この紹介論文は、[FEUP FACULDADE DE ENGENHARIA UNIVERSIDADE DO PORTO] によって発行された論文「高圧ダイカストによるZamak合金(High Pressure Die Casting of Zamak alloys)」の研究内容です。
![Figure 9- Left: Schematics of a conventional HPDC cold chamber machine [14]; Right: Typical layout of a component produced by a cold chamber machine [15].](https://castman.co.kr/wp-content/uploads/image-1520-png.webp)
1. 概要:
- タイトル: High Pressure Die Casting of Zamak alloys (高圧ダイカストによるZamak合金)
- 著者: Steven Richard Pires de Oliveira
- 発行年: 2018年7月
- 発行ジャーナル/学会: 修士論文 (Dissertação de Mestrado), Mestrado Integrado em Engenharia Mecânica, FEUP FACULDADE DE ENGENHARIA UNIVERSIDADE DO PORTO
- キーワード: 射出鋳造、Zamak合金、湯口システム、NADCA、ProCAST、真空、Exco Engineering (Fundição injetada; ligas Zamak; sistema de gitagem; NADCA; ProCAST; Vácuo; Exco Engineering.)
2. 要約 / 序論
高圧ダイカスト (HPDC) プロセスは、特に自動車分野で著しい進歩を遂げています。アルミニウム合金が一般的に使用されますが、優れた表面品質と高い生産性から、亜鉛合金、特にZamakが注目を集めています。本論文は、Zamak合金のHPDCについて、乱流による湯流れに起因するポロシティ欠陥を低減するための湯口システムの最適化に焦点を当てて調査します。また、部品品質をさらに向上させるための真空技術の適用についても調査します。 溶融金属の充填プロセス中に大量の空気が発生することは、気孔率に関連する欠陥につながる重大な問題です。 真空技術は、空気の巻き込みに関連する欠陥を克服するために使用されています。
3. 研究背景:
研究テーマの背景:
HPDC は、溶融金属を再利用可能な金型に高圧および高速で射出する金属鋳造プロセスです。
このプロセスには、コールドチャンバーマシンとホットチャンバーマシンの 2 種類のダイカストマシンがあります。 ホットチャンバーマシンは、亜鉛、スズ、鉛、および一部のマグネシウム合金などの低融点合金に使用されます。
既存の研究の状況:
既存の研究では、HPDCにおけるポロシティの問題、特にZamak合金における問題が指摘されています。湯口システムとプロセスパラメータの最適化は既知のアプローチですが、設計者の経験に依存することがよくあります。 真空アシストHPDCは、アルミニウムやマグネシウム合金には広く使用されていますが、亜鉛合金にはあまり一般的ではありません。 Zamak合金の真空システムの詳細設計に関する文献は限られています。
研究の必要性:
Zamak合金は、亜鉛を主成分とし、アルミニウム、銅、マグネシウムを続く特定のファミリーです。 高密度と低温での高いクリープ速度が、これらの合金を使用する際の 2 つの主な問題です。 これにより、「軽量」市場での使用が制限されます。 これらの理由から、これらの欠点を克服するための新しい方法が必要であり、それによってZamak合金がより広い市場シェアを持つことができます。 湯口システムの設計は、金型の製造だけでなく、製造されるコンポーネントの品質とコストにも影響を与えるため、重要なタスクです。
4. 研究目的と研究課題:
研究目的:
本論文は、スプレッドシートベースの計算方法を利用して、Zamak合金のHPDCにおける湯口システム設計へのより科学的なアプローチを開発することを目的としています。 また、真空技術を詳細に調査し、Zamak 合金の高圧ダイカスト プロセスにおけるその適用可能性を調査することも目的としています。
主な研究:
- 湯口システム設計のためのベストプラクティスマニュアルを作成する。
- 実際のケースに設計手順を適用します。
- シミュレーション (ProCAST) による最適化された湯口システムの有効性を調査する。
- 真空技術の適用と、その設計方法論を調査する。
5. 研究方法
研究デザイン:
- HPDC、Zamak合金、湯口システム設計、真空技術に関する文献レビュー。
- 湯口システム設計方法論の開発。
- ケーススタディの適用:不良率の高い(35%以上)既存部品の分析。
- 湯口システムの反復設計とシミュレーション。
- 真空システム設計の原則と適用の調査。
データ収集方法:
- 部品および湯口システムのCADモデル。
- 産業パートナー (STA) からの材料特性とプロセスパラメータ。
- ProCASTからのシミュレーション結果。
分析方法:
- CADを使用した湯口システムの収束解析。
- ProCASTを使用した流れシミュレーションによる、充填パターン、速度、空気巻き込みの予測。
- NADCA湯口設計ガイドラインの適用。
- Exco Engineering Appを使用した真空システム設計計算。
研究対象と範囲:
- ホットチャンバーHPDCにおけるZamak合金に焦点を当てる。
- 特定の工業部品の分析。
- 湯口システムの設計と最適化。
- 真空システム設計の原則とケーススタディへの適用。
6. 主な研究結果:
主な研究結果:
- NADCAガイドラインに基づく構造化された湯口システム設計手順が提示されました。
- ケーススタディでは、最適化された湯口が空気巻き込みの低減に与える影響を実証しました。
- シミュレーション結果(ProCAST)は、実際の欠陥観察(ブリスター)と相関していました。
- 真空システムの設計方法が提案されています。
提示されたデータの分析:
- 反復1(既存の設計): 非収束湯口システム、不均一な溶融金属速度、シミュレーションで予測され、RX分析で検証された高い空気巻き込み。
- 反復2(最適化された設計): NADCAベースの設計、改善された溶融金属の流れ、シミュレーションにおける空気巻き込みの低減。
- 反復3(変更された既存の設計): オーバーフロー位置とランナー設計の改善、空気巻き込みのさらなる低減、生産における不良率の低下(35%から5%)によって検証。
![Figure 87- Performance comparing of a vacuum valve and chill vent [99].](https://castman.co.kr/wp-content/uploads/image-1524-png.webp)
![Figure 95- Gibbs vertical vacuum die casting process [14].](https://castman.co.kr/wp-content/uploads/image-1523-png.webp)
![Figure 88- Pressure measurement of a vacuum shut-off valve. Left: Aspiration is opened; Right: Aspiration is
closed [99].](https://castman.co.kr/wp-content/uploads/image-1525-1024x320.webp)
![Figure 102- Evolution of the die cavity pressure with respect to the plunger position [105].](https://castman.co.kr/wp-content/uploads/image-1521-png.webp)
![Figure 103- Examples of a vacuum runner system layout with a mechanical vacuum valve [106].](https://castman.co.kr/wp-content/uploads/image-1522-png.webp)
Figure Name List:
- Figure 1- Comparison of properties of different foundry processes [1].
- Figure 2- Manufacturing conveniences of different foundry processes as function of production rate and casting weight [2].
- Figure 3- Representation of casting processes respecting velocity and pressure [3].
- Figure 4- Sturges die casting machine patent [5].
- Figure 5- Early die casting machine that required two people to operate [5].
- Figure 6- Pneumatic die casting machine [5].
- Figure 7- Left: Shock tower with an assembly of various sheet steel parts; Right: Same part with just a single part produced by aluminium die casting [10].
- Figure 8- High pressure die casting process [2].
- Figure 9- Left: Schematics of a conventional HPDC cold chamber machine [14]; Right: Typical layout of a component produced by a cold chamber machine [15].
- Figure 10- Classification of defects and their origins [16].
- Figure 11- Left: Schematics of a conventional HPDC hot chamber machine [14]; Right: Components produced by a hot chamber machine [22].
- Figure 12- Passage connecting the nozzle to the die cavity of a hot chamber machine [23].
- Figure 13- Projected area of casting which includes, die cavity, overflows, gating system, vacuum valves and runners [22].
- Figure 14- High pressure die casting process phases; representing piston speed and pressure as function of piston position [1].
- Figure 15- Zamak components ( Courtesy of Dynacast) [30].
- Figure 16- Left: Cast components being subjected to a grinding process; Right: abrasive chips [32].
- Figure 17- Left: Zamak 5; Right: Zamak 5 + 0.10 wt.% hf. Both allots at 200x magnification [35].
- Figure 18- Components of a unit die assembly [23].
- Figure 19- Flow chart of the simulation process based on ProCASTTM [43].
- Figure 20- Die casting mold manufactured with TOOLOX 44 to inject Zamak [40].
- Figure 21- Salt core and die casting with cavity [47].
- Figure 22- Left- “Triplet” salt core inserted in the die cavity; Right- Injected part of a zinc alloy [45].
- Figure 23- Water soluble salt core with bauxite powders and glass fibres for a zinc alloy casting [50].
- Figure 24- Thermal images of the die after spraying (left) with an average surface temperature of 180 ºC, and before spraying (right) [52].
- Figure 25- Protrusions related to lamination. Left: magnified 25 x; Right: magnified 10 x [52].
- Figure 26- Deformation present on a manufactured part [52].
- Figure 27- Surface roughness duo to soldering [52].
- Figure 28- Examples of components using the gas injection technology using a cold chamber [10].
- Figure 29- Possible applications for gas injection technology in the high pressure die casting technology. Left: intake manifolds; Right: Hollow structures in clutch pedals [57].
- Figure 30- Control-related of the die casting machine and thee gas unit [10].
- Figure 31- Home position and filling phase [10].
- Figure 32- Gas injection and opening of the cavity overflow [10].
- Figure 33- Shot curve with different process parameters [10].
- Figure 34- Simulation of die fill indicating cold metal near the gas injector for Gating [57].
- Figure 35- Pressure die casting tool for gas injection and a 200 ton cold chamber casting machine. 1- Overflow Cavity; 2- Locking Pin; 3-Injector; 4- runner; 5-Runner 2 [57].
- Figure 36- Zinc high pressure die casting with a cavity completely produced by gas injection [58].
- Figure 37- Left: Non plana filling; Right: planar filing [60].
- Figure 38- Hot chamber rheo-diecasting machine. The circle indicates de magnetic field around the nozzle [62].
- Figure 39- Microstructure of a magnesium alloy, AZ91D. Left: conventional high pressure die casting, Right: hot chamber rheo-die casting [62].
- Figure 40- Effect of test temperature (-35, 23,85 ºC) and wall thickness on the tensile strength of Zamak 5 during different natural ageing durations [38].
- Figure 41- Hardness evolution of a Zamak 5 alloy during 1 year natural ageing [38].
- Figure 42- Artificial ageing of Zamak 5 alloy for 25 hours for 3 different temperatures [38].
- Figure 43- Elements of a gating system [75].
- Figure 44- Flow chart for die layout design [39].
- Figure 45- Atomized flow [24].
- Figure 46- Curve sided fan runner-gate [24].
- Figure 47- Straight sided fan runner-gate [24].
- Figure 48- Left: Top view of a curved sided fan divided into 9 sections; Right: Cross sectional view of a fan gate-runner and main runner [24].
- Figure 49- Tapered tangential gate-runner that illustrates different flow angles [24].
- Figure 50- Typical overflow sizes [24].
- Figure 51- Overflow.
- Figure 52- Location of vents on the die [24].
- Figure 53- Left: Blistering; Right: Pin holes.
- Figure 54- CAD model for a gating system which was responsible of a rejection rate of over 35 %.
- Figure 55- Cross section of the die cavity for iteration 1.
- Figure 56- Analysis of the cross-sectional area of the gating system.
- Figure 57- Overview of the work flow for a simulation tool.
- Figure 58- Velocity evolution at t=16.8ms and 35.2% filled.
- Figure 59- Velocity evolution at each ingate.
- Figure 60- Velocity profile and representation of the metal front collision and creation of air pockets.
- Figure 61- Air entrapment prediction during the filling process.
- Figure 62- Rx analysis after painting process.
- Figure 63- Optimized gating system for iteration 2.
- Figure 64- Simulation results of the entire component and gating system.
- Figure 65- Molten metal velocity in function of die cavity filling time at 3 points.
- Figure 66- Molten velocity profile representing 3 different points.
- Figure 67- Air entrapment prediction using ProCASTTM.
- Figure 68- CAD model of iteration 3.
- Figure 69- Molten metal velocity profile function to cavity filling time.
- Figure 70- Metal flow in the components die cavity, representing the occurrence of air pockets during the injection process.
- Figure 71- Prevision of air entrapments using simulation.
- Figure 72- Two examples of Zinc alloy components produced by vacuum high pressure die casting (Courtesy of Fondarex) [79].
- Figure 73- Comparison of conventional HPDC, vacuum-assisted HPDC and super-vacuum die casting [1].
- Figure 74- Case study presenting the internal die cavity pressure and air mass for a HPDC vacuum process including and excluding a leakage area [93].
- Figure 75- Die cavity pressure with respect to different slow shot speed [97].
- Figure 76- Average area of gas porosity with respect to different slow shot speeds [97].
- Figure 77- Influence of different slow shot speed on mechanical properties: UTS, YS, elongation [97].
- Figure 78- Mechanical properties variation with respect to different gate velocity [84].
- Figure 79- Incorrect vacuum gating system design, with blocked zones A and B [92].
- Figure 80- A- Incorrect vacuum gating design; B-Optimized design [92].
- Figure 81- Vacuum die casting system [98].
- Figure 82- Left- Schematic of a corrugated chill block [4]; Right- ProVac chill vent [99].
- Figure 83- Left: Chill block with a triangular cross-sectional shape; Right: Chill block with a trapezoidal cross-sectional shape [101].
- Figure 84- Mechanical shut-off vacuum valve with the Typhon vacuum runners [99].
- Figure 85- Vacuum runner for a mechanical vacuum valve [100].
- Figure 86- Left: Electro-pneumatic valve [102]; Right: Hydraulic vacuum shut-off valve [4].
- Figure 87- Performance comparing of a vacuum valve and chill vent [99].
- Figure 88- Pressure measurement of a vacuum shut-off valve. Left: Aspiration is opened; Right: Aspiration is closed [99].
- Figure 89- Differences between a mechanical valve and a chill vent [99].
- Figure 90- Left: Representation of one half, consisting of wedge-shaped inserts; Right: Engagement of two halves [100].
- Figure 91- Left: Pressure changes in the vacuum line for a mechanical and a CASTvac valve; Right: Pressure changes in a 3L vacuum vessel for a chill vent and a CASTvac [100].
- Figure 92- CASTvac installed in a die [100].
- Figure 93- Different venting efficiencies for a CASTvac and a chill block with natural and vacuum venting [93].
- Figure 94- Different venting efficiencies with for different venting methods and evacuation devices [93].
- Figure 95- Gibbs vertical vacuum die casting process [14].
- Figure 96- Discharge coefficient of vacuum valve and chill block [98].
- Figure 97- Venting mass flow rates [98].
- Figure 98- Vacuum tank sizing using the Exco Engineering application.
- Figure 99- Vent valve sizing using Exco engineering application.
- Figure 100- Vacuum pull time estimation using a mechanical vacuum valve.
- Figure 101- Vacuum pull time estimation using a chill block.
- Figure 102- Evolution of the die cavity pressure with respect to the plunger position [105].
- Figure 103- Examples of a vacuum runner system layout with a mechanical vacuum valve [106].
- Figure 104- Cross-sectional area variation of the vacuum runner system [106].
- Figure A 1- Figure presenting different dimensions of the fan gate-runner calculated in Table A 6.
- Figure A 2- Various dimensions of an overflow.
- Figure A 3- Dimensions of a tangential gate-runner.
7. 結論:
主要な調査結果の要約:
- 確立されたガイドライン(NADCA)とシミュレーションを使用して設計された最適化された湯口システムは、Zamak合金のHPDCにおける空気巻き込みを大幅に削減します。
- 実世界の生産結果はシミュレーション予測を検証し、CAEツールの価値を実証しました。
- Exco Engineering App は、通気システムの設計プロセスに使いやすいツールを提供します。
研究の学術的意義:
- Zamak HPDCにおける湯口システム設計のための構造化された方法論を提供し、経験だけに頼ることを超えています。
- 欠陥を予測および軽減するためのシミュレーションの有効性を実証します。
- Zamak HPDCにおける真空技術の適用に関する理解に貢献します。
実際的な意味:
- 改善された湯口設計は、スクラップ率の削減と部品品質の向上につながる可能性があります。
- シミュレーションツールを使用して、ツーリング前に設計を最適化し、時間とコストを節約できます。
- 真空技術は、高品質のZamakコンポーネントを必要とするアプリケーションに潜在的なソリューションを提供します。
研究の限界と今後の研究分野:
- 真空システム設計アプリケーションには制限(バグ)があり、完全な検証ができませんでした。
- この研究は単一のコンポーネントに焦点を当てました。 さらなる研究では、さまざまな形状と合金を調査できます。
- 今後の研究では、以下を調査する必要があります。
- HPDCにおけるZamak合金の機械的特性に対する熱処理(T4、T5、T6)の影響。
- 最適化された湯口システム(反復2)の実用化。
- 真空システム設計方法論の実世界での応用。
8. 参考文献:
- [1] W. A. Butler, G. Timelli, E. Battaglia, and F. Bonollo, "Die Casting (Permanent Mold)," (No publication details provided), 2016.
- [2] F. Bonollo, N. Gramegna, and G. Timelli, "High-Pressure Die-Casting: Contradictions and Challenges," JOM, vol. 67, no. 5, pp. 901-908, 2015. DOI: 10.1007/s11837-015-1333-8
- [3] B. Andresen, Die Casting Engineering: A Hydraulic, Thermal, and Mechanical Process. New York: Marcel Dekker, 2005.
- [4] E. J. Vinarcik, High Integrity Die Casting Processes. Wiley, 2002.
- [5] M. Murray and M. Murray, "High Pressure Die Casting of Aluminium and its Alloys," in Fundamentals of Aluminium Metallurgy, Elsevier, 2011, pp. 217-261.
- [6] H.-J. Kwon and H.-K. Kwon, "Computer Aided Engineering (CAE) Simulation for the Design Optimization of Gate System on High Pressure Die Casting (HPDC) Process," Robotics and Computer-Integrated Manufacturing, 2018. DOI: 10.1016/j.rcim.2018.01.003
- [7] D. Larsen and G. Colvin, "Vacuum-Die Casting Titanium for Aerospace and Commercial Components," JOM, vol. 51, no. 6, pp. 26-27, 1999. DOI: 10.1007/s11837-999-0089-4
- [8] R. Singh, "Modeling of Surface Hardness in Hot Chamber Die Casting using Buckingham's π Approach," Journal of Mechanical Science and Technology, vol. 28, no. 2, pp. 699-704, 2014. DOI: 10.1007/s12206-013-1133-4
- [9] F. Peti and L. Grama, "Analyze of the Possible Causes of Porosity Type Deffects in Aluminium High Pressure Diecast Parts," Scientific Bulletin of the "Petru Maior" University of Targu Mures, vol. 8, no. 1, p. 41, 2011.
- [10] M. Becker, L. Kallien, and T. Weidler, "Production of Magnesium Die Castings with Hollow Structures using Gas Injection Technology in the Hot Chamber Die Casting Process," (No publication details provided), 2015.
- [11] L. Wang, P. Turnley, and G. Savage, "Gas Content in High Pressure Die Castings," Journal of Materials Processing Technology, vol. 211, no. 9, pp. 1510-1515, 2011. DOI: 10.1016/j.jmatprotec.2011.03.024
- [12] T. Rzychoń, B. Adamczk-Cieślak, A. Kiełbus, and J. Mizera, "The Influence of Hot-Chamber Die Casting Parameters on the Microstructure and Mechanical Properties of Magnesium-Aluminum Alloys Containing Alkaline Elements," Materialwissenschaft und Werkstofftechnik, vol. 43, no. 5, pp. 421-426, 2012. DOI: 10.1002/mawe.201200976
- [13] S. Sharma, "Modeling and Optimization of Die Casting Process for ZAMAK Alloy," Journal of Engineering and Technology, vol. 4, no. 2, pp. 87-94, 2014. DOI: 10.4103/0976-8580.141176
- [14] A. A. Luo, "Magnesium Casting Technology for Structural Applications," Journal of Magnesium and Alloys, vol. 1, no. 1, pp. 2-22, 2013.
- [15] North American Die Casting Association, A. H., Illinois, NADCA- Introduction to Die Casting, 2007.
- [16] E. Gariboldi, F. Bonollo, and P. Parona, Handbook of Defects in HPDC. AIM, Milano, 2010.
- [17] W. G. Walkington, Gas Porosity: A Guide to Correcting the Problems. North American Die Casting Association, 2003.
- [18] W. G. Walkington, Die Casting Defects. Troubleshooting Guide: NADCA, 1997.
- [19] Derek Cocks, M. C. E. S., DIECASTING DEFECTS: IDENTIFICATION - CAUSES & CURES. EASTERN ALLOYS, INC.
- [20] D. S. Midson, "NADCA EC-515 Die Casting Defects Course Review," Hill and Griffith Company, 2017.
- [21] E. Fiorese, F. Bonollo, G. Timelli, L. Arnberg, and E. Gariboldi, "New Classification of Defects and Imperfections for Aluminum Alloy Castings," International Journal of Metalcasting, vol. 9, no. 1, pp. 55-66, 2015.
- [22] T. Höök, "HPDC Runner and Gating System Design, CAE Mould Design," Tampere University of Technology.
- [23] A. Data, NADCA Product Specification Standards for Die Castings. Arlington Heights, NADCA, 2003.
- [24] M. Ward, Gating Manual. NADCA, 2006.
- [25] "Comparison of Processes," Casting Versatility Leads to Further Savings. Retrieved from https://www.eazall.com/comparison-of-processes
- [26] I. Rosindale and K. Davey, "Steady State Thermal Model for the Hot Chamber Injection System in the Pressure Die Casting Process," Journal of Materials Processing Technology, vol. 82, no. 1-3, pp. 27-45, 1998.
- [27] R. Winter, "EZACTM–High Strength, Creep Resistant, Zinc Die Casting Alloy," 2011.
- [28] S. Kumar Das and D. Kumar Bhattacharya, "Corrosion Failure of Zn–Al Detonator Housing," Engineering Failure Analysis, vol. 10, no. 6, pp. 639-643, 2003. DOI: 10.1016/S1350-6307(03)00045-1
- [29] A. Pola, R. Roberti, and L. Montesano, "New Zinc Alloys for Semisolid Applications," International Journal of Material Forming, vol. 3, no. 1, pp. 743-746, 2010.
- [30] Dynacast. Retrieved from https://www.dynacast.co.uk/
- [31] E. M. da Costa, C. E. da Costa, F. Dalla Vecchia, C. Rick, M. Scherer, C. A. dos Santos, and B. A. Dedavid, "Study of the Influence of Copper and Magnesium Additions on the Microstructure Formation of Zn–Al Hypoeutectic Alloys," Journal of Alloys and Compounds, vol. 488, no. 1, pp. 89-99, 2009.
- [32] V. Reveko and P. Møller, "Special Aspects of Electrodeposition on Zinc Die Castings," vol. 82, 2018.
- [33] D. Stefanescu, J. Davis, and J. Destefani, Metals Handbook, Vol. 15--Casting. ASM International, 1988, p. 937, 1988.
- [34] R. Wanhill and T. Hattenberg, "Corrosion-Induced Cracking of Model Train Zinc-Aluminium Die Castings," (No publication details provided), 2005.
- [35] A. I. Zaid and A. O. Mostafa, "Effect of Hafnium Addition on Wear Resistance of Zinc-Aluminum 5 Alloy: A Three-Dimensional Presentation," Advanced Materials Letters, vol. 8, no. 9, pp. 910-915, 2017. DOI: 10.5185/amlett.2017.1662
- [36] F. E. Goodwin, K. Zhang, A. B. Filc, R. L. Holland, W. R. Dalter, and T. M. Jennings, "Development of Zinc Die Casting Alloys with Improved Fluidity: Progress in Thin Section Zinc Die Casting Technology," Proc. NADCA Metalcasting Congress, Houston, Google Scholar, 2007.
- [37] F. Goodwin, L. Kallien, and W. Leis, "The High Fluidity (HF) Zinc Alloy: Process-Property and Ageing Characteristics," (No publication details provided), (No year provided).
- [38] F. Goodwin, W. Leis, and L. Kallien, "Ageing Properties of Zinc Alloys," presented at the NADCA 2011 Congress, Columbus, OH, 2011.
- [39] C.-H. Kim and T. H. Kwon, "A Runner–Gate Design System for Die Casting," (No publication details provided), 2001.
- [40] P. Hansson, "Modern Prehardened Tool Steels in Die-Casting Applications," Materials and Manufacturing Processes, vol. 24, no. 7-8, pp. 824-827, 2009. DOI: 10.1080/10426910902841753
- [41] N. A. K. Raveendran and A. N. Patil, "Optimization of Runner Design in High Pressure Die Casting (HPDC) Die," International Journal of Engineering Research & Technology (IJERT), vol. 3, no. 4, 2017.
- [42] H. Pinto and F. Silva, "Optimisation of Die Casting Process in Zamak Alloys," Procedia Manufacturing, vol. 11, pp. 517-525, 2017.
- [43] D. Yangqing, B. Kun, D. Yangliu, and D. Yiwei, "Reversing Design Methodology of Investment Casting Die Profile based on ProCAST," Research & Development, (No publication details provided), 2010.
- [44] Z. Dadić, D. Živković, N. Čatipović, and J. Bilić, "High Pressure Die Casting Mould Repair Technologies," presented at the 7th International Conference "Mechanical Technologies and Structural Materials 2017", 2017.
- [45] R. Huang and B. Zhang, "Study on the Composition and Properties of Salt Cores for Zinc Alloy Die Casting," International Journal of Metalcasting, vol. 11, no. 3, pp. 440-447, 2017. DOI: 10.1007/s40962-016-0086-7
- [46] E. Adámková, P. Jelínek, J. Beňo, and F. Mikšovský, "Water-Soluble Cores–Verifying Development Trends," Materiali in Tehnologije, vol. 49, no. 1, pp. 61-67, 2015. Retrieved from http://mit.imt.si/Revija/izvodi/mit151/adamkova.pdf
- [47] L. Kallien, C. Bőhnlein, A. Dworak, and B. Műller, "Ergebnisse aus dem Forschungsprojekt 3-D-Freiform–medienführende Kanäle im Druckguss," Giesserei Praxis, vol. 100, no. 12, pp. 36-43, 2013.
- [48] P. Jelínek, E. Adámková, F. Mikšovský, and J. Beňo, "Advances in Technology of Soluble Cores for Die Castings," Archives of Foundry Engineering, vol. 15, no. 2, pp. 29-34, 2015.
- [49] P. Jelínek and E. Adámková, "Lost Cores for High-Pressure Die Casting," Archives of Foundry Engineering, vol. 14, no. 2, pp. 101-104, 2014.
- [50] S. Tu, F. Liu, G. Li, W. Jiang, X. Liu, and Z. Fan, "Fabrication and Characterization of High-Strength Water-Soluble Composite Salt Core for Zinc Alloy Die Castings," The International Journal of Advanced Manufacturing Technology, vol. 95, no. 1-4, pp. 505-512, 2018.
- [51] N. Gramegna, "Analysis of the Factors Contributing to the Heat Balance of an High Pressure Die-Casting Mould," EnginSoft SpA, Padova, 2006.
- [52] E. Fiorese, F. Bonollo, E. Battaglia, and G. Cavaliere, "Improving Die Casting Processes through Optimization of Lubrication," International Journal of Cast Metals Research, vol. 30, no. 1, pp. 6-12, 2017. DOI: 10.1080/13640461.2016.1162387
- [53] S. Asthana, "Innovative die lubricant trends for evolving productivity and process requirements". NADCA Die casting Cong., 2013.
- [54] L. Andreoni, M. Casè, and G. Pomesano. Lubrificazione della cavità dello stampo, quaderni della colata a pressione delle leghe di alluminio, quaderno Nr. 7, 1^ edizione, 1996. Brescia, Edimet., 1996.
- [55] BERTHOLD, J., VAN DER STEEN, S., KRUGMANN, J., & RüHMANN, H. R. (2004). Profitabler Spritzgiessen mit Stickstoff oder Wasser?. Kunststoffe, 94(9), 203-207.
- [56] KALLIEN, L. H., WEIDLER, T., HERMANN, C., & STIELER, S. U. (2006). Druckgussteile mit funktionalen Hohlräumen durch Gasinjektion. Giesserei, 93(11).
- [57] Kallien, L. H. (2009). Using gas injection in high pressure die casting technology. Paper presented at the 113th Metalcasting Congress, Las Vegas, Nevada.
- [58] Kallien, L. H., Weidler, T., Hermann, C., Stieler, U., Kallien, L., Weidler, T., ... & Kunststoff, S. (2006). Pressure die castings with functional cavities produced by gas injection. Giessereiforschung, 58(4), 2-9.
- [59] Kim, E., Lee, K., & Moon, Y. (2000). A feasibility study of the partial squeeze and vacuum die casting process. Journal of Materials Processing Technology, 105(1-2), 42-48.
- [60] Thirugnanam, M. (2013). Modern high pressure die-casting processes for aluminium castings. Paper presented at the Transaction of Indian Foundry Congress.
- [61] De Cicco, M. P., Li, X., & Turng, L.-S. (2009). Semi-solid casting (SSC) of zinc alloy nanocomposites. Journal of Materials Processing Technology, 209(18-19), 5881-5885.
- [62] Lee, J. K., Kim, S. K., & Lee, Y. C. (2008). Development of Novel Hot Chamber Rheo-Diecasting Process. Solid State Phenomena, 141-143, 191-194. doi:10.4028/www.scientific.net/SSP.141-143.191
- [63] Lumley, R., O’Donnell, R., Gunasegaram, D., & Givord, M. (2007). Heat treatment of high-pressure die castings. Metallurgical and Materials Transactions A, 38(10), 2564-2574.
- [64] Kasprzak, W., Sokolowski, J., Yamagata, H., Aniolek, M., & Kurita, H. (2011). Energy efficient heat treatment for linerless hypereutectic Al-Si engine blocks made using vacuum HPDC process. Journal of Materials Engineering and Performance, 20(1), 120-132.
- [65] Changhua (Joshua) Huang, W. B. (2014). Venting Design and Process Optimization of Die Casting Process for Structural components - Part II Venting Design and Process Optimizationn. Paper presented at the Die casting Congress & Tabletop.
- [66] Lumley, R. (2011). Progress on the heat treatment of high pressure die castings Fundamentals of aluminium metallurgy (pp. 262-303): Elsevier.
- [67] ZHANG, S., WEI, X., YU, W., LIAN, Z., & ZHAO, H. (2015). Microstructural Characterization of Zinc Alloy ZA27 with Modification and Heat Treatments.
- [68] Kallien, L. H., & Leis, W. (2011). Ageing of Zink Alloys. Giessereiforschung including CD ROM, 63(1), 2.
- [69] Babić, M., Ninković, R., Mitrović, S., & Bobić, I. (2007). Influence of heat treatment on tribological behavior of Zn-Al Alloys. Paper presented at the Proceedings of 10th International Conference on Tribology, SERBIATRIB.
- [70] Bobic, B., Bajat, J., Acimovic-Pavlovic, Z., Rakin, M., & Bobic, I. (2011). The effect of T4 heat treatment on the microstructure and corrosion behaviour of Zn27Al1. 5Cu0. 02Mg alloy. Corrosion Science, 53(1), 409-417.
- [71] Liu, Y., Li, H.-y., Jiang, H.-f., & Lu, X.-c. (2013). Effects of heat treatment on microstructure and mechanical properties of ZA27 alloy. Transactions of Nonferrous Metals Society of China, 23(3), 642-649. doi:https://doi.org/10.1016/S1003-6326(13)62511-X.
- [72] Choudhury, P., Das, K., & Das, S. (2005). Evolution of as-cast and heat-treated microstructure of a commercial bearing alloy. Materials Science and Engineering: A, 398(1), 332-343. doi:https://doi.org/10.1016/j.msea.2005.03.098.
- [73] Michalik, R., & Tomaszewska, A. (2014). Influence of Heat Treatment on the Hardness of ZnAl22Cu3 Alloy. Solid State Phenomena, 212, 35-38. doi:10.4028/www.scientific.net/SSP.212.35.
- [74] Prasad, B. K., Patwardhan, A. K., & Yegneswaran, A. H. (1996). Influence of heat treatment parameters on the microstructure and properties of some zinc-based alloys. Journal of Materials Science, 31(23), 6317-6324. doi:10.1007/bf00354455
- [75] Kumar, V., & Madan, J. (2017). A system for computer-aided gating design for multi-cavity die-casting dies. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 231(11), 1983-1999.
- [76] Renukananda, K. H., & Ravi, B. (2016). Multi-Gate Systems in Casting Process: Comparative Study of Liquid Metal and Water Flow. Materials and Manufacturing Processes, 31(8), 1091-1101. doi:10.1080/10426914.2015.1037911
- [77] Wu, S., Lee, K., & Fuh, J. (2002). Feature-based parametric design of a gating system for a die-casting die. The international journal of advanced manufacturing technology, 19(11), 821-829.
- [78] Uchida, M. (2009). Development of vacuum die-casting process. China Foundry, 6(2), 137-144.
-[79] fondarex.com. Retrieved from https://www.fondarex.com/
-[80] Zyska, A., Konopka, Z., Łągiewka, M., & Nadolski, M. (2015). Porosity of Castings Produced by the Vacuum Assisted Pressure Die Casting Method. Archives of foundry engineering, 15(1), 125-130. - [81] NOURI, B. A. (2004). Analysis of vacuum venting in Die Casting.
- [82] HU, B., XIONG, S., Murakami, M., Matsumoto, Y., & Ikeda, S. Study on vacuum die casting process of aluminum alloys.
-[83] Wang, X., Zhu, S., Easton, M. A., Gibson, M. A., & Savage, G. (2014). Heat treatment of vacuum high pressure die cast magnesium alloy AZ91. International Journal of Cast Metals Research, 27(3), 161-166. - [84] Niu, X., Hu, B., Pinwill, I., & Li, H. (2000). Vacuum assisted high pressure die casting of aluminium alloys. Journal of Materials Processing Technology, 105(1-2), 119-127.
-[85] Cao, H., Hao, M., Shen, C., & Liang, P. (2017). The influence of different vacuum degree on the porosity and mechanical properties of aluminum die casting. Vacuum, 146, 278-281.
-[86] Li, S.-y., Li, D.-j., Zeng, X.-q., & Ding, W.-j. (2014). Microstructure and mechanical properties of Mg–6Gd–3Y–0.5 Zr alloy processed by high-vacuum die-casting. Transactions of Nonferrous Metals Society of China, 24(12), 3769-3776. - [87] Li, X.-b., Xiong, S., & Guo, Z.-p. (2016). Improved mechanical properties in vacuum-assist high-pressure die casting of AZ91D alloy. Journal of Materials Processing Technology, 231, 1-7.
- [88] Siederslebnen, M. (2003). Vacuum Die‐Casting of Magnesium Parts with High Pressure. Magnesium-Alloys and Technology, 45-55.
- [89] Hu, B., Xiong, S., Masayuki, M., Yoshihide, M., & Shingo, I. (2006). Experimental study of vacuum die casting process of AZ91D magnesium alloy. Magnesium Technology 2006, 51-55.
- [90] Bar-Meir, G., Eckert, E., & Goldstein, R. (1996). Pressure die casting: A model of vacuum pumping. Journal of Manufacturing Science and Engineering, 118(2), 259-265.
- [91] Jin, C. K., Jang, C. H., & Kang, C. G. (2015). Vacuum die casting process and simulation for manufacturing 0.8 mm-thick aluminum plate with four maze shapes. Metals, 5(1), 192-205.
- [92] Yoon, J., Kim, S., Yim, Y., & Park, J. (2008). Numerical simulation of molten metal flow under vacuum condition in high pressure and low pressure die casting process. International Journal of Cast Metals Research, 21(1-4), 299-303.
- [93] Wang, L. (2007). Mathematical modelling of air evacuation in die casting process via CASTvac and other venting devices. International Journal of Cast Metals Research, 20(4), 191-197.
- [94] Wang, Q.-l., & Xiong, S.-m. (2015). Effect of multi-step slow shot speed on microstructure of vacuum die cast AZ91D magnesium alloy. Transactions of Nonferrous Metals Society of China, 25(2), 375-380. doi:https://doi.org/10.1016/S1003-6326(15)63613-5.
- [95] Otarawanna, S., Gourlay, C. M., Laukli, H. I., & Dahle, A. K. (2009). Microstructure formation in high pressure die casting. Transactions of the Indian Institute of Metals, 62(4), 499-503. doi:10.1007/s12666-009-0081-2.
- [96] Li, X.-B., Xiong, S.-M., & Guo, Z.-P. (2016). Characterization of the Grain Structures in Vacuum-Assist High-Pressure Die Casting AM60B Alloy. Acta Metallurgica Sinica (English Letters), 29(7), 619-628. doi:10.1007/s40195-016-0430-1.
-[97] Wang, Q.-l., & Xiong, S.-m. (2014). Vacuum assisted high-pressure die casting of AZ91D magnesium alloy at different slow shot speeds. Transactions of Nonferrous Metals Society of China, 24(10), 3051-3059. - [98] Bishenden, C. J. H. W. (2014). venting design and process optimization of die casting process for structural components - Part I Venting efficiency analysis of die casting process. Die casting Engineer.
- [99] Dr.Christophe Bagnoud, R. B. Die evacuation: Valve or chill vent. VDS/SA Vacuum Die-casting service, Montreux, Switzerland. Retrieved from http://www.soundcastproject.eu/files/2013/10/Evacuation_performance_of_a_ProVac_vacuum_valve_and_a_chill-vent.pdf
- [100] Wang, L., Gershenzon, M., Nguyen, V., & Savage, G. (2005). An Innovative Device for Vacuum and Air Venting. CastExpo, 5, 16-19.
- [101] Wang, L., Gershenzon, M., Nguyen, V., & Savage, G. (2007). Air evacuation and metal solidification with varied profiles of chill surfaces. Paper presented at the 111th Metalcasting Congress.
-[102] SA, V. (2018). PROVAC® ULTRA EASY VALVES. Retrieved from http://www.vdssa.ch/provac-ultra-easy/
-[103] corp., G. D. c. Process Controls. Retrieved from http://www.gibbsdc.com/us/quality/process_control.htm
-[104] Changhua (Joshua) Huang, W. B. (2015). Experimental investigation into leakage of die casting die for vacuum venting process. Paper presented at the Die casting Congress & Exposition. - [105] Huang, J. (2016). Vacuum Die Casting Process Design. Retrieved from https://www.linkedin.com/pulse/vacuum-die-casting-process-design-joshua-huang/
- [106] Emmenegger, J. (2016). Innovations in Vacuum Die Casting: Vacuum Technology for High Quality Die Casting Parts. Fondarex.
9. 著作権:
- This material is "Steven Richard Pires de Oliveira"'s paper: Based on "High Pressure Die Casting of Zamak alloys".
- Paper Source: [There is no DOI URL, ResearchGate URL : https://repositorio-aberto.up.pt/bitstream/10216/113790/2/276778.pdf]
This material was created to introduce the above paper, and unauthorized use for commercial purposes is prohibited.
Copyright © 2025 CASTMAN. All rights reserved.