Category Archives: automotive-J

組織特徴、欠陥および表面品質がAl-Si-Mg鋳造合金の疲労性能に及ぼす影響

本紹介論文は、「Jönköping University, School of Engineering, Dissertation Series No. 084」によって発行された「The Effect of Microstructural Features, Defects and Surface Quality on the Fatigue Performance in Al-Si-Mg Cast Alloys」論文に基づいています。 1. 概要: 2. 抄録: 地球温暖化により、産業界は二酸化炭素(CO2)排出量を削減するために、より軽量な部品を製造する必要に迫られています。これを達成するための有望な候補として、アルミニウム-シリコン(Al-Si)鋳造合金があり、高い重量対強度比、優れた耐食性、良好な鋳造性を提供します。しかし、これらの合金の機械的特性のばらつきを理解することは、重要な用途向けの高性能部品を製造する上で不可欠です。欠陥や酸化物は、機械的特性に悪影響を与えるため、疲労用途において鋳造部品が不合格となる主な理由です。 Al-Si鋳物におけるα-アルミニウム素地、Al-Si共晶、表面粗さ、気孔、水素含有量、酸化物、金属間化合物などのパラメータと疲労性能との相関関係に関する包括的な理解は、まだ達成されていません。 本論文で提示された研究では、最先端の実験技術を用いて、周期的荷重下でのAl-Si-Mg鋳造合金の機械的特性およびき裂発生・進展挙動を調査しました。走査型電子顕微鏡(SEM)と電子後方散乱回折(EBSD)、デジタル画像相関法(DIC)、集束イオンビーム(FIB)加工を組み合わせたその場(In-situ)周期的試験を実施しました。これらの技術により、水素含有量、表面粗さ、酸化物、金属間化合物相を含む、疲労性能に影響を与えるパラメータに関する包括的な研究が可能になりました。具体的には、溶湯品質、銅(Cu)含有量、酸化介在物(oxide bifilms)、表面品質、および気孔率の影響を調査しました。 熱処理されたAl-Si合金におけるCu濃度の増加は、金属間化合物相の量を増加させ、き裂挙動に影響を与えました。さらに、高ひずみ領域から遠く離れた領域であっても、き裂発生サイトで酸化介在物が検出されました。Siリッチおよび鉄(Fe)リッチな金属間化合物が、これらの介在物上に析出していることが観察されました。これらの酸化物は非常に小さいため、一般的に非破壊検査では検出されませんが、比較的低い引張応力で開口するように見えるため、機械的特性に影響を与えます。最後に、Al-Si合金の鋳肌(casting skins)は、疲労性能を向上させるという点で興味深い効果を示し、そのような合金に対する表面研磨の悪影響を浮き彫りにしました。 3. 緒言: 温室効果ガス、特にCO2の排出削減は世界的な主要な焦点であり、自動車などの産業においてアルミニウムのような軽量材料の使用を推進しています[1]。アルミニウム-シリコン(Al-Si)鋳造合金は、高い強度対重量比、費用対効果、耐食性、鋳造性により、主要な候補です[2, 3]。リサイクルアルミニウムの使用が増加しており、一次生産と比較して大幅なエネルギー節約を提供します[4-6]。純アルミニウムは強度が限られていますが、特にSi、Cu、Mgとの合金化は、固溶強化および析出強化を通じて機械的特性を向上させます[7-12]。しかし、鋳造アルミニウム部品の高サイクル疲労(HCF)性能は依然として課題であり、疲労は全破壊の約90%を占めます[13]。酸化膜(bifilms)や気孔などの欠陥は、疲労寿命を大幅に低下させます[14-17]。しばしば部品の潜在的な疲労寿命のわずか1%に制限します[17]。気孔のような一部の欠陥は検出できますが[19]、酸化介在物のような他の欠陥は破壊が発生するまで隠れたままであることが多いです[20, 21]。粗さを含む表面状態も、疲労発生に決定的な影響を与えます[16]。機械加工された試験片に対する標準的な実験室疲労試験は、鋳肌(casting skins)を持つ実際の部品の挙動を完全には表していない可能性があります[22]。したがって、組織特徴、欠陥、および表面品質が、鋳造Al-Si合金の機械的性能、特に疲労にどのように影響するかについてのより良い理解は、要求の厳しい用途向けに部品を最適化するために不可欠です。 4. 研究の概要: 研究トピックの背景: CO2排出削減のための軽量部品の必要性は、様々な産業、特に自動車産業においてAl-Si鋳造合金の使用を推進しています[1, 2]。これらの合金は、高い強度対重量比や良好な鋳造性といった有利な特性を提供します[3]。しかし、特に疲労が重要な部品への適用は、固有の組織特徴や欠陥によってしばしば制限されます。 先行研究の状況: 疲労破壊は、鋳造Al部品における主要な課題です[13]。気孔や酸化介在物のような欠陥、および表面粗さは、疲労性能を著しく低下させることが知られています[14-17, 22]。多くの研究が存在しますが、α-アルミニウム素地、Al-Si共晶、様々な欠陥(気孔、酸化物)、金属間化合物相、水素含有量、および表面粗さ間の複雑な相互作用が疲労寿命に及ぼす影響に関する包括的な理解はまだ不足しています[24]。特に、表面粗さや溶湯状態から生じる欠陥の役割に関しては、文献中に矛盾する結果やギャップが存在します[24]。 研究の目的: 本研究の主な目的は、様々な組織特徴、欠陥(酸化物/介在物、気孔を含む)、溶湯品質パラメータ(水素含有量)、合金添加物(特に銅)、および表面品質(粗さ、鋳肌)が、Al-Si-Mg系鋳造合金の機械的特性、特に疲労性能(き裂発生および進展)に及ぼす影響を調査し、理解することでした[25, 28]。目標は、高性能用途向けにこれらの合金を最適化し、生産におけるエネルギー消費を潜在的に削減するための知識を提供することでした。 コア研究: 本研究は、Al-Si-MgおよびAl-Si-Mg-Cu鋳造合金の疲労性能に影響を与えるいくつかの主要な側面に焦点を当てました: 5.

Read More

Fig. 1. Schematic of FSP experimental setting with tool shoulder and pin geometry and position of miniature and bulk E8 tensile specimens with respect to FSP nugget zone.

はい、承知いたしました。以下に、英語で作成した論文概要の日本語版を、ご指定のWordPressページ公開形式で記述します。

この入門論文は、”Friction Stir Processing: A Thermomechanical Processing Tool for High Pressure Die Cast Al-Alloys for Vehicle Light-weighting”(”[Manufacturing Letters]”発行)に基づいて作成されています。 1. 概要: 2. 概要: 本研究では、高圧ダイカスト(HPDC)の熱機械加工に摩擦攪拌処理(FSP)を用い、組織を改質し、機械的特性を向上させることを目的とする。FSPは、薄肉フラットプレート形状の2種類のHPDCアルミニウム合金、すなわち(a)汎用、高鉄、HPDC A380合金と(b)プレミアム品質、低鉄HPDC Aural-5合金に対して実施された。その後の機械試験では、降伏強さと引張延性がそれぞれ約30%と約65%向上することが示された。さらに、FSPはA380合金の疲労寿命を約10倍、Aural-5合金の破壊靭性を約70%向上させた。これらの知見は、HPDC Al合金ベースの構造部品の組織を改質するFSPの能力を強調するものであり、長期的な耐久性と信頼性のために、強度、延性、破壊靭性、および高い疲労特性の良好な組み合わせを示すことができることを示唆している。 3. 導入: ゼロカーボン排出への要求の高まりに応えるため、自動車OEM(相手先商標製品製造業者)は、重量のある構造用鋼アセンブリを軽量アルミニウム構造鋳物に置き換えることで、軽自動車(LD)の構造重量を低減するための低コストソリューションを模索している。高圧ダイカスト(HPDC)アルミニウム鋳物は、自動車設計におけるショックタワー、ピラー、フロアレールなどの重要な耐荷重ボディ構造において、OEMに設計、軽量化、品質の利点を提供する。HPDC Al鋳物を使用することで、複雑な構造プロファイル、高い耐久性、効果的な部品ユニット化を実現できる[1]。さらに、電気自動車技術が進歩するにつれて、ハイブリッドパワートレインと自動車の電化が自動車セクター内でますます重要になっている。軽量電気自動車の追求において、HPDCアルミニウム鋳物は、バッテリー用軽量エンクロージャーや、さまざまなパワートレインおよびトランスミッションコンポーネントの製造において重要な役割を果たすことができる。 Alダイカスト業界では、金型寿命の延長と最終鋳物の延性のバランスを取ることが常に課題である。この分野の研究は、両方の側面を改善し、低コストを維持するために材料化学を改質することを目的としたものが頻繁に行われている[2]。汎用ダイカストでは、高価な金型摩耗を低減するためにFeとMnが使用されるが、Fe濃度が高いと全体的な延性、ひいては疲労寿命が低下する。HPDC Al合金の化学組成には、溶融性、湯回り性、耐引裂き性を向上させるためにSiが添加される。さらに、HPDC合金を強化するためにCu、Zn、Mgが使用される。しかし、多元素組成のため、HPDC Al合金は、さまざまな金属間化合物を頻繁に生成する。頻繁に観察される2つの金属間化合物は、針状のβ-FeSiAl (FeSiAl5) と多面体のα-FeSiAl (Al15(MnFe)3Si2) である。中でもベータ相は、全体的な機械的特性、特に延性に関して有害な影響を及ぼす。HPDC Al合金には、針状シリコンとかなりの量の第二相粒子も含まれており、引張強度と延性に悪影響を及ぼす[3,4]。さらに、HPDC Al合金に固有のデンドライト組織は、鍛造組織と比較して機械的特性が低い。加えて、これらの合金はガスおよび収縮の気孔率を示し、機械的負荷下での応力集中と亀裂の発生部位となる。これらのHPDCプロセス関連および材料化学関連の有害な特徴が、車両構造部品としてのHPDC Al合金の用途を制限してきた[3]。 4. 研究の概要: 研究トピックの背景: HPDCアルミニウム鋳物は、その利点にもかかわらず、固有の微細組織欠陥と材料化学的制約により、延性、疲労寿命、破壊靭性などの機械的特性が損なわれている。これらの制約は、自動車業界における軽量化と耐久性の要求の高まりという文脈において、車両構造部品へのより広範な応用を妨げている。 これまでの研究状況: これまでの研究努力は、有害な特徴を軽減するために、合金化学とHPDCプロセスの改質に焦点が当てられてきた。真空アシストHPDCは、ガスおよび収縮気孔率を低減する。Silafont、Castasil、Auralなどのプレミアム低Fe HPDC Al合金は、有害なベータ相を排除することにより延性を向上させるために開発された。ストロンチウム(Sr)添加は、針状シリコンをより微細で繊維状の組織に改質するために使用され、強度と延性を向上させる。Sr改質合金であるAural-5は、構造用途で成功を収めている。しかし、収縮気孔率、デンドライト組織、せん断帯形成、外部凝固結晶(ESC)、第二相粒子など、課題は依然として残っている。 研究の目的: 本研究の目的は、薄肉HPDC Al合金の組織を改質し、機械的特性を向上させるための熱機械的後処理ツールとして、摩擦攪拌処理(FSP)を調査することである。このアプローチは、機械的性能の低下の原因となる微細組織欠陥と制約に直接対処することにより、コストのかかる合金組成とHPDCプロセス最適化の代替案を提供する。 コアとなる研究: コアとなる研究は、2種類のHPDCアルミニウム合金、(i)高鉄A380と(ii)低鉄Aural-5の両方を薄肉フラットプレート形状でFSP処理することである。本研究では、FSPが組織の発達と、引張特性、疲労寿命、引裂き靭性などの機械的特性に及ぼす影響を評価する。機械的性能は、FSPが構造用途向けのHPDC Al合金の全体的な性能を向上させる効果を示すために、クーポンレベルの試験を通じて評価される。 5. 研究方法

Read More

Fig. 4. Schematic view of individual devices in the casting workplace: (1 – high pressure casting machine, 2 – machine extraction, 3 – cutting press, 4 – data matrix code punch, 5 – foundry mould treatment manipulator, 6 – cooling bath, 7 – holding furnace, 8 – handling robot, 9 – robotic, automatic palletizing)

自動車鋳造品の鋳造生産プロセスにおけるグリーンイノベーション

本紹介論文は、「Rocznik Ochrona Środowiska」によって発行された論文「Green Innovations in Foundry Production Processes of Automobile Castings」に基づいています。 1. 概要: 2. 抄録: 本論文は、自動車部品の生産におけるエネルギー節約と化学物質使用に関する個々の可能性を扱っています。具体的には、エンジンブロックやギア・クラッチハウジングのような形状が複雑な鋳造品を high-pressure die-casting technology を用いて生産するアルミニウム鋳造工場の操業に焦点を当てています。生産プロセスに関して、鋳造作業は高いエネルギー消費と大量の廃水発生を特徴とします。一方で、様々なイノベーションを導入し、節約を追求する大きな可能性も存在します。本論文は、鋳造作業全体にわたる選ばれた革新的なソリューションを提示し、エネルギー消費節約、廃水生産削減、化学物質使用量削減におけるそれらの利点を評価することを目的としています。提示された節約の影響は、部品生産に関する財務面と、CO2 production に関する環境面の両方で評価されます。 3. 序論: 今日、環境保護への関心が高まっており、人間のあらゆる活動分野に関連する有害物質の生産を削減する一般的な取り組みが進んでいます。これは産業部門(Lenort et al. 2019, Gabrylewicz et al. 2021)および一般の工業生産にも当てはまります。green production(Saetta & Caldarelli 2020)や都市および関連するグリーンロジスティクス(Sharma et al. 2023, Chamier-Gliszczynski 2012)といった新しいトレンドがここで適用されています。廃棄物を最小限に抑え、回収し、廃棄物管理システムを構築する圧力もあります(Espuny et al. 2022, Ignatowicz et al. 2021)。製品ライフサイクル全体(LCA)を通じてすべての活動を監視・評価するという包括的なアプローチを適用することも重要です(Bajdur et al. 2023, Chamier-Gliszczynski & Krzyzynski 2005)。生産性と効率性に対する高い要求を持つ現代の工業生産は、現在、エネルギー資源面での節約を見つけることに非常に注力しています。あらゆる種類のエネルギーにおけるエネルギー節約の達成(Kuczynski

Read More

Fig. 6. Sketch of the casting technique used by Gibbs Die Casting to cast Mg alloys [144].

マグネシウム合金製超大型高圧ダイカスト自動車構造部品の進歩と展望

本紹介資料は、「Journal of Magnesium and Alloys」に掲載された論文「Progress and prospects in Mg-alloy super-sized high pressure die casting for automotive structural components」に基づいています。 1. 概要: 2. 抄録: Teslaのギガキャスティング(Giga-Casting)プロセスの導入以来、自動車産業では、電気自動車および内燃機関自動車の両方の軽量化を促進する大きな可能性から、超大型構造部品のコンセプトが広く受け入れられています。これらの超大型部品は、アルミニウム合金の3分の2、鋼鉄の4分の1の密度しかない優れた軽量特性を持つMg合金を使用することで、さらに軽量化できます。この卓越した特性は、構造的完全性を損なうことなく大幅な重量削減を達成するという魅力的な展望を提供します。本レビューは、Mg合金高圧ダイカスト(HPDC)プロセスに関する研究を検討し、Mg合金を超大型自動車HPDC部品に組み込む将来の展望についての洞察を提供します。 3. 緒言: 気候変動とその悪影響に対する懸念が高まる中、世界各国は温室効果ガス排出という重大な問題に対処するための取り組みを強化しています。政策立案者は、特に電気自動車(EV)の普及促進に焦点を当て、包括的なCO2排出政策の実施に注目しています。しかし、EVは、従来の燃焼エンジンと比較してEVバッテリーの重量が大幅に増加しているため、同様のサイズのICE車と比較して、数百から数千キログラムの大きな重量差を示すことがあります。その結果、車両の軽量化は、環境性能の向上と性能向上の両方を可能にするため、将来の自動車産業にとって極めて重要です。自動車の軽量化の分野で、最近の最も画期的な進歩の1つは、Teslaのギガキャスティング技術[1]です。この先進的な高圧ダイカスト(HPDC)技術により、EV構造用の超大型一体部品の製造が可能になります。この革新的なアプローチを採用することで、Teslaは171個の複雑な車両部品を、フロントとリアのアンダーボディというわずか2つの鋳造品に統合しました。これにより、30%の驚異的な重量削減と40%の印象的なコスト削減が実現し、EVの効率と性能を向上させるための競争力のあるソリューションとなっています[1]。ギガキャスティングの成功は世界的に大きな注目を集め、自動車産業が超大型構造部品を採用し、従来の車体およびシャシー要素の数を大幅に削減するきっかけとなりました。一方、現在の超大型自動車部品の代替材料の調査を通じて、より高度な軽量化技術の追求への関心が高まっており、特にMg合金に焦点が当てられています。地球上で最も軽い構造材料として知られるMg合金は、アルミニウム合金のわずか3分の2、鋼鉄の4分の1の密度しか示しません。この卓越した重量対強度比により、Mg合金は構造的完全性を損なうことなく大幅な重量削減を達成するための非常に有望な選択肢として位置づけられています。Mg合金の探求は、効果的で革新的な軽量化ソリューションを求める自動車産業の探求を推進する上で大きな可能性を秘めています。2023年6月に発表された革新的な成果[5]として、重慶大学の国家マグネシウム合金工学研究センター(CCMg)は、Chongqing Millison Technologies Inc.およびChongqing Boao Magnesium Aluminium Manufacturing Company Ltdと協力し、Millisonの8800Tギガプレスマシンを使用して、世界最大のMg合金自動車ダイカスト部品の試作に成功しました。図1に示すように、リアアンダーボディとバッテリーエンクロージャー用アッパーカバーという2つの超大型ボディインホワイト(BIW)部品が鋳造され、両部品の投影面積は2.2 m²を超え、現在入手可能な最大のMg合金自動車HPDC部品としての地位を確立しました。Al合金鋳造品と比較して32%の顕著な軽量化を実現したこれらのMg合金超大型鋳造品は、自動車産業における軽量化用途に大きな可能性を示しています。この可能性に基づき、本研究は、大型で薄肉の自動車構造部品向けのMg合金HPDCプロセスに関して行われた調査のレビューを提示することを目的としています。Mg合金、溶湯処理、酸化物関連欠陥、ホットティア、現在のMg合金超大型製品などのトピックをカバーし、超大型自動車HPDC部品の製造にMg合金を利用する際の重要な側面を探求し、超大型自動車部品の軽量特性を向上させる有望な手段としてのMg合金の実現可能性についての洞察を提供します。 4. 研究の概要: 研究テーマの背景: 自動車産業は、特に重量が増加するEVの普及に伴い、効率改善と環境性能向上のために車両重量を削減する必要に迫られています。Teslaのギガキャスティングに代表される超大型構造部品は、Al合金を用いて部品統合、コスト削減、軽量化を実現する道筋を示しています。Mg合金のようなより軽量な材料を探求することで、さらなる重量削減が可能です。 従来の研究状況: Al合金を用いたギガキャスティングは自動車産業で確立されつつあります[1, 2, 3, 4]。自動車用途のMg合金に関する研究では、大型構造部品に適した非熱処理(NHT)形態で、鋳造性や延性などの望ましい特性を持つ適切な合金系(例:AM、AZ、AJ、AEシリーズ)が特定されています[6-11]。合金元素(Al、Si、Zn、Sr、Ca、RE)がMgの特性に及ぼす影響に関する研究が行われています[12-40]。溶湯処理技術(脱ガス、フラックス精錬、電磁・超音波・浮遊選鉱・濾過などの非フラックス精錬)は、Mg合金鋳造品の品質にとって重要であることが知られています[41-78]。Mg HPDCにおける一般的な欠陥、例えばダイソルダリング(Alよりは軽微)、酸化物介在物/バイフィルム、ホットティアなどが研究されています[79-132]。鋳造品の健全性を向上させるために、真空HPDC(VADC/SVDC)やVACURALなどの先進的な鋳造技術が使用されています[135-146]。大型Mg合金鋳造品の試作成功例も報告されています[5, 図8]。 研究の目的: 本レビューは、大型・薄肉の自動車構造部品に特化したMg合金高圧ダイカスト(HPDC)プロセスに関する既存の研究を検討することを目的としています。Mg合金を超大型自動車HPDC部品に組み込むことの実現可能性、利点、課題、および将来の展望についての洞察を提供することを目指しています。 研究の核心: 本論文は、Mg合金超大型HPDCに関連するいくつかの主要な領域をレビューします: 5. 研究方法論 研究デザイン: 本研究は包括的な文献レビューです。科学論文、技術報告書、業界出版物から得られた既存の知識を統合し、評価します。

Read More

Figure 8. The megacasting replaces many stamped parts at the rear of this Volvo's chassis (Carney, 2022)

自動車用途向けアルミニウムダイカスト合金の新動向

本紹介資料は、「[The Eurasia Proceedings of Science, Technology, Engineering & Mathematics (EPSTEM)]」によって発行された論文「[New Trends in Aluminum Die Casting Alloys for Automotive Applications]」に基づいています。 1. 概要: 2. 抄録 (Abstract): 生態系のバランスを保つため、燃料消費を削減するための新しい技術が開発されています。これらの新技術の中で、アルミニウムやマグネシウムなどの軽合金の使用は、自動車用途において非常に重要性を増しています。軽量性、リサイクル性、機械加工性、耐食性といったアルミニウム合金の利点は、これらの合金の適用分野を拡大させました。これらのアルミニウム合金の特性により、燃料節約型の軽量材料選択は自動車部品にとって重要な役割を果たします。アルミニウムの用途は、自動車だけでなく、航空宇宙、スペースシャトル、船舶、防衛用途にも広がっています。製造方法によると、アルミニウム合金は一般的に鋳造、圧延、鍛造、押出に分類されます。アルミニウムダイカスト合金は、一般的にサスペンションシステム、エンジン、ギア部品の製造に使用されます。しかし、アルミニウム鋳造技術の発展に伴い、アルミニウムダイカスト法によって複数のボディ部品を一体で製造することが可能になりました。特に電気自動車においては、アルミニウムダイカスト部品の数が増加すると予測されています。本研究では、自動車産業におけるアルミニウムダイカスト合金使用の重要性を強調します。アルミニウムダイカスト合金開発に関するこれまでの研究と動向も要約します。 3. 序論 (Introduction): 近年、軽量材料の使用による重量削減は、燃費向上と有害排出物削減において重要な役割を果たしています。自動車用途向けの軽量構造設計によるCO2排出削減の重要性は、中強度アルミニウム合金の使用増加につながりました(Taub et al, 2007)。鋼部品を高強度アルミニウム合金に置き換えることは、軽量化のための自動車産業の注目点となりました(Baser, 2012)。アルミニウムは、地球上で供給可能な2番目の金属元素と見なすことができます。今日の産業において鋼鉄に次いで最も使用される材料です。アルミニウム合金は、その軽量性、低密度、良好な成形性、高い耐食性の特性により広く好まれています(Cuniberti et al, 2010)。 過去10年間の省エネルギーに関する研究は、軽量で経済的な車両の生産が燃料消費削減に重要な役割を果たすことを明らかにしています。アルミニウム合金は、乗用車、バス、主に列車、さらには船舶用途の建造物にも広く好まれています(Zeytin, 2000)。実際、アルミニウム合金は航空・防衛産業で長年使用されてきました。航空・防衛用途で見られた利点により、自動車産業へのアルミニウムの適用が始まりました。 4. 研究の要約 (Summary of the study): 研究テーマの背景 (Background of the research topic): 生態系のバランスと燃料消費削減の必要性が、新しい自動車技術の開発を推進し、アルミニウムのような軽合金の使用を強調しています。アルミニウム固有の利点(軽量性、リサイクル性、機械加工性、耐食性)は、自動車部品だけでなく、航空宇宙、船舶、防衛分野における燃料節約型の軽量材料選択にとって重要です。アルミニウム合金は鋳造、圧延、鍛造、押出によって製造され、ダイカストはサスペンションシステム、エンジン、ギア部品に一般的に使用されます。発展する鋳造技術は、特に電気自動車(EV)に関連する大型の一体型ボディ部品の生産を可能にしています。 先行研究の状況 (Status of previous

Read More

Fig. 1 Gating system design of clutch housing: (a) case I, (b) case II, and (c) case III

高圧ダイカストの鋳造シミュレーションを用いたクラッチハウジング部品の金型設計

本紹介資料は、「International Journal of Precision Engineering and Manufacturing」に掲載された論文「Mould Design for Clutch Housing Parts using a Casting Simulation of High Pressure Die Casting」に基づいています。 1. 概要: 2. 抄録: 高圧ダイカストを適用した自動車用クラッチハウジング部品を製造するために、以下の3つのゲートシステム設計が考慮されました。これらのゲートシステム設計を実際の実験で採用するにはコストと時間がかかりすぎるため、代わりに鋳造シミュレーションプログラムが使用されました。金型を充填する要素としての流動挙動が解析されました。溶湯が金型に完全に充填された後の空気圧とエアポケットに基づいて、最終的なゲートシステム設計が選択されました。5つのゲートを持つ3番目のゲートシステム設計は、他の設計よりも欠陥が少なく、均一であると予想されました。冷却チャネルとチルベントが設計されました。実際の鋳造試験では、合計5つの製品が製造されました。すべて健全であり、充填不足箇所や表面欠陥はありませんでした。実際の試験では、解析に基づいて引け巣の発生が予想されましたが、実際に引け巣が発生した製造品のそれらとは正確には一致しませんでしたが、類似していました。硬さは場所に関わらず約84 HVでした。 3. 緒言: 高圧ダイカストは、高速・高圧を用いる鋳造プロセスです。非鉄金属を金型に急速に充填し、その後凝固させ、鋳物を金型から取り出します。この方法は、複雑で精密な形状を持ち、均一な品質を持つ製品の大量生産に適しています。さらに、薄板タイプの製品を製造することも可能です。適用分野は拡大し続けています。高圧ダイカストはアルミニウム合金にしばしば適用され、最近では、自動車メーカーがマグネシウム合金を用いた高圧および高真空ダイカストの適用による大量生産の研究を行っています。高圧ダイカストで発生しうる欠陥には、空気や他の物質の巻き込みなどの流動欠陥、充填プロセス中の微小気孔(ブローホールやピンホール)、凝固プロセス中の引け巣などがあります。過去の金型設計では、金型設計者や現場技術者の試行錯誤法に多くの困難がありましたが、最近の高圧鋳造金型設計では、初期開発段階から充填および凝固プロセスに対してComputer Aided Engineering (CAE)を採用しており、製品品質の予測と評価に基づいて最適な金型設計計画を確立することが可能になっています。さらに、多くの設計者が現場経験に基づいてCAEと組み合わせた金型設計手法を採用するにつれて、不良率はコスト削減と開発期間短縮とともに減少しています。この分野で発表された論文のほとんどは、鋳造シミュレーションや鋳造技術、および大量生産の方法で製造コストを削減するための改善方法に焦点を当てています。対照的に、製品の品質を決定する金型設計に関する研究はほとんどありません。本研究では、鋳造ソフトウェアであるMAGMAを用いて、自動車エンジンの動力を制御または伝達するクラッチハウジング製品の鋳造シミュレーションを含みます。まず第一に、充填および凝固プロセスにおける潜在的な鋳造欠陥を予測または防止することにより、製品を大量生産するための最適なゲートシステム設計と鋳造条件が求められました。データベースに基づいて、鋳造コストを最小化する方法が次に求められました。最適なゲートシステム設計が金型設計に適用され、金型製作後、鋳造プロセスにおける欠陥を最小限に抑えた可能な限り最高の品質の製品が製造されました。 4. 研究の概要: 研究テーマの背景: 高圧ダイカスト(HPDC)は、複雑で精密、かつ均一な品質の部品、特に自動車産業向けのアルミニウムやマグネシウムなどの非鉄合金製の薄肉部品の大量生産に広く用いられる製造プロセスです。しかし、HPDCプロセスは、流動欠陥(空気巻き込み)、微小気孔(ブローホール、ピンホール)、引け巣などの欠陥が発生しやすい傾向があります。 従来の研究状況: 従来、金型設計は設計者や技術者の試行錯誤の経験に大きく依存していました。近年では、初期設計段階から充填および凝固プロセスをシミュレーションするために、Computer Aided Engineering(CAE)ツールがますます採用されています。これにより、金型設計の予測、評価、最適化が可能となり、欠陥、コスト、開発期間の削減につながっています。多くの研究がシミュレーション技術やコスト削減に焦点を当てていますが、金型設計が製品品質にどのように影響するかに特化した研究は比較的少ないです。 研究の目的: 本研究は、鋳造シミュレーションソフトウェア(MAGMAsoft)を利用して、HPDCによりALDC 12アルミニウム合金で製造される自動車用クラッチハウジング部品のための最適な金型を設計することを目的としました。具体的な目標は、最良のゲートシステム設計と鋳造条件を決定し、充填および凝固中の潜在的な鋳造欠陥を予測・防止し、シミュレーションデータに基づいて製造コストを最小化し、最終的に最適化された金型設計を通じて欠陥を最小限に抑えた高品質な部品を生産することでした。 研究の核心: 研究の核心は、Pro/ENGINEERとMAGMAsoftを使用してクラッチハウジング部品用の3つの異なるゲートシステム(Case I、II、III)を設計し、シミュレーションすることでした。Case Iは垂直ゲートを特徴とし、Case IIはサイドゲートを含む4つのゲートを使用し、Case IIIは流れを制御するためにCase IIを5つのゲートに変更したものです。冷却チャネルは計算された熱負荷(式1~8)に基づいて設計され、スポット冷却とライン冷却を組み合わせています。ガス排出を容易にするために、波形のチルベント(STD 61材)が設計されました。MAGMAsoftを使用して鋳造シミュレーションが実施され、定義されたHPDC条件下(ALDC 12合金、STD 61金型、特定の温度、速度、1600トンマシン)で各ゲート設計の充填挙動、温度分布、空気接触、空気圧、凝固パターンが解析されました。最も均一な充填と最も少ない欠陥を予測したシミュレーション結果に基づき、Case IIIが選択されました。最後に、Case

Read More

Fig. 2 Drawing of the test sample and the sample itself for the tensile test

ステアリングホイール製造に使用されるマグネシウム合金の微細組織と機械的特性のモニタリング

この紹介論文は、「MANUFACTURING TECHNOLOGY」によって発行された論文 [Monitoring of the microstructure and mechanical properties of the magnesium alloy used for steering wheel manufacturing]に基づいています。 1. 概要: 2. 抄録: 本論文は、マグネシウム製ステアリングホイールの微細組織と機械的特性について述べる。これらのステアリングホイールは高圧ダイカスト(High-pressure die casting, HPDC)によって製造される。HPDCは、マグネシウムやアルミニウム合金のような軽金属から複雑な機械部品を製造するための非常に優れたプロセスである。しかし、近年では、より軽量な車両と燃費向上の探求において、別の軽金属が前面に出てきている。ダイカスト自動車部品に最も一般的に使用されるマグネシウム合金はMg-Al-Mnタイプである。MgAl5Mnは、良好な耐食性、非常に優れた機械的特性、良好な鋳造性を備えた高純度マグネシウム合金である。MgAl5MnやMgAl6MnのようなMg-Al-Mn系合金は、MgAl9Znよりも優れた伸びと衝撃強度を持ち、主にホイールリムやステアリングホイールのような自動車安全システムに使用される。MgAl5Mn合金は、優れた延性とエネルギー吸収特性を良好な強度と組み合わせた合金である。この合金は、固相状態では固溶体αと中間相Mg17 Al12を含む。 3. 緒言: 近年、自動車産業で使用される、低密度で高延性の鋳造材料にかなりの注意が払われている。高い伸びは、自動車の衝突試験における安全性の保証となる。これらの鋳造品には、例えば車体が含まれる。ステアリングホイール生産のためのこれらの特性は、現在、適切な強度と低密度を持つマグネシウムを使用することによって達成されている。マグネシウム合金は最も軽量な工学金属の一つである。マグネシウム合金鋳物は、航空宇宙、自動車、電子機器の用途に使用される。主な利点は軽量であることである。典型的なマグネシウム合金の密度は1800 kg.m⁻³であり、アルミニウム合金の2700 kg.m⁻³と比較される[1]。アルミニウムは、マグネシウムベースの鋳造合金の主要な合金元素であり、亜鉛とマンガンも少量存在する。マグネシウム合金は融点が低く、比熱も低い。圧力ダイカストは、低い鋳造温度(650~700°C)のため、マグネシウム合金に最も一般的に使用される鋳造プロセスであり、ホットチャンバーダイカスト機を使用できる。マグネシウム合金の高圧ダイカストは、アルミニウム合金よりも薄い壁厚で製造できる[2]。自動車会社が軽量化の方法を模索するにつれて、自動車部品におけるマグネシウム合金ダイカストの使用は急速に増加している。一部の車両にはすでに10~20kgのMg合金部品が含まれている[3]。現在、量産車向けに最も人気のある部品は、インストルメントパネル、クロスカービーム、シートフレームである。ホイール、ギアボックスケーシング、サンプ、インレットマニホールドは、フォーミュラ1や他のレーシングカーで使用されている。これらの合金の主成分はほぼ完全にアルミニウムである(すなわち、これらはMg-Al-MnおよびMg-Al-Znの合金である)[4]。マグネシウム合金は、酸素との高い親和性のため、加工性が劣る。これらの困難にもかかわらず、マグネシウム合金は、壁厚2mm未満の複雑な鋳物の複雑な大規模生産さえも可能にするため使用される。我々の学科(リベレツ工科大学工学技術科)では、自動車産業の鋳物に使用されるマグネシウム合金の特性を観察することに関心を持っている。 4. 研究の概要: 研究テーマの背景: MgAl5MnのようなMg-Al-Mn系マグネシウム合金は、その低密度、良好な機械的特性(特に延性)、および高圧ダイカスト(HPDC)への適合性から、自動車部品での使用が増加している。ステアリングホイールは、これらの特性が車両の軽量化と安全性に寄与する主要な用途である。鋳造されたままのこれらの合金の微細組織と機械的特性をモニタリングすることは、部品の品質と性能を保証するために不可欠である。 先行研究の状況: 既存の知識には、一般的なマグネシウム鋳造合金(例:AZ91、AMシリーズのAM50、AM60)、それらの状態図(Mg-Al、Mg-Al-Mn)、および標準規格(ASTM、EN)の特性が含まれる。アルミニウムと亜鉛の含有量が低く、マンガン含有量が高い合金(研究対象のMgAl5Mnに対応するAM50など)は、より高い延性を示すことが知られており、安全性が重要な部品に適している。HPDCは、このような部品の主要な製造方法として確立されている。 研究の目的: 本研究は、高圧ダイカストプロセスによって自動車用ステアリングホイールの製造に使用される特定のマグネシウム合金、MgAl5Mn(VDA 260 – MgAl、ASTM AM50に類似)の微細組織と機械的特性をモニタリングし、特性評価することを目的とした。 中核研究: 研究の中核は、MgAl5Mn合金を使用してHPDCでステアリングホイールを製造することであった。次に、得られた鋳造品に対して、以下を含む詳細な分析を実施した: 5. 研究方法論 研究デザイン: 本研究は実験的アプローチを採用した。工業用HPDC装置と特定のマグネシウム合金(MgAl5Mn)を使用してステアリングホイールを製造した。これらの鋳造品からサンプルを抽出し、その後の材料特性評価を行い、製造プロセスが最終的な特性に与える影響を評価した。 データ収集と分析方法: 研究対象と範囲: 本研究は、HPDCによってステアリングホイール本体に鋳造されたMgAl5Mn合金(ASTM AM50相当)に特化した。範囲は以下を含む: 6.

Read More

FIG. 2 Door and window frames for a German sports car (Photo: Georg Fischer AG). Telai di portiere e finestrini di un’automobile sportiva tedesca (Photo: Georg Fischer AG).

構造部品の成功したダイカストへの工具鋼メーカーの貢献

本紹介論文は、「AIM / La Metallurgia Italiana」によって発行された論文「構造部品の成功したダイカストへの工具鋼メーカーの貢献 (The tool steel producer’s contribution to successful die casting of structural components)」に基づいています。 1. 概要: 2. 抄録: 自動車産業におけるダイカスト構造部品は、自動車の軽量化に大きく貢献し、燃費削減およびCO2排出量削減においてますます重要性を増しています。そのため、今日ではダイカストアルミニウム製のA、B、Cピラー、ショックタワー、またはドア部品が従来の鋼製部品に取って代わることが非常に多くなっています。これらの構造部品は、しばしば大きな寸法と複雑な設計によって特徴付けられます。構造部品用のダイカスト金型は、靭性、高温強度、および熱疲労抵抗に関して最高の要件を満たす必要があります。従来使用されてきた1.2343 (AISI H 11)、1.2344 (Η 13)、または1.2367のような熱間工具鋼では、これらの要件を満たせないことがよくあります。Kind & Co.は、特性を大幅に改善した3つの特殊熱間工具鋼、TQ 1、HP 1、およびHTRを開発しました。本報告書は、これらの鋼の特性に関する調査だけでなく、これらのグレードで得られた実用的な経験についても述べます。適切な熱処理は金型の性能にとって不可欠です。Kind & Coは最近、これらの大型ダイカスト金型に焦点を当てた、世界最大かつ最新の真空焼入れ炉の1つを設置しました。本報告書はまた、現代的な熱処理設備が高品質な構造部品の経済的なダイカストプロセスにどのように貢献するかを示します。 3. 序論: 国際的な自動車産業は、乗用車からのCO2排出量を大幅に制限するという政治的決定に直面しており、欧州連合は自動車産業に対して積極的な目標(例:130 g CO2/kmの義務的削減目標)を設定しています。軽量化はこれらの目標を達成するための重要な戦略であり、燃料消費とCO2排出に直接影響します。その結果、自動車メーカーは従来の鋼製部品に代わるダイカストアルミニウム構造部品の使用をますます増やしています。アウディはこのアプローチの先駆者であり、特にAUDI A8(FIG. 1)で顕著であり、現在ではドアフレーム(FIG. 2)やハッチバックサポートフレーム(FIG. 3)などの用途で一般的です。これらの部品はしばしば大きな寸法と複雑な設計によって特徴付けられ、ダイカストプロセスと金型自体に大きな課題をもたらします。金型は長い溶湯流路を処理する必要があり、潜在的により高い溶湯温度が必要となり、局所的な高い熱負荷と熱的不均一性を引き起こします。リブのような特徴を持つ複雑な形状は応力集中を引き起こし、グロスクラックのリスクを高める可能性があります。したがって、金型設計、工具鋼の選択、金型製造、および熱処理は慎重に検討する必要があり、関係するすべての当事者間の早期の協力が必要です。 4. 研究の概要: 研究テーマの背景: 燃費向上とCO2排出量削減のための自動車軽量化への要求の高まりは、大型で複雑なダイカストアルミニウム構造部品の広範な採用につながっています。 先行研究の状況: これらの大型構造部品の製造に必要な金型は、高い熱負荷、温度不均一性による大きな熱応力、複雑な形状による高い機械的応力など、極端な条件に直面します。1.2343 (H11)、1.2344 (H13)、1.2367などの従来の熱間工具鋼は、これらの厳しい条件下では、靭性、高温強度、熱疲労(ヒートチェック)抵抗性の点でしばしば性能限界に達します。これらの鋼は、適切な品質を得るためにESR(エレクトロスラグ再溶解)法で製造する必要があります。 研究の目的: 本研究は、大型構造部品のダイカストの課題に対処するためにKind & Co.によって特別に開発された3つの特殊熱間工具鋼(TQ 1、HP

Read More

Fig. 1. The components of intermetallic phases examined using XRD and TEM in the Mg4LaxAl (x ¼ 08, wt.%) alloys fabricated by gravity die casting. The purple dotted lines correspond to the critical Al/La ratio for the formation of certain simplex intermetallic phase, and the dotted gray area corresponds to the Al/La range where only Mg12La phase forms. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Developing a die casting magnesium alloy with excellent mechanical performance by controlling intermetallic phase

1. 概要: 2. 研究背景: 3. 研究目的と研究課題: 4. 研究方法 5. 主な研究成果: 6. 結論と考察: 7. 今後のフォローアップ研究: 8. 参考文献: 9. 著作権: この資料は上記の論文に基づいて要約されたものであり、商業目的での無断使用は禁止されています。Copyright © 2025 CASTMAN. All rights reserved.

High-pressure die-cast (HPDC) aluminium alloys for automotive applications

自動車用途向け高圧ダイカスト (HPDC) アルミニウム合金

論文概要: この論文概要は、[‘High-pressure die-cast (HPDC) aluminium alloys for automotive applications’]と題された論文に基づいており、[‘Advanced materials in automotive engineering’]にて発表されました。 1. 概要: 2. 研究背景: 研究トピックの背景: 本章では、自動車用途向けの新アルミニウム材料の開発に至る論理的なステップの短い歴史をたどり、高圧ダイカスト (HPDC) アルミニウム合金に焦点を当てています。また、プレミアム鋳造合金の現在の使用につながる推進要因を強調しています。この研究は、HPDCプロセスが亜鉛鋳造のみに使用されていた初期段階から、軽金属部品の大量生産のためのデフォルトの方法としての現代的な地位までの進化を扱っています。特に、自動車産業におけるより洗練された部品への要求の高まりに応えて、プレミアム鋳造合金の採用の動機となった要因を強調しています。 既存研究の現状: 当初、HPDC加工は、低コストの二次合金を使用した単純な鋳造に適していると考えられており、金属の取り扱いや延性についてはほとんど考慮されていませんでした。初期のアプリケーションの重要性が低かったため、鋳造健全性の評価は「緩い基準」に依存していました。しかし、装置の進歩と、高真空HPDC、スクイズキャスティング、半凝固鋳造などの冶金学的プロセスに関する理解が深まったことで、プロセス能力が大幅に向上しました。焦点は、装置中心の開発から材料科学的アプローチに移行し、特に1990年代に新しい低鉄含有量ダクタイルHPDC合金が導入されました。 研究の必要性: この研究の動機は、自動車産業がより優れた自動車モデルを継続的に追求していることに起因し、より高度な性能特性を備えた複雑な鋳造品が必要になったことにあります。現代の自動車用途では、熱処理可能、溶接可能、延性があり、より強度が高く、軽量設計のためにサイズが大きく、壁厚が薄いHPDC部品が要求されています。これらの厳しい要件は、製造業者の安全基準によって裏付けられており、高い品質基準が必要であり、HPDCにおける高度な合金開発とプロセス最適化の必要性を推進しています。 3. 研究目的と研究課題: 研究目的: 本章の目的は、自動車用途向けに調整された新しいアルミニウム材料の開発につながった論理的進展の簡潔な歴史的記述を提供することです。主な重点は高圧ダイカスト (HPDC) アルミニウム合金に置かれており、業界がプレミアム鋳造合金の利用に向かうようになった要因を明らかにします。さらに、Silafont®-36、Magsimal®-59、およびCastasil®-37の化学組成、機械的特性、および独自の属性を、加工および鋳造ガイドラインとともに詳述することを目的としています。実際の経験データは、一次低鉄ダクタイル合金に関する一般的な質問に答え、各コンポーネントの革新的な側面を強調するためにアプリケーション例を示します。 主な研究課題: 本章で探求する主な研究領域は、自動車分野におけるHPDCアルミニウム合金の進歩と応用を中心に展開しています。具体的には、本章では以下の点を調査します。 研究仮説: 正式な仮説として明示的に述べられていませんが、本章では以下の命題を暗黙的に探求しています。 4. 研究方法 研究デザイン: 本章では、自動車用途向けHPDCアルミニウム合金の進化をたどる記述的および歴史的研究デザインを採用しています。既存の知識、業界経験、および合金開発データを活用して、主題に関する包括的な概要を提示するレビューとして構成されています。 データ収集方法: 本章で提示されるデータは、業界慣行、合金仕様、および実際のアプリケーション例のレビューを通じて収集されます。記述された合金の加工および鋳造に関連する実際の経験および鋳造試験からのデータが含まれています。 分析方法: 分析は主に質的であり、合金特性、加工ガイドライン、およびアプリケーション例の記述的分析を含みます。本章では、性能データとアプリケーションシナリオを解釈して、特定の自動車部品に対するさまざまなHPDCアルミニウム合金の利点と適合性を強調しています。 研究対象と範囲: 本章の範囲は、自動車用途向けに特別に設計された高圧ダイカスト (HPDC) アルミニウム合金に焦点を当てています。研究の主な対象は、プレミアム合金であるSilafont®-36、Magsimal®-59、およびCastasil®-37と、自動車部品に使用されるアルミニウム合金の一般的な分類です。範囲は、これらの合金の化学組成、機械的特性、加工、鋳造、接合、および自動車産業におけるアプリケーション領域を包含します。 5. 主な研究結果: 主な研究結果: データ解釈: この研究は、自動車用途向けに調整された3つのプレミアムHPDCアルミニウム合金の開発と特性を強調しています。Silafont®-36は、熱処理によって汎用性を提供する多用途合金として位置付けられており、構造的および安全上重要な部品に適しています。Magsimal®-59は、熱処理の必要性を排除し、高い鋳造強度と耐食性を必要とするアプリケーションに優れています。Castasil®-37は、特に時効硬化が望ましくない暖かいエンジンルーム環境において、熱処理なしで高い延性と優れた鋳造性が要求される複雑な構造部品向けに設計されています。これらの合金は、HPDC技術の進歩を表しており、より軽量で、より強く、より複雑な自動車部品を可能にしています。 図表リスト: 6. 結論:

Read More