論文要約:
この論文要約は、["Paper Title" - Advancements in surface treatments for aluminum alloys in sports equipment]、["Publisher" - De Gruyter] に掲載された論文に基づいています。
1. 概要:
- タイトル: Advancements in surface treatments for aluminum alloys in sports equipment
- 著者: Shaozhou Chen
- 出版年: 2024
- 出版ジャーナル/学会: Reviews on Advanced Materials Science
- キーワード: surface modification, corrosion protection, eco-friendly coatings, microstructural refinement, mechanical performance

2. 研究背景:
研究トピックの背景:
アルミニウム合金は、比強度、成形性、耐食性に優れているため、スポーツ用品の材料として広く利用されています[1, 2]。軽量化は運動能力向上とユーザーの快適性に不可欠であり[3]、アルミニウム合金は野球バット、テニスラケット、自転車フレーム、ゴルフクラブなどの高性能ギアに革命をもたらしました[4]。しかし、アルミニウム合金の表面は、用途や使用条件に応じて劣化の影響を受けやすく[5-7]、効果的な表面処理と保護コーティングの開発が重要です。
既存研究の現状:
表面処理技術は、アルミニウム合金の耐食性と性能を向上させるために開発・改良されてきました。一般的な表面処理法には、化成皮膜処理、陽極酸化、物理蒸着(PVD)コーティング、ゾルゲルコーティングなどがあります[8-11]。化成皮膜処理は、コスト効率、容易な適用性、優れた耐食性から広く使用されています。特にクロメート皮膜(CCC)は広く利用されてきましたが[12]、六価クロムの毒性と発がん性から環境・健康への懸念が高まり、規制が強化されています。そのため、三価クロム化成皮膜(TCC)や、モリブデン、ジルコニウム、チタン、希土類元素に基づくクロムフリー化成皮膜などの環境に優しい代替技術の開発が推進されています[13]。
研究の必要性:
これらの課題に対処するには、材料科学、エンジニアリング、製造技術を組み合わせた学際的なアプローチが必要です。近年、ナノエンジニアリングコーティングが優れた性能を示すことが研究で示されています。スポーツ用品業界では、次世代の表面処理技術として、プラズマ電解酸化(PEO)プロセスを最適化し、複雑な形状への適用を可能にするための進歩が求められています。
3. 研究目的と研究課題:
研究目的:
本研究レビューは、スポーツ用品に使用されるアルミニウム合金の表面処理技術における最近の進歩を評価・考察することを目的としています。一般的なアルミニウム合金の種類、微細構造的特徴、腐食メカニズム、様々な表面処理方法(化成皮膜処理、陽極酸化、PVDコーティング、ゾルゲルコーティング、レーザー表面改質)の原理、耐食性メカニズム、最近の開発動向を詳細に調査します。また、環境・健康への影響、特に六価クロム代替技術と環境に優しい代替技術の開発に焦点を当てます。最後に、スマート自己修復コーティング、耐食性と耐久性の向上、先進的な表面処理技術の産業実装の必要性を強調し、今後の方向性と課題について議論します。
主要な研究課題:
- スポーツ用品用アルミニウム合金の表面処理技術の進歩の評価
- 各表面処理技術の作用原理、耐食性メカニズム、最近の開発動向の特定
- 環境・健康への影響、特に六価クロム代替技術と環境に優しい代替技術の開発状況の分析
- スマート自己修復コーティング、耐食性と耐久性の向上、産業実装における課題と今後の方向性の考察
研究仮説:
- 表面処理技術の進歩は、スポーツ用品用アルミニウム合金の性能、安全性、持続可能性を向上させる上で重要である。
- 環境に優しい代替技術は、六価クロム系表面処理と同等以上の耐食性と性能を発揮できる可能性がある。
- スマート自己修復コーティングは、スポーツ用品の寿命を延ばし、メンテナンスコストを削減する上で有効である。
- 先進的な表面処理技術の産業実装には、技術的課題と経済的課題の両方を克服する必要がある。
4. 研究方法
研究対象と範囲:
スポーツ用品に使用されるアルミニウム合金とその表面処理技術に関する学術論文、技術報告書、特許
5. 主な研究結果:
主要な研究結果:
- スポーツ用品用アルミニウム合金の表面劣化の主な要因は、機械的摩耗とアブレーション、衝撃損傷、環境暴露、化学的暴露、繰返し荷重と疲労、製造・組立応力、ユーザーによる損傷など多岐にわたる (Table 1)。
- スポーツ用品に一般的に使用されるアルミニウム合金は、2xxx系、6xxx系、7xxx系であり、それぞれ異なる特性と用途を持つ。鋳造アルミニウム合金も複雑な形状の部品に使用されている (Table 2)。
- アルミニウム合金の腐食メカニズムは、ピッティング腐食、粒界腐食、応力腐食割れ(SCC)などがある。スポーツの種類や環境条件によって腐食因子と影響が異なる (Table 3)。
- 表面処理技術として、化成皮膜処理(CCC)、陽極酸化(SAA、CAA、PEO)、PVDコーティング、ゾルゲルコーティング、レーザー表面改質、昇華コーティングなどが検討されている。各技術は原理、特徴、適用分野が異なる (Figure 1, Figure 2, Figure 3, Figure 4, Figure 5, Figure 6, Figure 7, Figure 8, Figure 9, Figure 10, Table 4, Table 5, Table 6, Table 7, Table 8)。
- 環境・健康への配慮から、六価クロムフリー化、環境負荷低減、スマート自己修復コーティングの開発が重要なトレンドとなっている。
データ解釈:
- スポーツ用品の多様な使用環境と要求性能に対応するため、様々な表面処理技術が開発されている。
- 環境規制の強化により、環境負荷の低い表面処理技術への移行が加速している。
- ナノテクノロジーやスマート材料の導入により、表面処理技術は高性能化、多機能化が進んでいる。
- 産業実装には、コスト、生産性、信頼性などの課題を克服する必要がある。
図表名リスト:
- Table 1: Main factors contributing to surface deterioration of aluminum alloy parts in sports equipment
- Table 2: Examples of aluminum material used for sports equipment [35]
- Figure 1: Overview of surface treatment technologies for aluminum alloys in sports equipment.
- Figure 2: Die dimension design of bicycle pedal forming and the final product [34].
- Figure 3: Microstructures of A7075 composites with different Ni@Al2O3(p) contents [45]. (a) 0 wt%, (b) 0.5 wt%, (c) 1.5 wt%, and (d) 2.5 wt%.
- Figure 4: Microstructure of semi-solid A356 (a) before and (b) after ultrasonic vibration [46].
- Figure 5: Typical morphologies of anodized layers grown in H2SO4 (a), cross-section observations for aluminum alloys 1050 (b), 7175 (c) and (d), and 2618 (e) and (f) [90].
- Figure 6: Scheme for the corrosion mechanism of the coating [100].
- Figure 7: A growth and 3D structure model of the PEO coating at different stages: (a) breakdown of dielectric film under plasma discharges; (b) formation of PEO coating with open pores; (c) initial formation of three-layer structure; and (d) further evolution of three-layer structure [102].
- Figure 8: SEM images of coatings cross-section for coating chemical composition: (a) AlCrN PVD coating; (b) AITIN/Si3N4 PVD nanocomposite; and (c) AICrN/Si3N4 PVD nanocomposite coating [104].
- Figure 9: Chemical interaction of the sol-gel coating and SBA-15-NH2 nanostructure [109].
- Figure 10: Schematic of laser transformation hardening [111].
- Figure 11: Manufacturing sequence of aluminum extrusions for sports applications.
- Table 3: Sport-specific corrosion factors and their effects on aluminum alloys in sports equipment
- Table 4: Key measurement approaches used in aluminum alloy corrosion testing
- Table 5: Most notable commercial treatments for sports equipment
- Table 6: Painting methods are employed in the sports equipment industry for aluminum components
- Table 7: Comparison of surface treatment categories for aluminum alloys in sports equipment
- Table 8: Comparison of eco-friendly surface treatment alternatives for aluminum alloys
![Figure 2
Die dimension design of bicycle pedal forming and the final product [34].](https://castman.co.kr/wp-content/uploads/image-526-1024x353.webp)
![Figure 3
Microstructures of A7075 composites with different Ni@Al2O3(p) contents [45]. (a) 0 wt%, (b) 0.5 wt%, (c) 1.5 wt%, and (d) 2.5 wt%.](https://castman.co.kr/wp-content/uploads/image-527-1024x910.webp)
![Figure 4
Microstructure of semi-solid A356 (a) before and (b) after ultrasonic vibration [46].](https://castman.co.kr/wp-content/uploads/image-528-1024x369.webp)
![Figure 5
Typical morphologies of anodized layers grown in H2SO4 (a), cross-section observations for aluminum alloys 1050 (b), 7175 (c) and (d), and 2618 (e) and (f) [90].](https://castman.co.kr/wp-content/uploads/image-529-884x1024.webp)
![Figure 6
Scheme for the corrosion mechanism of the coating [100].](https://castman.co.kr/wp-content/uploads/image-530-771x1024.webp)
![Figure 7
A growth and 3D structure model of the PEO coating at different stages: (a) breakdown of dielectric film under plasma discharges; (b) formation of PEO coating with open pores; (c) initial formation of three-layer structure; and (d) further evolution of three-layer structure [102].](https://castman.co.kr/wp-content/uploads/image-531-1024x751.webp)
![Figure 8
SEM images of coatings cross-section for coating chemical composition: (a) AlCrN PVD coating; (b) AlTiN/Si3N4 PVD nanocomposite; and (c) AlCrN/Si3N4 PVD nanocomposite coating [104].](https://castman.co.kr/wp-content/uploads/image-532-1024x277.webp)
![Figure 9
Chemical interaction of the sol–gel coating and SBA-15-NH2 nanostructure [109].](https://castman.co.kr/wp-content/uploads/image-533-1024x608.webp)
![Figure 10
Schematic of laser transformation hardening [111].](https://castman.co.kr/wp-content/uploads/image-534-png.webp)

6. 結論:
主な結果の要約:
本レビューでは、スポーツ用品用アルミニウム合金の表面処理技術の進歩を包括的に調査しました。耐食性、機械的特性、全体的な性能の向上には目覚ましい進歩が見られますが、産業実装には依然として課題が残っています。環境に優しい代替技術、スマート自己修復コーティング、ナノテクノロジーの応用など、将来の研究開発の方向性も明確になりました。
研究の学術的意義:
本研究は、スポーツ用品用アルミニウム合金の表面処理技術に関する最新の知見を体系的にまとめ、学術的な貢献を果たしています。腐食メカニズム、材料選択、表面処理技術の原理と応用、環境影響など、多岐にわたる側面を網羅的に分析することで、研究者や技術者にとって貴重な情報源となります。
実践的意義:
本研究は、スポーツ用品メーカーがより高性能、高耐久性、環境に優しい製品を開発するための指針を提供します。適切な表面処理技術の選択、新技術の導入、コスト効率と環境負荷のバランスなど、実践的な課題に対する示唆に富んでいます。
研究の限界:
本研究はレビュー論文であり、実験的な検証は行っていません。また、対象となる文献は学術論文に限定されており、業界の最新動向や技術的な詳細を十分に網羅できていない可能性があります。
7. 今後のフォローアップ研究:
- 今後の研究の方向性
- スマート自己修復コーティングの開発と実用化
- 環境負荷の低い、高性能な表面処理技術の開発
- 表面処理技術の耐久性と信頼性の向上
- 複雑形状部品への均一なコーティング技術の開発
- 産業実装に向けたコスト効率の高いプロセス開発
- さらなる探求が必要な領域
- 新しい合金組成と表面処理技術の組み合わせ
- デジタルツインやAIを活用した表面処理プロセスの最適化
- ライフサイクルアセスメント(LCA)による環境影響評価
8. 参考文献:
- [1] Kumari, P. and M. Lavanya. Plant extracts as corrosion inhibitors for aluminum alloy in NaCL environment - recent review. Journal of the Chilean Chemical Society, Vol. 67, No. 2, 2022 Jun, pp. 5490-5495.
- [2] Peltier, F. and D. Thierry. Review of Cr-free coatings for the corrosion protection of aluminum aerospace alloys. Coatings, Vol. 12, No. 4, 2022, id. 518.
- [3] Chen, J. Surface engineered light alloys for sports equipment. Surface engineering of light alloys, Elsevier, Cambridge, 2010, pp. 549-567.
- [4] Cicero, S., R. Lacalle, R. Cicero, D. Fernández, and D. Méndez. Analysis of the cracking causes in an aluminium alloy bike frame. Engineering Failure Analysis, Vol. 18, No. 1, 2011 Jan 1, pp. 36-46.
- [5] Cartner, J. L., W. O. Haggard, J. L. Ong, and J. D. Bumgardner. Stress corrosion cracking of an aluminum alloy used in external fixation devices. Journal of Biomedical Materials Research Part B: Applied Biomaterials, Vol. 86B, No. 2, 2008, pp. 430-437.
- [6] Kuchariková, L., T. Liptáková, E. Tillová, D. Kajánek, and E. Schmidová. Role of chemical composition in corrosion of aluminum alloys. Metals, Vol. 8, No. 8, 2018 Aug, id. 581.
- [7] Adams, F. V., S. O. Akinwamide, B. Obadele, and P. A. Olubambi. Comparison study on the corrosion behavior of aluminum alloys in different acidic media. Materials Today: Proceedings, Vol. 38, 2021 Jan, pp. 1040-1043.
- [8] Saleema, N., D. K. Sarkar, R. W. Paynter, D. Gallant, and M. Eskandarian. A simple surface treatment and characterization of AA 6061 aluminum alloy surface for adhesive bonding applications. Applied Surface Science, Vol. 261, 2012 Nov, pp. 742-748.
- [9] Wagner, L. Mechanical surface treatments on titanium, aluminum and magnesium alloys. Materials Science and Engineering: A, Vol. 263, No. 2, 1999 May, pp. 210-216.
- [10] Mansfeld, F. and Y. Wang. Development of "stainless" aluminum alloys by surface modification. Materials Science and Engineering: A, Vol. 198, No. 1, 1995 Jul, pp. 51-61.
- [11] Wu, Y., J. Lin, B. E. Carlson, P. Lu, M. P. Balogh, N. P. Irish, et al. Effect of laser ablation surface treatment on performance of adhesive-bonded aluminum alloys. Surface and Coatings Technology, Vol. 304, 2016 Oct, pp. 340-347.
- [12] Feng, J., Y. Wang, X. Lin, M. Bian, and Y. Wei. SECM in situ investigation of corrosion and self-healing behavior of trivalent chromium conversion coating on the zinc. Surface and Coatings Technology, Vol. 459, 2023 Apr, id. 129411.
- [13] Sun, W., G. Bian, L. Jia, J. Pai, Z. Ye, N. Wang, et al. Study of trivalent chromium conversion coating formation at solution - metal interface. Metals, Vol. 13, No. 1, 2023, id. 93.
- [14] Paz Martínez-Viademonte, M., S. T. Abrahami, T. Hack, M. Burchardt, and H. Terryn. A review on anodizing of aerospace aluminum alloys for corrosion protection. Coatings, Vol. 10, No. 11, 2020, id. 1106.
- [15] Wang, S., X. Liu, X. Yin, and N. Du. Influence of electrolyte components on the microstructure and growth mechanism of plasma electrolytic oxidation coatings on 1060 aluminum alloy. Surface and Coatings Technology, Vol. 381, 2020 Jan, id. 125214.
- [16] Liu, N., J. Gao, S. Tong, L. Xu, Y. Wan, and H. Sun. Improvement in corrosion resistance of micro-arc oxidation coating on PVD Ti-coated aluminum alloy 7075. International Journal of Applied Ceramic Technology, Vol. 19, No. 5, 2022, pp. 2556-2565.
- [17] Zhang, Z., F. Xue, W. Bai, X. Shi, Y. Liu, and L. Feng. Superhydrophobic surface on Al alloy with robust durability and excellent self-healing performance. Surface and Coatings Technology, Vol. 410, 2021 Mar, id. 126952.
- [18] Xavier, J. R. Experimental investigation of the hybrid epoxy-silane coating for enhanced protection against the corrosion of aluminum alloy AA7075 frame in solar cells. Macromolecular Research, Vol. 28, No. 5, 2020 May, pp. 501-509.
- [19] Xavier, J. R. and S. Srinivasan. Multilayer epoxy/GO/silane/Nb2C nanocomposite: a promising coating material for the aerospace applications. Journal of Adhesion Science and Technology, Vol. 38, No. 1, 2024, pp. 44-69.
- [20] Jeeva, N., K. Thirunavukkarasu, and J. R. Xavier. Multilayer functional polyurethane nanocomposite coating containing graphene oxide and silanized zirconium nitride for the protection of aluminum alloy structures in aerospace industries. Journal of Materials Engineering and Performance, 2024 Mar 22 [cited 2024 Jul 26].
- [21] Xavier, J. R., S. P. Vinodhini, and R. Ganesan. Innovative nanocomposite coating for aluminum alloy: superior corrosion resistance, flame retardancy, and mechanical strength for aerospace applications. Journal of Materials Science, Vol. 59, No. 27, 2024 Jul, pp. 12830-12861.
- [22] Alavala, C. R. Micromechanics of thermoelastic behavior of AA2024/MgO metal matrix composites. International Journal of Advanced Technology in Engineering and Science, Vol. 4, No. 1, 2016, pp. 33-40.
- [23] Muthusamy, S. and G. Pandi. Investigation of mechanical and corrosion properties of AA2024-B4C-TiC hybrid metal matrix composites. Surface Review and Letters, Vol. 25, No. 5, 2018 Jul, id. 1850109.
- [24] Fan, Y. Review on plastic deformation of 2024 aluminum alloy for sports equipment. Aging and Application of Synthetic Materials, Vol. 50, No. 4, 2021 Aug, pp. 189-192.
- [25] Choi, J. S., Y. G. Jin, H. C. Lee, and Y. T. Im. High strength bolt manufacturing of ultra-fine grained aluminium alloy 6061. Materials Transactions, Vol. 52, No. 2, 2011, pp. 173-178.
- [26] Leng, B., Y. Xue, J. Li, J. Qi, A. Yi, and Q. Zhao. A critical review of anti-corrosion chemical surface treatment of aluminum alloys used for sports equipment. Crystals, Vol. 14, No. 1, 2024, id. 101.
- [27] Iskandar, R., D. Sawitri, R. Hantoro, I. R. Zulkifli, and Y. Pratama. Analysis of dynamics mechanical properties of electric bike frames using finite element analysis (FEA). AIP Conference Proceedings, Vol. 2384, No. 1, 2021 Dec, id. 070005.
- [28] Harvey, T. G. Cerium-based conversion coatings on aluminium alloys: a process review. Corrosion Engineering, Science and Technology, Vol. 48, No. 4, 2013 Jun, pp. 248-269.
- [29] Wibowo, H., M. Mujiyono, R. Asnawi, F. Arifin, and T. Tafakur. Finite element simulation of A356 and A6061 aluminum combination bicycle elements to optimize weight of frame, AIP Publishing, Yogyakarta, 2023.
- [30] Suyitno, S. and U. A. Salim. Fabrication of bicycle frame of A356 aluminum alloys by using sand casting. Applied Mechanics and Materials, Vol. 758, 2015, pp. 131-135.
- [31] Rosso, M., I. Peter, and F. Calosso. Development and setting of a new system for advanced rheocast components. American Institute of Physics, Belfast, 2011, pp. 1470-1475.
- [32] Hollaus, B., J. C. Volmer, and T. Fleischmann. Cadence detection in road cycling using saddle tube motion and machine learning. Sensors, Vol. 22, No. 16, 2022, id. 6140.
- [33] Bansal, R. and B. Altaf. Lightweight, cost-effective, and environmentally friendly materials for a mountain bicycle frame during high-impact riding: A comparative analysis of traditional aluminum, aluminum 6013, and a BioMid Fiber™™ composite. Material Science, Vol. 5, No. 2, 2023, id. 22.
- [34] Chen, D. C., J. G. Lin, W. H. Ku, and J. R. Shiu. Optimal process conditions for the manufacture of aluminum alloy bicycle pedals. Advances in Mechanical Engineering, Vol. 6, 2014 Jan, id. 601253.
- [35] Wang, Z. and D. Yu. Application of aluminum in sports equipment in China. Aluminium Fabrication, Vol. 1, 2018 Jan, pp. 4-8.
- [36] Bajer, J., S. Zaunschirm, B. Plank, M. Šlapáková, L. Bajtošová, M. Cieslar, et al. Kirkendall effect in twin-roll cast AA 3003 aluminum alloy. Crystals, Vol. 12, No. 5, 2022 May, id. 607.
- [37] Bao, S., A. Kvithyld, G. A. Bjørlykke, and K. Sandaunet. Recycling of aluminum from aluminum food tubes. In: Light metals, S. Broek, ed., Springer Nature Switzerland, Cham, 2023, pp. 960-966.
- [38] Stahl, T., S. Falk, A. Rohrbeck, S. Georgii, C. Herzog, A. Wiegand, et al. Migration of aluminum from food contact materials to food – a health risk for consumers? Part I of III: exposure to aluminum, release of aluminum, tolerable weekly intake (TWI), toxicological effects of aluminum, study design, and methods. Environmental Sciences Europe, Vol. 29, No. 1, 2017 Dec, pp. 1-8.
- [39] Soni, M. G., S. M. White, W. G. Flamm, and G. A. Burdock. Safety evaluation of dietary aluminum. Regulatory Toxicology and Pharmacology, Vol. 33, No. 1, 2001 Feb, pp. 66-79.
- [40] Stahl, T., S. Falk, H. Taschan, B. Boschek, and H. Brunn. Evaluation of human exposure to aluminum from food and food contact materials. European Food Research and Technology, Vol. 244, No. 12, 2018 Dec, pp. 2077-2084.
- [41] Majeed, T., Y. Mehta, and A. N. Siddiquee. Precipitation-dependent corrosion analysis of heat treatable aluminum alloys via friction stir welding, a review. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 235, No. 24, 2021 Dec, pp. 7600-7626.
- [42] Maniam, K. K. and S. Paul. A review on the electrodeposition of aluminum and aluminum alloys in ionic liquids. Coatings, Vol. 11, No. 1, 2021 Jan, id. 80.
- [43] Dai, Y., L. Yan, and J. Hao. Review on micro-alloying and preparation method of 7xxx series aluminum alloys: progresses and prospects. Materials, Vol. 15, No. 3, 2022 Jan, id. 1216.
- [44] Huang, H., J. Niu, X. Xing, Q. Lin, H. Chen, and Y. Qiao. Effects of the shot peening process on corrosion resistance of aluminum alloy: a review. Coatings, Vol. 12, No. 5, 2022 May, id. 629.
- [45] Zhao, P. Microstructure and properties of coated particle reinforced aluminum matrix composites used in sports equipment. Casting, Vol. 71, No. 7, 2022, pp. 878-882.
- [46] Lu, C. and C. Liu. Study on microstructure and tensile properties of aluminum alloy for semi-solid sports equipment prepared by ultrasonic vibration. Casting, Vol. 70, No. 4, 2021 Apr, pp. 449-453.
- [47] Qu, H., G. Li, W. Jiang, Y. Yu, and H. Wei. Effect of Mg content on microstructure and properties of Al-6Zn-xMg-0.5Cu-0.1Zr cast aluminum alloy for sports equipment. Foundry, Vol. 71, No. 10, 2022 Oct, pp. 1256-1261.
- [48] Xusheng, L. Effect of Y content on microstructure and mechanical properties of aluminum alloy used in sports equipment. Casting Technology, Vol. 36, No. 10, 2015 Oct, pp. 2454-2456.
- [49] Zhang, J., M. Klasky, and B. C. Letellier. The aluminum chemistry and corrosion in alkaline solutions. Journal of Nuclear Materials, Vol. 384, No. 2, 2009 Feb, pp. 175-189.
- [50] Park, S. W., G. D. Han, H. J. Choi, F. B. Prinz, and J. H. Shim. Evaluation of atomic layer deposited alumina as a protective layer for domestic silver articles: Anti-corrosion test in artificial sweat. Applied Surface Science, Vol. 441, 2018 May, pp. 718-723.
- [51] Fekry, A. M., A. A. Ghoneim, and M. A. Ameer. Electrochemical impedance spectroscopy of chitosan coated magnesium alloys in a synthetic sweat medium. Surface and Coatings Technology, Vol. 238, 2014 Jan, pp. 126-132.
- [52] Wu, F., S. Zhang, and Z. Tao. Corrosion behavior of 3C magnesium alloys in simulated sweat solution. Materials and Corrosion, Vol. 62, No. 3, 2011 Mar, pp. 234-239.
- [53] Naser, S. A., A. A. Hameed, and M. A. Hussein. Corrosion behavior of some jewelries in artificial sweat. AIP Conference Proceedings, Vol. 2213, No. 1, 2020 Mar, id. 020030.
- [54] Zaid, B., D. Saidi, A. Benzaid, and S. Hadji. Effects of pH and chloride concentration on pitting corrosion of AA6061 aluminum alloy. Corrosion Science, Vol. 50, No. 7, 2008 Jul, pp. 1841-1847.
- [55] Loto, R. T. and A. Adeleke. Corrosion of aluminum alloy metal matrix composites in neutral chloride solutions. Journal of Failure Analysis and Prevention, Vol. 16, No. 5, 2016 Oct 1, pp. 874-885.
- [56] Mishra, A. K. and R. Balasubramaniam. Corrosion inhibition of aluminum alloy AA 2014 by rare earth chlorides. Corrosion Science, Vol. 49, No. 3, 2007 Mar, pp. 1027-1044.
- [57] Luo, C., S. P. Albu, X. Zhou, Z. Sun, X. Zhang, Z. Tang, et al. Continuous and discontinuous localized corrosion of a 2xxx aluminum-copper-lithium alloy in sodium chloride solution. Journal of Alloys and Compounds, Vol. 658, 2016 Feb, pp. 61-70.
- [58] Deflorian, F., S. Rossi, B. Tancon, and P. L. Bonora. Corrosion behaviour of steel ropes for snow and rockfall barriers. Corrosion Engineering, Science and Technology, Vol. 39, No. 3, 2004 Sep, pp. 250-254.
- [59] Huttunen-Saarivirta, E., V. T. Kuokkala, J. Kokkonen, and H. Paajanen. Corrosion effects of runway de-icing chemicals on aircraft alloys and coatings. Materials Chemistry and Physics, Vol. 126, No. 1, 2011 Mar, pp. 138-151.
- [60] Schoukens, I., F. Cavezza, J. Cerezo, V. Vandenberghe, V. C. Gudla, and R. Ambat. Influence of de-icing salt chemistry on the corrosion behavior of AA6016. Materials and Corrosion, Vol. 69, No. 7, 2018, pp. 881-887.
- [61] Huang, I. W., B. L. Hurley, F. Yang, and R. G. Buchheit. Dependence on temperature, pH, and Cl- in the uniform corrosion of aluminum alloys 2024-T3, 6061-T6, and 7075-T6. Electrochimica Acta, Vol. 199, 2016 May, pp. 242-253.
- [62] Xavier, J. R., S. P. Vinodhini, and B. Ramesh. Optimizing aluminum alloy performance for marine superstructures: Advanced nanocomposite coating for enhanced corrosion resistance, flame retardancy, and mechanical strength. Polymer Degradation and Stability, Vol. 227, 2024 Sep, id. 110847.
- [63] Shen, Y., Y. Dong, Y. Yang, Q. Li, H. Zhu, W. Zhang, et al. Study of pitting corrosion inhibition effect on aluminum alloy in seawater by biomineralized film. Bioelectrochemistry, Vol. 132, 2020 Apr, id. 107408.
- [64] Wan, Y., L. Li, Y. Jin, Y. Li, and X. Zhu. Pitting corrosion behavior and mechanism of 5083 aluminum alloy based on dry-wet cycle exposure. Materials and Corrosion, Vol. 74, No. 4, 2023, pp. 608-621.
- [65] Berlanga-Labari, C., M. V. Biezma-Moraleda, and P. J. Rivero. Corrosion of cast aluminum alloys: a review. Metals, Vol. 10, No. 10, 2020, id. 1384.
- [66] Qin, J., Z. Li, M. Y. Ma, D. Q. Yi, and B. Wang. Diversity of intergranular corrosion and stress corrosion cracking for 5083 Al alloy with different grain sizes. Transactions of Nonferrous Metals Society of China, Vol. 32, No. 3, 2022 Mar, pp. 765-777.
- [67] Mondou, E., A. Proietti, C. Charvillat, C. Berziou, X. Feaugas, D. Sinopoli, et al. Understanding the mechanisms of intergranular corrosion in 2024 Al alloy at the polycrystal scale. Corrosion Science, Vol. 221, 2023 Aug, id. 111338.
- [68] Peng, C., G. Cao, T. Gu, C. Wang, Z. Wang, and C. Sun. The corrosion behavior of the 6061 Al alloy in simulated Nansha marine atmosphere. Journal of Materials Research and Technology, Vol. 19, 2022 Jul, pp. 709-721.
- [69] Fujii, T., T. Sawada, and Y. Shimamura. Nucleation of stress corrosion cracking in aluminum alloy 6061 in sodium chloride solution: Mechanical and microstructural aspects. Journal of Alloys and Compounds, Vol. 938, 2023 Mar, id. 168583.
- [70] Srinivasan, P. B., W. Dietzel, R. Zettler, J. F. dos Santos, and V. Sivan. Stress corrosion cracking susceptibility of friction stir welded AA7075-AA6056 dissimilar joint. Materials Science and Engineering: A, Vol. 392, No. 1, 2005 Feb, pp. 292-300.
- [71] Dwivedi, P., A. N. Siddiquee, and S. Maheshwari. Issues and requirements for aluminum alloys used in aircraft components: state of the art. Russian Journal of Non-Ferrous Metals, Vol. 62, No. 2, 2021 Mar, pp. 212-225.
- [72] Samuel, A. U., A. O. Araoyinbo, R. R. Elewa, and M. B. Biodun. Effect of machining of aluminium alloys with emphasis on aluminium 6061 alloy - A review. IOP Conference Series: Materials Science and Engineering, Vol. 1107, No. 1, 2021 Apr, id. 012157.
- [73] Khan, H. M., G. Özer, M. S. Yilmaz, and E. Koc. Corrosion of additively manufactured metallic components: A review. Arabian Journal for Science and Engineering, Vol. 47, No. 5, 2022 May, pp. 5465-5490.
- [74] Renner, P., S. Jha, Y. Chen, A. Raut, S. G. Mehta, and H. Liang. A review on corrosion and wear of additively manufactured alloys. Journal of Tribology, Vol. 143, 2021 Apr [cited 2024 Jun 25], id. 050802.
- [75] Liew, Y., C. Örnek, J. Pan, D. Thierry, S. Wijesinghe, and D. J. Blackwood. Towards understanding micro-galvanic activities in localised corrosion of AA2099 aluminium alloy. Electrochimica Acta, Vol. 392, 2021 Oct, id. 139005.
- [76] Tian, W., B. Chao, X. Xiong, and Z. Li. Effect of surface roughness on pitting corrosion of 2A12 aluminum alloy. International Journal of Electrochemical Science, Vol. 13, No. 3, 2018 Mar, pp. 3107-3123.
- [77] Ly, R., K. T. Hartwig, and H. Castaneda. Effects of strain localization on the corrosion behavior of ultra-fine grained aluminum alloy AA6061. Corrosion Science, Vol. 139, 2018 Jul, pp. 47-57.
- [78] Zhao, Z., J. Liu, and A. Siddiq. Plastic softening induced by high-frequency vibrations accompanying uniaxial tension in aluminum. Nanomaterials, Vol. 12, No. 7, 2022 Jan, id. 1239.
- [79] Zhang, L., W. Bian, K. Fu, X. Dai, H. Wang, and J. Wang. Improvement of mechanical properties and microstructure of wire arc additive manufactured 2319 aluminum alloy by mechanical vibration acceleration. Materials Characterization, Vol. 208, 2024 Feb, id. 113672.
- [80] Pathak, S. S., M. D. Blanton, S. K. Mendon, and J. W. Rawlins. Investigation on dual corrosion performance of magnesium-rich primer for aluminum alloys under salt spray test (ASTM B117) and natural exposure. Corrosion Science, Vol. 52, No. 4, 2010 Apr, pp. 1453-1463.
- [81] Akande, I. G., M. A. Fajobi, O. A. Odunlami, and O. O. Oluwole. Exploitation of composite materials as vibration isolator and damper in machine tools and other mechanical systems: A review. Materials Today: Proceedings, Vol. 43, 2021 Jan, pp. 1465-1470.
- [82] Meng, X. K., H. Wang, W. S. Tan, J. Cai, J. Z. Zhou, and L. Liu. Gradient microstructure and vibration fatigue properties of 2024-T351 aluminium alloy treated by laser shock peening. Surface and Coatings Technology, Vol. 391, 2020 Jun, id. 125698.
- [83] Qi, J., J. Światowska, P. Skeldon, and P. Marcus. Chromium valence change in trivalent chromium conversion coatings on aluminium deposited under applied potentials. Corrosion Science, Vol. 167, 2020 May, id. 108482.
- [84] Kim, M., L. N. Brewer, and G. W. Kubacki. Microstructure and corrosion resistance of chromate conversion coating on cold sprayed aluminum alloy 2024. Surface and Coatings Technology, Vol. 460, 2023 May, id. 129423.
- [85] Oki, M., A. A. Adediran, P. P. Ikubanni, O. S. Adesina, A. A. Adeleke, S. A. Akintola, et al. Corrosion rates of green novel hybrid conversion coating on aluminium 6061. Results in Engineering, Vol. 7, 2020 Sep, id. 100159.
- [86] Quarto, F. D., M. Santamaria, N. Mallandrino, V. Laget, R. Buchheit, and K. Shimizu. Structural analysis and photocurrent spectroscopy of CCCs on 99.99% aluminum. Journal of the Electrochemical Society, Vol. 150, No. 10, 2003 Aug, id. B462.
- [87] Campestrini, P., H. Terryn, J. Vereecken, and J. H. W. de Wit. Chromate conversion coating on aluminum alloys: III. Corrosion protection. Journal of the Electrochemical Society, Vol. 151, No. 6, 2004 May 6, id. B370.
- [88] Janaki, G. B. and J. R. Xavier. Evaluation of bi-functionalized alumina-epoxy nanocomposite coatings for improved barrier and mechanical properties. Surface and Coatings Technology, Vol. 405, 2021 Jan, id. 126549.
- [89] Zhang, J. S., X. H. Zhao, Y. Zuo, and J. P. Xiong. The bonding strength and corrosion resistance of aluminum alloy by anodizing treatment in a phosphoric acid modified boric acid/sulfuric acid bath. Surface and Coatings Technology, Vol. 202, No. 14, 2008 Apr, pp. 3149-3156.
- [90] Veys-Renaux, D., N. Chahboun, and E. Rocca. Anodizing of multiphase aluminium alloys in sulfuric acid: in-situ electrochemical behaviour and oxide properties. Electrochimica Acta, Vol. 211, 2016 Sep, pp. 1056-1065.
- [91] Xavier, J. R. Investigation of anticorrosion, flame retardant and mechanical properties of polyurethane/GO nanocomposites coated AJ62 Mg alloy for aerospace/automobile components. Diamond and Related Materials, Vol. 136, 2023 Jun, id. 110025.
- [92] Lin, M. Y., P. S. Hsiao, H. H. Sheu, C. C. Chang, M. Tsai, D. S. Wuu, et al. Improving the corrosion resistance of 6061 aluminum alloy using anodization and Nickel-Cobalt based sealing treatment. International Journal of Electrochemical Science, Vol. 16, No. 10, 2021 Oct, id. 211053.
- [93] Karagianni, B. and I. Tsangaraki-Kaplanoglou. N-heterocyclic organic compounds as additives in the AC coloring of anodized aluminum from Nickel sulfate solutions - Part I: Effect on color intensity & uniformity of the probes. Plating and Surface Finishing, Vol. 83, 1996, pp. 73-76.
- [94] Giles, C. H. Dyeing anodized aluminium: A review. Transactions of the IMF, Vol. 57, No. 1, 1979 Jan, pp. 48-52.
- [95] Akolkar, R., Y. M. Wang, and H. H. (Harry) Kuo. Kinetics of the electrolytic coloring process on anodized aluminum. Journal of Applied Electrochemistry, Vol. 37, No. 2, 2007 Feb 1, pp. 291-296.
- [96] Critchlow, G. W., K. A. Yendall, D. Bahrani, A. Quinn, and F. Andrews. Strategies for the replacement of chromic acid anodising for the structural bonding of aluminium alloys.
9. 著作権:
- この資料は、[著者の名前 - Shaozhou Chen]氏の論文: ["Paper Title" - Advancements in surface treatments for aluminum alloys in sports equipment] に基づいています。
- 論文ソース: [DOI URL - https://doi.org/10.1515/rams-2024-0065]
この資料は上記の論文に基づいて要約したものであり、商業目的での無断転載は禁止されています。
Copyright © 2025 CASTMAN. All rights reserved.