Category Archives: automotive-J

Figure 2. Alternator resonance frequency characterization test setup

Prevention of the Fracture Problem Occurring in Automotive Alternator Heatsink Blocks Using Artificial Intelligence

AIで自動車部品の破壊を未然に防ぐ:オルタネーターヒートシンクの振動疲労問題への新アプローチ このテクニカルブリーフは、Dinçer Kökden氏らによる学術論文「Prevention of the Fracture Problem Occurring in Automotive Alternator Heatsink Blocks Using Artificial Intelligence」に基づいています。この論文は、2024年にApplied Sciences誌に掲載されたものです。高圧ダイカスト(HPDC)の専門家であるCASTMANが、業界のプロフェッショナルのためにその内容を要約・分析しました。 キーワード エグゼクティブサマリー 課題:なぜこの研究がHPDCの専門家にとって重要なのか 自動車のオルタネーターは、エンジンの機械的エネルギーを電気エネルギーに変換する際に大量の熱を発生させます。この熱を効率的に放散するために、表面積を最大化した薄肉のヒートシンクが不可欠です(Ref. [1-3])。これらのヒートシンクは、多くの場合、複雑な形状を持つ鋳造品であり、その性能は車両の信頼性に直結します。 しかし、これらの部品は車両の寿命を通じて常に激しい振動にさらされます。特に、部品の固有振動数(共振周波数)がエンジンの振動数と一致すると、振幅が急激に増大し、疲労亀裂が発生・進展し、最終的には部品の破壊に至ります(Ref. [5])。本研究で取り上げられたオルタネーターヒートシンクでは、振動試験中にボルト締結部で破壊が発生しました。 この問題は、開発プロセスの後期段階で発覚することが多く、手戻りによる設計変更や金型修正は、開発期間の延長とコスト増大の大きな原因となります。この「試験しては壊れ、設計し直す」という従来型のサイクルから脱却し、設計の初期段階で動的な性能を予測・最適化する手法が強く求められていました。 アプローチ:研究手法の解明 この課題を解決するため、研究チームはFigure 1に示される体系的なアプローチを取りました。 ブレークスルー:主要な発見とデータ 本研究により、AIを活用して設計を最適化するアプローチの有効性が明確に示されました。 HPDC製品への実践的な示唆 この研究成果は、学術的な興味にとどまらず、実際のHPDC製品の設計・製造現場に直接的な価値をもたらします。 論文詳細 Prevention of the Fracture Problem Occurring in Automotive Alternator Heatsink Blocks Using Artificial Intelligence 1. 概要: 2. Abstract: 本研究では、人工ニューラルネットワークを用いて、自動車用オルタネーターヒートシンクの振動疲労試験における破壊防止について調査した。オルタネーターヒートシンクのような自動車部品は、その寿命を通じて高い周期の振動疲労荷重にさらされ、疲労亀裂の形成と伝播、そして最終的な部品の故障につながる可能性がある。本研究では、形状や荷重条件を含むヒートシンクの共振周波数に影響を与える基本パラメータを特定した。データ駆動型の意思決定は、人工知能アプローチを用いて予測と決定のためのデータを分析する高度な予測的洞察を提供する。振動疲労試験における共振周波数を予測するために、効率的な人工ニューラルネットワークモデルが定義された。人工ニューラルネットワークがパラメータと共振周波数の間の関数関係を確立するために訓練された一方で、回帰分析を用いてヒートシンクの共振周波数を検出する予測モデルが開発された。提案されたアプローチは、自動車用オルタネーターヒートシンクの振動疲労試験における破壊問題を防止するための包括的なフレームワークを提供し、最終的にこれらの重要部品の信頼性の高い設計と性能に貢献することを目指す。人工ニューラルネットワークアプローチは、新しい固有振動数の予測において高い分類精度を達成し、回帰モデルも正確な予測を行うことができた。本研究の結果は、オルタネーター部品の振動試験のような動的試験の前に発生する可能性のある破損問題を防止する上で、設計とシミュレーションに費やす時間を大幅に短縮できることを示した。 3. Introduction: 車両におけるオルタネーターの性能と信頼性は、効果的な熱管理戦略に大きく依存している(Ref.

Read More

Graph 1.3 Result chart.

プロトタイプ製造の最適解:アルミブラケット開発におけるコスト、時間、品質の徹底比較

この技術概要は、Piyush Shukla氏によって執筆され、International Journal for Multidisciplinary Research (IJFMR)に掲載された学術論文「Process Selection on the Basis of Time Cost and Quality for Development Components of Aluminium Bracket」(2024年)に基づいています。HPDC(ハイプレッシャーダイカスト)の専門家のために、株式会社CASTMANのエキスパートが要約・分析しました。 キーワード エグゼクティブサマリー 課題:なぜこの研究がHPDC専門家にとって重要なのか 製品開発において、特に量産用の金型を製作する前の段階で、設計の妥当性や組立性を確認するための試作品は不可欠です。しかし、アルミニウム部品のプロトタイプを製造するプロセス選択は、これまで明確な基準がありませんでした(Abstract)。多くのエンジニアは、設計プロセスの最終段階で製造方法を検討しますが、最適なアプローチは設計の初期段階から製造上の懸念を考慮に入れることです。これにより、製造が容易でコスト効率の高い設計が実現します(1.1 DEVELOPMENT PROCESS SELECTION)。 特に、自動車部品のようなコンポーネントでは、フィット感や機能テストのために最低でも10個程度の試作品が必要になるケースが多くあります。この「試運転数量(commissioning quantity)」に対して、従来の3Dプリンティングや切削加工は、コストが高すぎるか、あるいは最終製品の材料特性と乖離するという課題を抱えていました。本研究は、このギャップを埋めるための最適なプロセスを特定することを目的としています。 アプローチ:研究手法の解明 この課題を解決するため、研究者たちはアルミニウム製オルタネーターブラケットを対象に、3つの異なる製造プロセスを実用的に比較検証しました。 これらのプロセスでそれぞれ10ペア(20個)のブラケットを製造し、製造に要した総時間、総コスト、そして完成品の寸法精度(CMM測定)と材料特性(硬度、機械的性質)を詳細に比較分析しました。 重要な発見:主要な結果とデータ 本研究から得られた比較結果は、プロトタイプ製造のプロセス選択において非常に明確な指針を示しています。 HPDC製品への実用的な示唆 この研究結果は、実際の製造現場、特に製品開発の初期段階において、具体的かつ実践的なメリットをもたらします。 論文詳細 Process Selection on the Basis of Time Cost and Quality for Development Components of Aluminium Bracket

Read More

Fig. 7. Example of typical injection mold for automotive industry holding geometry for mirrored parts (left and right side of the vehicle)

金型製造における専門家主導のプロジェクト推定プロセスを支援するためのニューラルネットワークベースモデル

この紹介論文は、「[Strojniški vestnik – Journal of Mechanical Engineering]」によって発行された論文「[Neural Network-Based Model for Supporting the Expert Driven Project Estimation Process in Mold Manufacturing]」に基づいています。 1. 概要: 2. 抄録: 成功する金型製造業を運営するための重要な活動の1つは、プロジェクトの推定です。推定プロセスは、通常、高度に熟練した社内の専門家によって処理される初期のプロジェクト活動です。推定プロセスに影響を与える最も重要なパラメータの1つは、金型を製造するための製造時間(VMH)の量です。本稿では、人工ニューラルネットワーク(ANN)モデルのサポートを使用して製造時間量の推定問題に対処し、それを専門家主導のプロジェクト推定プロセスに組み込む方法を提案します。ANN推定のヒストグラムに基づいて、VMHの望ましくない過小評価の割合を推定し、導入された安全係数によって減少させることができます。開発されたモデルベースの推定により、専門家は容易に入手可能な入力データを使用してプロジェクト推定を改善することができます。 3. 緒言: 金型製作産業はプロジェクト主導であり、個々の生産プロセスの特性に対処する必要があります。プロジェクト管理における主要なリスク源の1つは、プロジェクトコスト、需要、およびその他の影響の不正確な予測です[1]。金型生産プロセスでは、初期のプロジェクト推定段階で不確実性を最小限に抑えることが重要です。この推定段階は、一般的に専門家の偏見に敏感な人間による専門家主導の活動です。この偏見は、推定者が過信している場合にはプロジェクトリソースの過小評価につながり、推定者がプロジェクトのすべての側面を適切にカバーできるという十分な自信がない場合にはプロジェクトリソースの過大評価につながる可能性があり、どちらのシナリオも将来のビジネスに悪影響を及ぼします。推定者の主要な能力は、プロジェクト推定を成功させるために、すべての重要な情報を適切に収集および評価することです。金型製作業界では、通常、すべてのオファーの10%未満しか注文につながらないため、推定活動に費やす時間を最小限に抑える必要があるという矛盾があります[2]-[4]。金型製造業における現在の推定は、依然として直感的な方法に大きく依存しており、これは主観的であり、信頼性と再現性の問題を起こしやすいです。 本稿では、支援された専門家主動のプロジェクト推定プロセスの開発により、これらの問題に対処します。製造時間量(VMH)は、プロジェクト推定における最も重要な情報の一つであり、最終的なプロジェクトコストの大部分を反映し、プロジェクトスケジュールを最も大きく左右します。研究目的は、金型生産におけるVMHの推定を改善するために、人工ニューラルネットワーク(ANN)でサポートされた専門家主動のプロジェクト推定プロセスを開発することです。さらに、本稿では、既存の専門家主動の推定プロセス内でのこの支援モデルの適切な位置付けの問題にも取り組みます。 4. 研究の概要: 研究テーマの背景: 金型製造におけるプロジェクト推定は、事業の成功に不可欠な初期段階の活動です。多くの場合、経験豊富な社内専門家によって実行されますが、時間的制約の下での精度要求と、直感的アプローチに固有の主観性という課題に直面しています。製造時間量(VMH)は、主要なコスト要因であり、スケジュール決定要因です。不正確なVMH推定は、経済的損失や競争力のない入札につながる可能性があります。 先行研究の状況: 直感的、類推的、パラメトリック、分析的など、様々な推定方法が存在し、それぞれ異なるプロジェクト段階とデータ可用性に適しています(Fig. 1)。既存の研究の多くは、製品の幾何学的特性と価格/コストを結びつけるモデルに焦点を当てており、市場の影響を見落としがちです[9]-[12]。一部のアプローチでは単一の推定モデルが使用されていますが、本稿ではハイブリッドアプローチを提案しています。文献(Table 1)はコスト推定に重点が置かれていることを示しており、ANNは金型の複雑さとコストについて検討されています。本研究は、専門家主導のフレームワーク内でANNモデルを支援ツールとして統合し、直感的アプローチとデータ駆動型アプローチの長所を組み合わせることを目的としています。 研究の目的: 本研究の主な目的は、金型生産における製造時間量(VMH)の推定を改善するために、ANNでサポートされた専門家主導のプロジェクト推定プロセスを開発することです。副次的な目的は、専門家主導の推定ワークフロー全体の中で、このような支援モデルの適切な配置と統合を決定することです。 中核研究: 本研究の中核は、VMH推定のためのANNベースモデルの開発と検証です。このモデルは、体系的で専門家主導のプロジェクト推定プロセス(Fig. 3)に統合され、意思決定支援ツールとして機能するように設計されています。このプロセスは、入力データ検索(IDR)、概念設計と製品製造可能性検証(CDPMV)、リソース推定フェーズ(REP)– ここでANNモデルがVMH推定を支援 – および経済計算フェーズ(ECP)で構成されます。VMHは、金型のすべての部品(P)および操作(OP)に対する総加工時間(t_m)、ローディング時間(t_l)、アンローディング時間(t_u)の合計として定義され、式(1)で表されます。VMH = Σ_P Σ_OP (t_m + t_l + t_u) (1)本研究では、ANNの入力変数選択、アーキテクチャ、トレーニング、検証、および推定の不確実性に対処するための提案された安全係数アプローチについて詳述しています。 5.

Read More

Figure 4 Use Case Diagram

データ駆動型予防保全:ダイカストマシンのダウンタイムを53%削減し、信頼性を最大129%向上させる方法

本テクニカルブリーフは、[Tri Pujadi氏ら]が執筆し、[Proceedings of the International Conference on Industrial Engineering and Operations Management] ([2021年])で発表された学術論文「[Preventive Maintenance Modeling on Die Casting Machines with Information Systems]」に基づいています。ダイカスト製造の専門家であるCASTMANが、業界のプロフェッショナル向けにその要点を解説します。 キーワード エグゼクティブサマリー (多忙な専門家向けに、研究の核心を30秒で理解できるようにまとめました。) 課題:なぜこの研究がダイカスト専門家にとって重要なのか 製造業、特にダイカスト業界において、生産目標の達成は最優先事項です。しかし、その裏で「生産スケジュールがタイトである」ことを理由に、本来行うべき設備のメンテナンスが後回しにされている現場は少なくありません。本研究の対象となった企業も同様の課題を抱えており、コンポーネントの交換は、機械が突然故障した時にのみ行われる「事後保全」が常態化していました(Introductionより)。 このアプローチは、予期せぬ長時間のダウンタイムを引き起こし、生産計画を大きく狂わせます。特に、クランクケースやシリンダーコンプといった重要部品を生産するダイカストマシンが停止した場合、その影響は甚大です。この研究は、多くの製造現場が直面するこの根深い問題を解決するため、データに基づいた科学的なアプローチで予防保全の最適化を目指したものです。 アプローチ:研究手法の解明 研究チームは、この問題を解決するために、定量的アプローチを採用しました。その手順は以下の通りです(Methodologyより)。 この体系的なアプローチにより、勘や経験に頼るのではなく、実際のデータに基づいて最も効果的なメンテナンス計画を立案することが可能になります。 発見:主要な研究結果とデータ 分析の結果、ダイカストプロセスにおける生産性向上のための具体的な数値が明らかになりました。 ダイカスト製品製造への実践的な示唆 この研究結果は、理論上の数値にとどまらず、実際のダイカスト製造現場に直接的なメリットをもたらします。 論文詳細 Preventive Maintenance Modeling on Die Casting Machines with Information Systems 1. 概要: 2. Abstract: From the results of observations

Read More

Figure 1: Diagram of changing the cooling module material.

HPDCによるハイパワーエレクトロニクス冷却の新たなハイブリッドアプローチ

本テクニカルブリーフは、Zhong, Yao-Nian氏が執筆し、International Journal of Advance in Applied Science Research (2024)に掲載された学術論文「Optimizing the Structural Design of Computing Units in Autonomous Driving Systems and Electric Vehicles to Enhance Overall Performance Stability」を基にしています。HPDCの専門家向けに、CASTMANのエキスパートが要約・分析しました。 エグゼクティブサマリー 課題:この研究がHPDC専門家にとって重要な理由 EVや自動運転システムの演算能力が飛躍的に向上するにつれて、発生する熱も増加しています。エンジニアは数十年にわたり、高圧ダイカスト(HPDC)技術を利用して、放熱フィンを一体化した軽量で複雑なアルミニウム合金製筐体を製造してきました。これは成功した戦略でした。しかし、演算密度の増加と、塵や湿気から部品を保護するための密閉型ファンレス設計の必要性が、従来のフィンのみの設計を熱的な限界点へと追い込んでいます。 過熱は、性能を低下させたりシステム障害を引き起こしたりすることで、車両の安全性と運用安定性を損なう可能性があります。業界は、先進的なダイカスト技術によって実現可能な、費用対効果の高い熱管理技術の進化を緊急に必要としています。本研究の序論で詳述されているように、この研究はまさにこの問題に取り組み、最適化された構造設計と材料設計を通じてコンピューティングユニット筐体の放熱効率を高める方法を探求しています。 アプローチ:研究方法論の解明 本研究は、熱管理に対する先進的かつ多層的なアプローチを概説しています。研究はまず、アルミニウム合金がその高い熱伝導率(90~130 W/m·K)、軽量性、そしてダイカストによる優れた加工性から、熱対策部品として理想的であることを再確認することから始まります。 調査の核心は、以下の2つの主要分野に焦点を当てています。 ブレークスルー:主要な研究結果とデータ この研究は、次世代の熱対策用HPDC設計に直接的な知見を提供する、いくつかの重要な発見をもたらしました。 💡 貴社のHPDCオペレーションへの実用的な示唆 この研究は、高性能な熱管理部品の設計と製造を改善するための、実行可能な洞察を提供します。 論文 詳細 自動運転システムおよび電気自動車におけるコンピューティングユニットの構造設計を最適化し、全体的な性能安定性を向上させる 1. 概要: 2. 要旨: 自動運転システムと電気自動車の急速な発展の中で、コンピューティングユニットの熱管理は、システムの性能と安定性に影響を与える重要な要素となっています。本稿では、最適化された構造設計を通じてコンピューティングユニットの放熱効率を高め、それによって全体的な性能安定性を向上させる方法を探ります。第一に、アルミニウム合金ケーシングは、その優れた熱伝導性、軽量性、加工の柔軟性により、コンピューティングユニットにとって理想的な材料選択です。熱伝導のメカニズムを詳細に分析し、熱伝導率の公式に基づいて設計を検討します。放熱効率を向上させるために、放熱表面積を増やすフィン設計を採用し、空気対流を利用して放熱を促進します。また、成形プロセスの実現可能性と放熱効率のバランスをとることを目指し、フィンサイズと間隔の設計についても議論します。第二に、銅ブロックの材料特性とアルミニウム合金ケーシングの特性を統合することにより、放熱モジュールの構造最適化が行われます。私たちは、熱伝導効率を高めるために局所的な材料の使用を考慮した「分解」設計コンセプトを提案します。電子部品からの発熱量が多い領域では、銅ブロックの高い熱伝導率が熱を迅速にアルミニウム合金ケーシングに伝達し、冷却効果を達成します。さらに、前述の放熱方法がより高い冷却要求を満たすのに不十分な場合、液冷コールドプレート技術が効果的な冷却ソリューションとなる可能性があります。コンピューティングユニットの液冷システムを電気自動車のバッテリーパックの冷却システムと統合することにより、熱負荷のバランスを達成し、システムのエネルギー効率と安定性を向上させることができます。本研究は、フィン設計、冷却モジュールの最適化、および液冷コールドプレート技術の統合利用を通じて、将来の電子機器の熱管理のための効果的で経済的な管理戦略を提供し、幅広い応用の可能性があります。 3. はじめに: 自動運転システムの需要が高まるにつれ、車両に搭載されたさまざまなセンサー、レーダー、カメラ、その他の知覚デバイスは、自動運転の安全性と正確性をサポートするためにリアルタイムで処理する必要のある大量のデータを生成します。これには、強力な処理能力と安定した熱管理が必要です。計算密度の増加に伴い、発生する熱も大幅に増加し、放熱に新たな課題を提示しています。高温環境では、これらのデバイスは過熱しやすく、動作の安定性に影響を与え、さらには車両の安全性を損なう可能性があります。自動運転システムや電気自動車のコンピューティングユニットは、その優れた熱伝導性、軽量性、機械的強度のため、しばしばアルミニウム合金製の金属ケーシングを使用します。この研究では、放熱効率を高めるために、フィン設計、冷却モジュールの最適化、および液冷コールドプレート技術を探求します。 4. 研究の概要: 研究テーマの背景:

Read More

Fig. 1. Examples of automotive components made of Mg alloys a) engine block, b) oil pump

Mg-Al-ZnおよびAl-Si-Cu鋳造合金の微細構造

本紹介論文は、「Journal of Achievements in Materials and Manufacturing Engineering」に掲載された論文「Microstructures of Mg-Al-Zn and Al-Si-Cu cast alloys」に基づいています。 1. 概要: 2. アブストラクト: 目的: 本論文の目的は、鋳放し状態におけるMCMgAl6Zn1マグネシウム合金およびACAlSi9Cuアルミニウム鋳造合金の構造を調査することでした。設計/方法論/アプローチ: 以下の結果は、ZEISS SUPRA 25、Opton DSM-940走査型電子顕微鏡およびLEICA MEF4A光学顕微鏡、X線定性微量分析ならびにX線分析を用いた鋳造マグネシウムおよびアルミニウム合金の微細構造に関するものです。所見: マグネシウム合金の構造分析は、構造中に均一に位置する二次相γ – Mg17Al12の固溶体α – Mg(マトリックス)から構成されます。この構造は、主に結晶粒界に位置し、マトリックスと部分的に整合性のある針状析出物の形で凝集体を形成します。AC AlSi9CuおよびAC AlSi9Cu4鋳造アルミニウム合金は、合金マトリックスとしてのα固溶体のデンドライト構造を特徴とし、また、シリコンおよび銅の質量濃度に依存する形態を持つα+β共晶粒を形成する不連続なβ-Si相を特徴とします。研究の限界/含意: いくつかの特性は材料の表面にとってのみ非常に重要であるという事実を考慮すると、将来の調査は、物理蒸着法のような表面層堆積法を用いた合金表面のモデリングに関するものとなります。実用的含意: できるだけ軽量な車両構造を作成し、それに関連する低燃費への要望が、自動車産業における構造材料としてのマグネシウムおよびアルミニウム合金の利用を可能にしました。独創性/価値: 現代の材料は、長く信頼性の高い使用を保証するために、高い機械的特性、物理的および化学的特性、ならびに技術的特性を備えている必要があります。現代の材料に関する上記の要件と期待は、マグネシウムおよびアルミニウム合金を含む、今日使用されている非鉄金属合金によって満たされています。 3. 緒言: 近年の自動車産業におけるダイナミックな発展は、主に革新的な構造ソリューションと、質量、性能、燃費に直接影響を与える最新の材料に基づいています。マグネシウム合金とアルミニウム合金は、これらの進歩を可能にする金属合金の基本的なグループです。マグネシウム合金は、その非常に有用な強度(降伏強度Rp0.2)対密度比によって区別されます。弾性係数の値が比較的低いため、マグネシウム合金は非常に優れた振動減衰能力を特徴としています。また、この理由から、これらの合金は主にスポーツ用品や自動車産業の応用要素として使用されています。マグネシウム合金の大きな利点は、高い精度と寸法安定性で製造された薄肉大面積要素の鋳造可能性です。さらに、マグネシウム合金は、低速でも並外れた被削性を特徴としています[1-4]。マグネシウム鋳造合金の需要は、主に自動車産業の発展に関連しています(図1)。例えば、ゼネラルモーターズは大型車(Savana & Express)に26.3 kgのマグネシウム鋳造合金を使用し、小型車(Safari, Astro)では165 kg、フォードF-150では14.5 kg、VW PassatおよびAudi A4、A6では13.6~14.5 kg、アルファロメオでは9.3 kgです。マグネシウム鋳物のさらなる需要は、各車あたり最大50 kgと予想されています。これは主に、マグネシウム鋳物が低密度(1700-1900 kg/m³)であり、同時にその機械的特性がアルミニウム鋳造合金と類似しているという事実によるものです。マグネシウム合金は良好な鋳造特性を有しており、起こりうる収縮気孔や高温微小亀裂は合金添加物を適用することで対処できます。合金添加物を選択することにより、機械的特性や耐食性に影響を与えることができます[5-9]。新しい技術の導入のおかげで、加工コストを下げることができ、とりわけ鋳造方法が改善されました。部分的に結晶化したマグネシウム合金からの要素の製造方法、液体および固液状態での成形、真空鋳造、冷間および熱間チャンバー機での圧鋳ダイカストが開発されてきました。鋳造材料開発の現状の一般的な傾向は、その可塑性の増加と耐性の増加です。アルミニウム合金は、自動車および航空産業で使用される第2の軽金属材料グループです。これらの産業分野におけるアルミニウム合金の大きな人気は、その一般的な機能特性、すなわち低密度2689 kg/m³、良好な機械的特性、良好な耐食性、および非常に良好な被削性に関連しています[11-12]。これらの特性は、自動車および航空機のエンジン本体、ギアボックス、クラッチ、ウォーターポンプ、リアアクスルのハウジングに適用される理由であり、運用コストの削減および空気中への燃焼ガス排出に関連する燃料消費量の削減を可能にします。近年、自動車産業の発展と生産プロセスのエネルギー消費削減の追求とともに、高効率自動生産ラインを使用したアルミニウム合金砂型鋳造に戻る傾向が現れています。このようなソリューションの例としては、Cosworth、CPS、BAXI、HWSなどの技術がよく使用されます。これらの技術は、高圧下での非常に良好な型充填能力と、適用されるアルミニウム合金の酸化の低減を保証します[13-15]。 4. 研究の概要: 研究テーマの背景: 自動車産業における燃費向上と性能向上のための軽量化への継続的な取り組みは、先進的な軽量材料の使用を必要としています。マグネシウム合金とアルミニウム合金は、その良好な物理的および機械的特性により、主要な候補材料です。

Read More

Figure 1: Mechanisms of morphology change in the solid phase during isothermal holding of semi-solid alloy. [6] a) Coarsening mechanisms (b) Coalescence mechanisms

Microstructure Evolution in Al-7Si-0.3Mg Alloy During Partial Melting and Solidification from Melt: A Comparison

(Al-7Si-0.3Mg合金の部分溶融および溶湯からの凝固時における微細組織変化:比較研究) 本紹介論文は、「world foundry congress (wfc06)」によって発行された論文「Microstructure Evolution in Al-7Si-0.3Mg Alloy During Partial Melting and Solidification from Melt: A Comparison」に基づいています。 1. 概要: 2. 抄録: 本研究では、Srで改良処理されたAl-7Si-0.3Mg合金を半凝固状態で等温保持し、(i)液相状態からの冷却、および(ii)固相状態から半凝固温度までの部分溶融の条件下での微細組織変化の比較研究を行った。半凝固合金の凝固中の微細組織に及ぼす冷却速度(0.01~100 K/s)の影響を調査した。合金の部分溶融は、同じ合金を液相状態から冷却する場合と比較して、より微細で球状に近い固相を形成する。Sr添加による共晶シリコンの化学的改良処理は、報告されている結果とは対照的に、溶湯を液相から冷却する場合および固相から部分溶融する場合の両方で同じままであることが見出された。固相中に捕捉された液相に対応する共晶シリコンの形態は、相互に連結した液相チャネル中のものと比較して微細である。 3. 緒言: 半凝固金属(SSM)加工では、合金は部分的に液相であり部分的に固相である温度範囲で処理される。このプロセスは、液相マトリックス中に分散した球状固相粒子(α粒子)を含む半凝固スラリーを利用する。所望の半凝固スラリーは、レオキャスティング/レオフォーミングの場合のように溶湯の制御された凝固によって、またはチクソキャスティング/チクソフォーミングの場合のように前処理された固体の部分溶融および等温保持によって得られる。アルミニウム-シリコン合金の半凝固金属加工は、鋳造のプロセス上の利点と鍛造加工の製品上の利点を有する[1-5]。 チクソキャスティング/チクソフォーミングプロセスでは、前処理された合金ビレットを半凝固温度まで加熱し、所望の固相率と微細組織を得るために等温保持した後、ダイカスト/鍛造される。したがって、成形前の部分溶融はSSM加工における重要なステップである。等温保持中、系は固相の形態をデンドライト状から球状に変化させることによって表面エネルギーを減少させる。半凝固合金の等温保持中の固相における形態変化の様々なメカニズムの概略図をFigure 1 [6]に示す。 Al-Si合金A356 (Al-7Si-0.3Mg)およびA357 (Al-7Si-0.6Mg)は、一般用途および自動車用途のSSM加工で広く使用されている[7-10]。Al-Si合金の粗大な針状の共晶シリコンは、亀裂の発生と伝播を促進し、それによって機械的特性を低下させる。これらの亜共晶Al-Si合金の特性は、共晶シリコンに構造的改良処理を施すことによって改善することができる。ナトリウム、ストロンチウム、アンチモン、希土類などの微量元素の添加は、共晶相における微細なシリコン形態をもたらす。ストロンチウム(Sr)は、その半永久的な改良効果、取り扱いの容易さ、および無毒性のため、亜共晶Al-Si合金の改良剤として広く使用されている。改良処理された合金を溶湯状態で保持すると、溶湯中に存在するSrのレベルが時間とともに低下する、すなわちフェーディングが生じる。初期値の半分にフェーディングするのに必要な時間は、通常数時間(10-14時間)のオーダーである[11]。Stuckyら[12]は、Srで改良処理されたA356合金の部分溶融および室温までの空冷が化学的改良処理の効果を無効にしたと報告している。しかし、同じ合金を完全に溶融して空冷した場合には、完全に改良処理された共晶微細組織が保持された。部分溶融した合金で改良処理効果がなかった理由は述べられていない。しかし、Srによる共晶シリコンの改良処理は、不純物誘起双晶に起因する化学現象である[13]。したがって、Siの形態は、溶湯からの凝固と部分再溶融条件の両方で同じであるべきである。 本研究では、Srで改良処理されたAl-7Si-0.3Mg合金を、(i)固相からの部分溶融、および(ii)液相状態から半凝固温度への冷却の条件下で半凝固状態で等温保持したときの微細組織変化の比較研究を行った。半凝固状態からの冷却中の微細組織に及ぼす冷却速度の影響を研究した。 4. 研究の概要: 研究背景: 本研究は、自動車および一般用途に一般的な材料であるAl-7Si-0.3Mg合金の半凝固金属(SSM)加工に焦点を当てている。SSM加工の重要な側面は、液相マトリックス中に球状固相粒子を有する微細組織を達成することである。通常ストロンチウム(Sr)による共晶シリコンの改良処理は、機械的特性を向上させるために重要である。 先行研究の状況: これまでの研究では、Srによる改良処理は溶融金属中で時間とともに「フェーディング」する可能性があることが示されている。Stuckyら[12]は、Srで改良処理されたA356合金について、部分溶融後の空冷は改良効果を無効にしたが、完全溶融と凝固はそれを保持したと報告した。この発見は、半凝固状態への処理経路が、最終的な微細組織、特に共晶シリコンの形態に大きな影響を与える可能性があることを示唆した。 研究目的: 本研究の目的は、Srで改良処理されたAl-7Si-0.3Mg合金を半凝固状態で等温保持した際の微細組織変化の比較研究を行うことであった。2つの条件が比較された:(i)液相状態から半凝固温度への冷却、および(ii)固相状態から半凝固温度への部分溶融。さらに、本研究は、半凝固状態からの凝固中の冷却速度(0.01~100 K/s)が微細組織に及ぼす影響を調査することを目的とした。 研究の核心: 研究の核心は、Sr (0.02%)で改良処理されたAl-7Si-0.3Mg合金試料を調製し、それらを590°C(固相率37%)の半凝固温度に到達させるために2つの異なる熱経路に供することであった。これらの経路は以下の通りである: 5. 研究方法論 研究計画: 本研究では実験的研究計画を採用した。市販のA356合金にAl-10Srマスターアロイを溶湯添加することにより、Sr (0.02%)改良Al-7Si0.3Mg合金を調製した。合金の化学組成をTable 1に示す。直径10mm、高さ10mmの重力ダイカスト円筒形試料を実験に使用した。これらの試料は、乾燥後にシェルを形成するセラミックスラリー(東郷化学株式会社製アロンセラミック)でコーティングした。シェルは実験中の溶融金属の容器として機能する。試料にクロメル-アルメル熱電対を挿入した後、コンピュータに接続されたKeithleyデータ収集システムに接続した。次に試料を垂直勾配炉に入れ、590°Cの半凝固温度(固相率37%)まで加熱し、この温度で等温保持した後、急冷または異なる冷却速度で冷却した。試料は、2つの異なる方法で半凝固温度に到達させた: データ収集・分析方法: 研究対象と範囲: 6.

Read More

Fig. 2. (a) Family and shapes of terminals used ((1) spherical, (2) cylinders, (3) L shapes, (4) S shape or cranks, (5) modified cylinders, (6) special shapes); (b) Piece to be studied.

Zamak合金ダイカストプロセスの最適化

本稿は、「Procedia Manufacturing」に掲載された論文「Optimisation of die casting process in Zamak alloys」に基づいています。 1. 概要: 2. 抄録: 鋳造業は、人々の生活に大きな影響を与える世界の主要産業の一つです。ダイカストは、永久金型を使用し、溶融金属を圧力で射出することにより、より短いサイクルでの連続部品生産を可能にするプロセスです。本研究は、多くの鋳造部品がその構成部品に使用されている自動車産業に応用されるダイカストに焦点を当てています。この研究は、自動車部品用のZamak合金で射出される小型部品の品質を最大化するために開発されました。シミュレーションを用いて、ランナーの位置およびガス抜きが改善されました。 3. 緒言: 自動車産業は、安全性と環境問題に関する厳しい法律により、最も要求の厳しい分野の一つです。これにより、排出量の削減、燃費の向上、安全性の強化、性能の向上といった目標を、多くの場合より低コストで達成するための継続的な技術進歩が求められています [1, 2, 3]。品質はこの業界において最も重要な要素です。品質の低い製品は、評判の失墜、傷害、経済的損失といった深刻な結果につながる可能性があります [4]。その結果、総合的品質管理(TQM)のような強固な品質基準と管理哲学が広く導入されています [5, 6, 7]。高圧ダイカストは、再利用可能な鋼製金型を使用して、正確で寸法精度が高く、シャープに定義された、滑らかまたはテクスチャ加工された表面を持つ金属部品、特に非鉄鋳物を高速で生産するための一般的な製造プロセスです [8, 9]。このプロセスでは、溶融金属を高圧で金型に射出します。金型には、適切な充填と凝固を保証し、ガスが逃げることを可能にするために、ランナー、熱システム、ゲート、ベントなどの機能が組み込まれている必要があります。欠陥のない部品を得るためには、温度、圧力、時間を含む多くの変数を精密に制御する必要があります。 4. 研究の概要: 研究トピックの背景: 本研究は、自動車産業における部品品質に対する厳しい要求と、Zamak合金のような合金から小型で複雑な部品を製造するための高圧ダイカストの広範な使用を背景としています。具体的には、欠陥が機能性を損なう可能性のあるコマンドケーブル端子の製造における課題に取り組んでいます。多数の相互作用するプロセスパラメータを持つダイカスト固有の複雑さは、欠陥防止を重要な懸念事項としています。 先行研究の状況: これまでの研究や業界の慣行では、プロセスパラメータが慎重に管理されない場合、ポロシティなどのダイカスト欠陥が一般的であることが認識されています [12]。NADCAのような組織が助言するように、有限要素法(FEM)や数値流体力学(CFD)は、ダイカストプロセスを分析し最適化するための貴重なツールとして認識されています [10]。しかし、特定の部品の形状とそれが金属の流れに与える影響に関する実践的な理解は依然として重要です。研究対象の部品の初期調査では、顕微鏡分析(Fig. 3b)が示すように、主に閉じ込められたガスに起因するマイクロポロシティが明らかになり、金型設計の改善の必要性が示されました。 研究の目的: 本研究の主な目的は、自動車のコマンドケーブルに使用される小型Zamak合金部品の品質を最大化することでした。これは、金型設計を改善し、特にランナーの位置を最適化し、効果的なガス抜きを組み込むことによって達成されることになっていました。また、本研究は、欠陥を引き起こす要因を理解し、これらのタイプのコンポーネントの金型を設計するためのガイドラインを開発するためのツールとしてシミュレーションを使用することも目的としていました。 核心研究: 研究の核心は、鋳造欠陥が発生しやすいことで知られる「拡張H形状」(Fig. 2b)を特徴とする特定のZamak合金端子の高圧ダイカストプロセスの最適化でした。本研究では、シミュレーションを利用して以下を実施しました。 5. 研究方法論 研究計画: 本研究では、シミュレーションに基づく比較研究方法論を採用しました。選択されたZamak端子の既存のダイカストプロセスと金型設計を最初にシミュレーションしてベースラインを確立し、問題領域を特定しました。その後、金型設計の修正(ランナー、ベンティングシステム、スプルー)を概念化しました。これらの修正された設計は、充填プロセスの改善と欠陥の低減における有効性を予測するためにシミュレーションされ、初期設計との比較が可能になりました。 データ収集および分析方法: 有限要素シミュレーションソフトウェア、具体的にはFinite Solutions, Inc.のSOLIDCastおよびFLOWCastが、FLOW3Dの追加サポートを受けて、主要なツールとして使用されました。シミュレーションで使用された主要パラメータ(Table 1)には、溶融Zamak温度(440°C)、金型温度(100°C)、射出速度(5.093 m/s)、射出時間(0.30 s)、凝固時間(0.35 s)が含まれていました。Steel H-13金型材料の境界条件はTable 2に従って定義されました。シミュレーション出力の分析は、金型充填中の流体速度ベクトル(figure 4a)、空気混入、温度分布、キャビテーションポテンシャル、および表面欠陥の濃度などのパラメータに焦点を当てました。さらに、既存の欠陥を観察し特性評価するために、実際の部品に対して顕微鏡分析が行われました(Fig.

Read More

Fig. 2. (a) Family and shapes of terminals used ((1) spherical, (2) cylinders, (3) L shapes, (4) S shape or cranks, (5) modified cylinders, (6) special shapes); (b) Piece to be studied.

Zamak合金ダイカストプロセスの最適化

本稿は、「Procedia Manufacturing」に掲載された論文「Optimisation of die casting process in Zamak alloys」に基づいています。 1. 概要: 2. 抄録: 鋳造業は、人々の生活に大きな影響を与える世界の主要産業の一つです。ダイカストは、永久金型を使用し、溶融金属を圧力で射出することにより、より短いサイクルでの連続部品生産を可能にするプロセスです。本研究は、多くの鋳造部品がその構成部品に使用されている自動車産業に応用されるダイカストに焦点を当てています。この研究は、自動車部品用のZamak合金で射出される小型部品の品質を最大化するために開発されました。シミュレーションを用いて、ランナーの位置およびガス抜きが改善されました。 3. 緒言: 自動車産業は、安全性と環境問題に関する厳しい法律により、最も要求の厳しい分野の一つです。これにより、排出量の削減、燃費の向上、安全性の強化、性能の向上といった目標を、多くの場合より低コストで達成するための継続的な技術進歩が求められています [1, 2, 3]。品質はこの業界において最も重要な要素です。品質の低い製品は、評判の失墜、傷害、経済的損失といった深刻な結果につながる可能性があります [4]。その結果、総合的品質管理(TQM)のような強固な品質基準と管理哲学が広く導入されています [5, 6, 7]。高圧ダイカストは、再利用可能な鋼製金型を使用して、正確で寸法精度が高く、シャープに定義された、滑らかまたはテクスチャ加工された表面を持つ金属部品、特に非鉄鋳物を高速で生産するための一般的な製造プロセスです [8, 9]。このプロセスでは、溶融金属を高圧で金型に射出します。金型には、適切な充填と凝固を保証し、ガスが逃げることを可能にするために、ランナー、熱システム、ゲート、ベントなどの機能が組み込まれている必要があります。欠陥のない部品を得るためには、温度、圧力、時間を含む多くの変数を精密に制御する必要があります。 4. 研究の概要: 研究トピックの背景: 本研究は、自動車産業における部品品質に対する厳しい要求と、Zamak合金のような合金から小型で複雑な部品を製造するための高圧ダイカストの広範な使用を背景としています。具体的には、欠陥が機能性を損なう可能性のあるコマンドケーブル端子の製造における課題に取り組んでいます。多数の相互作用するプロセスパラメータを持つダイカスト固有の複雑さは、欠陥防止を重要な懸念事項としています。 先行研究の状況: これまでの研究や業界の慣行では、プロセスパラメータが慎重に管理されない場合、ポロシティなどのダイカスト欠陥が一般的であることが認識されています [12]。NADCAのような組織が助言するように、有限要素法(FEM)や数値流体力学(CFD)は、ダイカストプロセスを分析し最適化するための貴重なツールとして認識されています [10]。しかし、特定の部品の形状とそれが金属の流れに与える影響に関する実践的な理解は依然として重要です。研究対象の部品の初期調査では、顕微鏡分析(Fig. 3b)が示すように、主に閉じ込められたガスに起因するマイクロポロシティが明らかになり、金型設計の改善の必要性が示されました。 研究の目的: 本研究の主な目的は、自動車のコマンドケーブルに使用される小型Zamak合金部品の品質を最大化することでした。これは、金型設計を改善し、特にランナーの位置を最適化し、効果的なガス抜きを組み込むことによって達成されることになっていました。また、本研究は、欠陥を引き起こす要因を理解し、これらのタイプのコンポーネントの金型を設計するためのガイドラインを開発するためのツールとしてシミュレーションを使用することも目的としていました。 核心研究: 研究の核心は、鋳造欠陥が発生しやすいことで知られる「拡張H形状」(Fig. 2b)を特徴とする特定のZamak合金端子の高圧ダイカストプロセスの最適化でした。本研究では、シミュレーションを利用して以下を実施しました。 5. 研究方法論 研究計画: 本研究では、シミュレーションに基づく比較研究方法論を採用しました。選択されたZamak端子の既存のダイカストプロセスと金型設計を最初にシミュレーションしてベースラインを確立し、問題領域を特定しました。その後、金型設計の修正(ランナー、ベンティングシステム、スプルー)を概念化しました。これらの修正された設計は、充填プロセスの改善と欠陥の低減における有効性を予測するためにシミュレーションされ、初期設計との比較が可能になりました。 データ収集および分析方法: 有限要素シミュレーションソフトウェア、具体的にはFinite Solutions, Inc.のSOLIDCastおよびFLOWCastが、FLOW3Dの追加サポートを受けて、主要なツールとして使用されました。シミュレーションで使用された主要パラメータ(Table 1)には、溶融Zamak温度(440°C)、金型温度(100°C)、射出速度(5.093 m/s)、射出時間(0.30 s)、凝固時間(0.35 s)が含まれていました。Steel H-13金型材料の境界条件はTable 2に従って定義されました。シミュレーション出力の分析は、金型充填中の流体速度ベクトル(figure 4a)、空気混入、温度分布、キャビテーションポテンシャル、および表面欠陥の濃度などのパラメータに焦点を当てました。さらに、既存の欠陥を観察し特性評価するために、実際の部品に対して顕微鏡分析が行われました(Fig.

Read More

Photo 3.3 Manufactured copper rotors

混合導電性加工ロータ(MCFR)を用いたリスケージ誘導電動機の性能改善に関する新規手法

本稿は、「[North West University]」より発行された論文「[Novel Method of Improving Squirrel Cage Induction Motor Performance by using Mixed Conductivity Fabricated Rotors (MCFR)]」に基づいています。 1. 概要: 2. 抄録: 理想的なリスケージモータは、可変のロータ抵抗を持つべきである。すなわち、停止時には大きく、速度が上昇するにつれて減少する抵抗である。海外で設計された高インピーダンスロータはこれらの条件を満たそうとするが、主に二重ケージロータやダイカストアルミニウムロータが使用される。しかし、南アフリカの石炭鉱業においては、これらのロータは高い故障率と大きな経済的損失を記録した。その結果、以前は無視されていた基本条件を満たすことができる代替ロータタイプへの市場のニーズが現れた。 長年にわたり、リスケージロータの設計においては、暗黙のうちに2つの原則のみが受け入れられてきた。 本発明は、「リスケージロータ周囲の円周方向において、リスケージバーは異なる導電率と同じ形状を持つことも、あるいは異なる導電率と異なる形状を持つこともできる」という新しい原理に基づいている。 混合導電性加工ロータ(MCFR)は、この新しい原理に基づいて設計・製造され、南アフリカの過酷な鉱山条件に耐えることができる。 特許取得以来、本発明は、ある有名な石炭鉱業会社の連続採鉱機に動力を供給する特殊なロータセットとして具体化されており、同社は特定の輸入ダイカストアルミニウムロータの交換だけで年間約500万ランドを費やしていた。 上記の基本条件を完全に満たしつつ、本特許は技術的および経済的に多くの利点を提供し、鉱業プロセスの効率を予想以上に向上させる。本論文は、特定の工学的応用の要求に合わせてロータ設計を変更することにより、MCFRの設計適応性を記述しており、これは駆動装置設計の基本線となる。本特許は、プロセス効率を高めるという南アフリカの新しいトレンドの一部である。これは、南アフリカ経済にプラスの影響を与える専用モータの設計に大きな可能性を提供する。いくつかの社会経済的利点は、相当な研究価値がある。 3. はじめに: 今世紀は効率性(EFFICIENCY)が重視されており、この概念はエネルギー・資源危機と新しい金融政策によって推進され、南アフリカの産業などに大きな影響を与えています[Ref. [1], Ref. [2]]。特に南アフリカの鉱業は、過酷な条件下で使用される海外設計の電気モーターの性能と信頼性に関する課題に直面していました[Ref. [3]]。これにより、特定の用途に合わせた「専用モーター」の必要性が生じ、高い信頼性、長寿命、低い総所有コスト(TOC)(Figure 1.1参照)、そしてプロセス速度の向上が効率的に管理されない場合にしばしば運用コストの増加につながるため、安定した性能が求められました(Figure 1.2参照)[Ref. [4], Ref. [5], Ref. [6]]。重大な問題は、連続採鉱機のような要求の厳しい用途におけるダイカストアルミニウムローターなどの既存のロータータイプの故障率の高さであり、これが実質的な経済的損失につながっていました[Ref. [7]]。本研究は、これらの課題に対する新しい解決策として混合導電性加工ローター(MCFR)を導入し、新しい専用モーターと古いモーターの修理・アップグレードの両方に対する代替案を提案しています[Ref. [8], Ref. [9]]。MCFRは、従来のローター設計の限界に対処することにより、鉱業における技術的および経済的性能を向上させることを目的としています。 4. 研究の要約: 研究テーマの背景: 理想的なリスケージモータは、可変のロータ抵抗を必要とします。すなわち、停止時には高く、速度が上昇するにつれて減少する抵抗です。南アフリカの石炭鉱業のような要求の厳しい産業で使用される従来の高性能インピーダンスロータ(二重ケージ、ダイカストアルミニウム)は、しばしば故障し、大きな経済的損失をもたらします(抄録、第1章)。これにより、過酷な運転条件に耐えることができる、信頼性、寿命、費用対効果が向上した代替ロータ設計の必要性が浮き彫りになりました(抄録、第1.6章)。 従来の研究状況: 従来のリスケージロータ設計は、主に2つの原則に従っていました。1) 単一ケージロータは、円周方向に同じ形状と導電率のバーを持ちます(Figure 5.2)。2) 二重ケージロータもこの円周方向の規則に従いますが、半径方向には異なる形状と導電率のバーを持ちます(Figure

Read More