスト操業の複雑さと相互接続性は、効果的な意思決定のためにシステム全体の視点を必要とします。 研究の必要性: ダイカストにおけるエネルギー消費に対する操業および設計上の選択の影響を効果的に評価するには、包括的なシステム全体のモデルが不可欠です。従来の実験的アプローチは、これらの操業の規模と複雑さのために、しばしば非現実的です。したがって、さまざまな操業条件を比較し、さまざまな決定の結果を評価するためのモデリングアプローチが必要です。本研究は、このニーズに対処するために、吸収状態マルコフ連鎖(ASMC)モデルを導入し、ダイカスト操業へのASMC方法論の最初の査読付き応用を提示し、体系的な分析と最適化のための新しいツールを提供します。 4. 研究目的と研究課題: 研究目的: 主な研究目的は、ダイカストプロセスに合わせた吸収状態マルコフ連鎖(ASMC)モデルを開発し、実証することです。このモデルは、高容量ダイカスト環境における合金とエネルギーの利用状況を分析することを目的としています。最終的に、本研究は、利害関係者がエネルギー消費と材料効率に対するさまざまな設計、投資、および操業上の決定の影響を評価するための意思決定支援ツールを提供することを目指しています。 主要な研究課題: 主要な研究課題には以下が含まれます。 研究仮説: 正式な仮説として明示されていませんが、本研究は以下の暗黙の仮定に基づいて進められます。 5. 研究方法論 研究デザイン: 本研究では、吸収状態マルコフ連鎖(ASMC)モデルの開発を中心としたモデルベースのアプローチを採用しています。このモデルの実用的な適用可能性と有用性を実証するために、事例研究の方法論を採用しています。研究デザインには、ベースラインの操業シナリオと代替シナリオの両方をASMCモデルの観点から分析し、性能を評価および比較することが含まれます。 データ収集方法: 本研究のデータは、Butler(2008)によって元々文書化された事例研究から入手し、ダイカスト操業から直接収集されたデータで補完しました。データセットには、合金損失率、スクラップ率(プラットフォームおよび再利用可能)、ショットあたりの合金量、鋳造重量(トリミング後および完成品)、機械加工不良率、エネルギー消費指標、およびダイカストに関連するさまざまな操業パラメータなどの重要なパラメータが含まれています。データソースには、Butler(2008)およびBrevick et al.(2004)の以前の出版物、Kim et al.(2010)などの業界レポート、およびEPAの環境データセットが含まれます。 分析方法: コアとなる分析方法は、行列ベースの計算を利用したマルコフ連鎖分析です。これには、ASMCモデル内の各状態への予想訪問回数を計算することが含まれます。これらの計算に基づいて、合金消費量、エネルギー利用量、および関連する排出量の推定値が導き出されます。分析には、エネルギーと材料の効率に対する変化の影響を定量化するために、ベースライン対代替シナリオのようなさまざまな操業シナリオの比較評価が含まれます。 研究対象と範囲: 本研究は、自動車分野における応用、特に自動車分野における応用を重視した高容量、少量多品種のダイカスト操業に焦点を当てています。範囲は、アルミニウム合金とマグネシウム合金を含むダイカストプロセスを考慮してさらに定義されます。例示的な事例研究では、4気筒自動車エンジン用のカムカバーの製造を具体的に調査し、定義された範囲内で具体的な例を提供しています。 6. 主な研究結果: 主要な研究結果: 本研究では、「図1 ダイカスト操業のプロセスフロー」に示されているように、ダイカストプロセスの流れを効果的に表す9つの異なる状態からなるASMCモデルの開発に成功しました。モデル内の主要な遷移確率と、モデルのパラメータ化に必要なデータ入力を特定し、定量化しました。モデルの実用的な応用は、アルミニウムとマグネシウムのカムカバーの製造を比較する事例研究を通じて実証されました。マグネシウム用の新しいカバーガスとアルミニウム用の溶融合金供給の導入を含む代替操業シナリオを、モデルを使用して分析しました。分析の結果、各シナリオのエネルギー消費量とECO2排出量が定量化され、代替カバーガスと溶融合金供給の採用がECO2排出量を大幅に削減できることが明らかになりました。

Read More