1. 概要:
- タイトル: Thin-walled and large-sized magnesium alloy die castings for passenger car cockpit: Application, materials, and manufacture
- 著者: Lei Zhan, Yu-meng Sun, Yang Song, Chun-hua Kong, **Kai Ma, Bai-xin Dong, Hong-yu Yang, Shi-li Shu, および *Feng Qiu
- 発行年: 2024年
- 発行学術誌/学会: CHINA FOUNDRY Vol. 21 No. 5 September 2024
- キーワード: Mg alloys; thin wall; large size; automotive part; die casting (Mg合金、薄肉、大型、自動車部品、ダイカスト)
2. 研究背景:
- 研究テーマの社会的/学術的背景: エネルギー消費を効果的に削減し、航続距離を伸ばすために、テスラに代表される新エネルギー車は、自動車における統合マグネシウム(Mg)合金ダイカスト技術の応用を大きく促進しました。以前は、自動車、特に自動車のコックピット部品へのMg合金の応用は非常に広範囲でしたが、比較的コストが高いため、しばらくの間ほぼ姿を消し、自動車用Mg合金部品の応用技術に関する情報損失をある程度引き起こしました。自動車技術の急速な発展は、従来の自動車部品と比較して、より高い自動車部品の要求につながりました。したがって、部品自体、またはMg合金材料とダイカストプロセスは、ますます大きな課題に直面しており、アップグレードが必要です。さらに、高い統合特性により、大型および薄肉の自動車部品へのMg合金ダイカスト技術の応用は、固有の利点があり、緊急に拡大する必要があります。実際、高度なMg合金と新しい製品構造を探索し、ダイカストプロセスを最適化する必要があります。
- 既存研究の限界: 論文では既存研究の明確な限界を直接的に言及していませんが、序論で「causing a certain degree of information loss in the application technology of Mg alloy parts in automobiles(自動車用Mg合金部品の応用技術に関する情報損失をある程度引き起こした)」と述べており、マグネシウム合金部品の応用技術情報の不足を間接的に示唆しています。
- 研究の必要性: 本稿では、乗用車コックピットにおける薄肉大型ダイカストMg合金部品の開発状況と、対応する材料選択方法、ダイカストプロセス、金型設計技術を要約し、分析します。さらに、この研究は、研究者が自動車コックピットにおける薄肉大型ダイカストMg合金部品の製造に関する包括的な理解を確立するのに役立ちます。また、自動車部品のダイカストの高い要求を満たすために、包括的な性能が向上した新しいMg合金と新しいプロセスを開発するのに役立ちます。
3. 研究目的および研究課題:
- 研究目的: 本研究の目的は、乗用車コックピットに使用される薄肉大型ダイカストMg合金部品の開発状況、材料選択方法、ダイカストプロセス、および金型設計技術を分析および要約することです。最終的には、研究者にこの分野に関する包括的な理解を提供し、将来の自動車部品の高性能ダイカストの要求を満たす新しいMg合金とプロセスの開発を支援することを目指しています。
- 核心となる研究課題: 論文に明示的な研究課題は示されていませんが、研究目的から、以下の核心となる課題を導き出すことができます。
- 乗用車コックピット部品の中で、薄肉大型Mg合金ダイカストに適した部品は何か、また各部品の適用状況はどのようになっているか?
- 薄肉大型Mg合金ダイカスト部品に要求される材料特性は何か、また市販のMg合金の中で適切な材料は何か?
- 薄肉大型Mg合金ダイカスト部品の製造に適したダイカストプロセスと条件は何か?
- 薄肉大型Mg合金ダイカスト部品の品質を確保するための金型設計上の考慮事項は何か?
- 研究仮説: 論文に明示的な研究仮説はありません。
4. 研究方法論
- 研究設計: 本研究は、特定の研究設計というよりも、レビュー論文(Review article)の形式をとっています。既存の文献および研究資料を総合的に分析し、薄肉大型Mg合金ダイカスト部品の技術動向と主要な課題を分析します。
- データ収集方法: 主に学術論文、技術報告書、産業資料などの公開された文献情報を収集して分析します。特定の実験データ収集やアンケート調査などは実施していません。
- 分析方法: 収集された文献情報に基づいて、技術動向分析、材料特性比較分析、プロセス技術分析、金型設計技術分析などを実施します。定量的なデータ分析よりも、技術的な内容の分析、比較、要約に重点を置いています。
- 研究対象および範囲: 研究対象は、乗用車コックピット部品の中でも、薄肉大型Mg合金ダイカスト部品に焦点を当てています。具体的には、シートフレーム、CCB(クロスカービーム)、センターコンソールフレーム、ドアインナーなどの部品を含みます。研究範囲は、材料選定、ダイカストプロセス、金型設計、および表面処理技術を網羅しています。
5. 主な研究成果:
- 核心となる発見事項:
- 薄肉大型Mg合金ダイカスト部品は、自動車コックピットの軽量化に効果的なソリューションであり、特に新エネルギー車分野で重要性が増しています。
- 自動車コックピット部品の中で、シートフレーム、CCB、センターコンソールフレームはMg合金ダイカスト技術の適用が比較的成熟段階にあり、ドアインナーやリアテールゲート部品へと適用範囲が拡大しています。
- AMシリーズ合金(AM50、AM60)は、現在自動車コックピットダイカスト部品に最も広く使用されている材料ですが、より高い機械的特性を持つMg合金への要求が高まっています。Mg-REシリーズ合金は優れた高温特性を持ちますが、高コストが欠点です。
- ダイカストプロセス条件と金型設計は、薄肉大型Mg合金ダイカスト部品の品質に大きな影響を与え、最適化された設計とプロセス制御が重要です。特に、薄肉部品の場合、不良が発生しやすいため、綿密な工程管理が必要です。
- 真空ダイカスト(Vacuum-assisted HPDC)は、Mg合金ダイカスト部品の気孔率(Porosity)を低減し、機械的特性を向上させる効果的な方法です。
- 表面処理は、Mg合金部品の耐食性確保に不可欠であり、様々な表面処理技術(化成処理、アルマイト処理など)が適用可能です。
- 統計的/定性的分析結果:
- 様々な市販Mg合金(AZ91、AM50、AM60、WE43、WE54)の材料特性(YS、UTS、Elongation)を比較分析し、各合金の長所と短所、および適用分野を提示しています(Table 1, 2, 3)。
- ダイカストプロセス変数(射出速度、金型温度、圧力など)が部品品質に及ぼす影響を分析し、最適なプロセス条件設定の重要性を強調しています。
- 金型設計要素(die cavity、gating system、runner、gate、ribなど)が部品の成形性と品質に及ぼす影響を分析し、最適な金型設計ソリューションを提示しています。
- 真空ダイカストと通常のHPDCのLA42合金鋳造時の気孔分布と機械的特性を比較分析し、真空ダイカストの効果を実証しています(Fig. 11)。
- データ解釈:
- Mg合金は、軽量性、剛性、強度などの優れた特性を持ち、自動車部品の軽量化に貢献できますが、低い伸び、耐食性、高コストなどの欠点も持っています。
- 薄肉大型Mg合金ダイカスト部品の製造を成功させるためには、材料選定、プロセス最適化、金型設計、表面処理など、すべての要素を総合的に考慮する必要があります。
- 技術開発とコスト削減を通じて、Mg合金ダイカスト部品の自動車への適用範囲をさらに拡大できると期待されます。
- 図表名リスト: (韓国語の要約と同じ)
- Fig. 1: First high-volume one-piece die cast Mg alloy CCB
- Fig. 2: Exploded view of the center console with conventional structure
- Fig. 3: Application of Mg alloys center console frame in automobile
- Fig. 4: Traditional seat back frame structure
- Fig. 5: Traditional seat cushion frame structure
- Fig. 6: Seat frame consisting of 5 Mg die casting parts
- Fig. 7: Images showing Mg alloy seat frame applications in 2015 Mercedes-Benz SLK seat
- Fig. 8: Typical Mg alloy seat back frame
- Fig. 9: Prototype of Mg alloy door inner die casting
- Fig. 10: Schematic of a cold chamber die-casting machine
- Fig. 11: Comparison of the LA42 alloy casting of HPDC and vacuum-assisted HPDC
- Fig. 12: Typical redundant materials on the part of Mg alloy die casting
- Fig. 13: Surface treatment process flow for Mg alloy die casting parts
- Fig. 14: Surface morphologies of AZ31 Mg alloy after anodizing at 3 V (a), 10 V (b), 20 V (c), 70 V (d), 80 V (e), and 100 V (f)
- Fig. 15: Typical surface defects of thin wall Mg alloy parts
- Fig. 16: Suggestions for the design of the die casting parts with uniform wall thickness
- Fig. 17: Some suggestions about how to layout the ribs on the die casting parts
- Fig. 18: Gating system of Mg alloy die castings
- Fig. 19: Different runner designs of Mg alloy die casting dies and their impact on filling process
- Fig. 20: Different gate system designs of Mg alloy die casting seat frame
![Fig. 1: First high-volume one-piece die cast Mg alloy CCB: (a) 3D data [18]; (b) CCB for GMC Savana and Chevrolet Express; (c) CCB for Buick LaCrosse [19]](https://castman.co.kr/wp-content/uploads/Fig.-1-First-high-volume-one-piece-die-cast-Mg-alloy-CCB-a-3D-data-18-b-CCB-for-GMC-Savana-and-Chevrolet-Express-c-CCB-for-Buick-LaCrosse-19-1024x334.webp)
![Fig. 2: Exploded view of the center console with conventional structure: (a) the shell itself is outer skin; (b) with a structural component inside [21]](https://castman.co.kr/wp-content/uploads/Fig.-2-Exploded-view-of-the-center-console-with-conventional-structure-a-the-shell-itself-is-outer-skin-b-with-a-structural-component-inside-21-1024x508.webp)
![Fig. 3: Application of Mg alloys center console frame in automobile: (a) Porsche [6]; (b) Volvo; (c) Hongqi](https://castman.co.kr/wp-content/uploads/Fig.-3-Application-of-Mg-alloys-center-console-frame-in-automobile-1024x648.webp)


![Fig. 6: Seat frame consisting of 5 Mg die casting parts: (a) backrest; (b) cushion; (c) assembly [11]](https://castman.co.kr/wp-content/uploads/Fig.-6-Seat-frame-consisting-of-5-Mg-die-casting-parts-a-backrest-b-cushion-c-assembly-11.webp)
![Fig. 10: Schematic of a cold chamber die-casting machine (a), and stages of the shot profile for die casting process showing changes of melt pressure and plunger displacement versus time (b) [91]](https://castman.co.kr/wp-content/uploads/Fig.-10-Schematic-of-a-cold-chamber-die-casting-machine-a-and-stages-of-the-shot-profile-for-die-casting-process-showing-changes-of-melt-pressure-and-plunger-displacement-versus-time-b-91-1024x425.webp)
![Fig. 17: Some suggestions about how to layout the ribs on the die casting parts [127]](https://castman.co.kr/wp-content/uploads/Fig.-17-Some-suggestions-about-how-to-layout-the-ribs-on-the-die-casting-parts-127-1024x607.webp)
![Fig. 19: Different runner designs of Mg alloy die casting dies and their impact on filling process: (a) Y shape runner; (b) T shape runner; (c) radiation shape runner; (d) tracer particles during the filling simulation of the Y shape runner; (e) tracer particles during the filling simulation of the T shape runner [125]](https://castman.co.kr/wp-content/uploads/Fig.-19-Different-runner-designs-of-Mg-alloy-die-casting-dies-and-their-impact-on-filling-process-1024x606.webp)
![Fig. 20: Different gate system designs of Mg alloy die casting seat frame: (a) [134] and (b) [29] for backrest; (c) and (d) for cushion [25]](https://castman.co.kr/wp-content/uploads/Fig.-20-Different-gate-system-designs-of-Mg-alloy-die-casting-seat-frame.webp)
6. 結論および考察:
- 主な研究成果の要約: 新エネルギー車の普及は、軽量化技術の発展を促進し、Mg合金ダイカスト技術は、多くの軽量化技術において望ましいものです。比較的高い統合性により、ダイカスト技術は、多数の小型部品を統合して薄肉大型部品を形成するのに適しており、部品の軽量化に大きな影響を与えます。技術的には、適切な部品、Mg合金材料の選択、ダイカストプロセス、およびダイカスト金型の設計は、最終部品の品質に大きな影響を与えます。関連する研究を通じて、以下の結論を得ることができました。(結論は韓国語の要約と同じで、セクション5.主な研究成果 - 核心となる発見事項ですでに提供されています。)
- 学術的意義: 本研究は、自動車コックピットにおける薄肉大型Mg合金ダイカスト部品の応用に関する包括的な技術動向分析を提供し、今後の研究開発の方向性設定に貢献できます。特に、材料、プロセス、金型設計など多角的な側面から技術的課題と解決策を提示することで、学術的価値を高めています。
- 実務的示唆: 本研究は、自動車部品の設計および製造分野の実務者にとって、Mg合金ダイカスト技術の応用に関する有用な情報を提供します。特に、薄肉大型部品の設計、材料選定、プロセス条件設定、金型設計に関する具体的なガイドラインを提示することで、実務適用可能性を高めています。
- 研究の限界: 本研究は、文献研究に基づいたレビュー論文であり、特定の合金またはプロセスに関する詳細な実験的検証が不足しています。また、コスト、生産性、リサイクル性など経済的側面に関連する分析が不十分です。今後の研究では、これらの限界を補完する詳細な研究が必要です。
7. 今後のフォローアップ研究:
- 今後のフォローアップ研究:
- 低コストおよび高強度Mg-RE合金の開発研究
- 薄肉大型Mg合金ダイカスト部品の性能向上研究(強度、伸び、耐食性、疲労特性など)
- ダイカストプロセス最適化および欠陥発生メカニズム解明研究(気孔、ESCなど)
- Mg合金ダイカスト部品の統合設計および製造技術研究(部品点数削減、組立工程簡素化)
- Mg合金ダイカスト部品のリサイクル技術開発研究
- さらなる探求が必要な領域:
- Mg合金ダイカスト部品の疲労特性および耐久性評価
- Mg合金ダイカスト部品のクリープ特性および高温信頼性評価
- Mg合金ダイカスト部品の衝撃特性および安全性評価
8. 参考文献:
- [1] Polmear I J. Magnesium alloys and applications. Materials Science and Technology, 1994, 10(1): 1-16. https://doi. org/10.1179/mst.1994.10.1.1.
- [2] Eliezer D, Aghion E, Froes F H. Magnesium science, technology and applications. Advanced Performance Materials, 1998, 5: 201-212. https://doi.org/10.1023/A:1008682415141.
- [3] Wang G G, Weiler J P. Recent developments in highpressure die-cast magnesium alloys for automotive and future applications. Journal of Magnesium and Alloys, 2023, 11(1): 78-87. https://doi.org/10.1016/j.jma.2022.10.001.
- [4] Tan J, Ramakrishna S. Applications of magnesium and its alloys: A review. Applied Science, 2021, 11(5): 6861. https://doi. org/10.3390/app11156861.
- [5] Luo A A. Applications: Aerospace, automotive and other structural applications of magnesium. In: Fundamentals of Magnesium Alloy Metallurgy, Elsevier: Amsterdam, The Netherlands, 2013: 266-316. https://doi.org/10.1533/9780857097293.266.
- [6] Liu B, Yang J, Zhang X Y, et al. Development and application of magnesium alloy parts for automotive OEMs: A review. Journal of Magnesium and Alloys, 2023,11(1): 15-47. https://doi. org/10.1016/j.jma.2022.12.015.
- [7] Westengen H, Rashed H M M A. Magnesium alloys: Properties and applications. Reference Module in Materials Science and Materials Engineering, 2016: 1-9. 10.1016/B978-0-12-803581- 8.02568-6.
- [8] Kim S K, Yoo H J, Kim Y J. Research strategy for AM60 magnesium steering wheel. Magnesium Technology 2002, 2002: 247-254.
- [9] Kawase Y, Shinto H. Development of magnesium steering wheel. SAE: International Congress and Exposition, Detroit, Michigan, USA, 1991: 910549. https://doi.org/10.4271/910549.
- [10] Abate M, Willman M. Use of cast magnesium back frames in automotive seating. 2005 SAE World Congress, Detroit, Michigan, USA, 2005: 2005-1-0723. https://doi. org/10.4271/2005-01-0723.
- [11] Hector B, Heiss W. Magnesium die castings as structural members in the integral seat of the new Mercedes-Benz roadster. 1990 SAE International Congress and Exposition, Detroit, Michigan, USA, 1990: 900798. https://doi. org/10.4271/900798.
- [12] Cui X P, Zhang Y X, Liu H F, et al. Development and application of magnesium alloy seat back for passenger cars. Foundry, 2022, 71(5): 637-644. (In Chinese)
- [13] Gao Y K, Gao D W, Gao Y H. A study on magnesium alloy substitution design and analysis for automotive seat back frame. Advanced Materials Research, 2011, 156-157: 245-251. https://doi.org/10.4028/www.scientific.net/AMR.156-157.245.
- [14] Li N Y, Chen X M, Hubbert T, et al. 2005 Ford GT magnesium instrument panel cross car beam. 2005 SAE World Congress, Detroit, Michigan, USA, 2005: 2005-01-0341. https://doi. org/10.4271/2005-01-0341.
- [15] Fan S, Wang X, Wang G G, et al. Applications of high-pressure die casting (HPDC) magnesium alloys in industry. Magnesium Alloys-processing, Potential and Applications, IntechOpen, 2023: 15. http://dx.doi.org/10.5772/intechopen.110494.
- [16] Kulekci M K. Magnesium and its alloys applications in automotive industry. International Journal of Advance Manufacture Technology, 2008, 39: 851-865. https://doi.org/10.1007/s00170- 007-1279-2.
- [17] Ma Q. Study of numerical simulation and design of die casting mould for magnesium vehicle parts. Master’s Dissertation, Harbin: Harbin University of Science and Technology, 2005. (In Chinese)
- [18] Luo A A. Magnesium casting technology for structural applications. Journal of Magnesium and Alloys, 2013, 1(1): 2-22. https:// doi.org/10.1016/j.jma.2013.02.002.
- [19] Nehan M, Maloney R. Magnesium AM60B instrument panel structure for crashworthiness FMVSS 204 and 208 compliance. 1996 SAE international Congress & Exposition, Detroit, Michigan, USA, 1996: 960419. https://doi.org/10.4271/960419.
- [20] Jiang J. Design and analysis of Mg-Al alloy beam. Commercial Vehicle, 2022, 12: 84-85+100. https://doi.org/10.20042/ j.cnki.1009-4903.2022.12.003. (In Chinese)
- [21] Schmiedel I, Winklbauer D M, Pfeufer L. Interior concept with light centre console. ATZ Worldwide, 2015, 117: 24-27. https:// doi.org/10.1007/s38311-015-0169-8.
- [22] Powell B R, Luo A A. Krajewski P E. 7-magnesium alloys for lightweight powertrains and automotive bodies. Advanced Materials in Automotive Engineering, 2012: 150-209. https://doi. org/10.1533/9780857095466.150.
- [23] Li W, Kang S L, Wang H M. Based on the lightweight design of an electric vehicle console. Auto Sci-Tech., 2020, 3: 76-83. https://doi.org/10.3969/j.issn.1005-2550.2020.03.015. (In Chinese)
- [24] D’Errico F, Tauber M, Just M. Magnesium alloys for sustainable weight-saving approach: A brief market overview, new trends, and perspectives. Current Trends in Magnesium (Mg) Research, 2022: 1-33. https://doi.org/10.5772/intechopen.102777.
- [25] Ko Y J, Kim J J, Park S C, et al. Module design concept for lightweight automotive seats. Magnesium: Proceedings of the 6th International Conference Magnesium Alloys and Their Applications, Shenyang, China, 2005: 924-929. https://doi. org/10.1002/3527603565.ch143.
- [26] Ren W, Li D P, Wang Z W, et al. Design of magnesium alloy seating riser. In: Proc. 2023 Chongqing Foundry Annual Conference, Chongqing, China, 2023: 367-370. https://doi. org/10.26914/c.cnkihy.2023.009736. (In Chinese)
- [27] Polavarapu S. Topology and free-size optimization with multiple loading conditions for light weight design of die cast automotive backrest frame. Master’s Dissertation, Clemson, South Carolina, USA: Clemson University, 2008: 414. https://open.clemson.edu/ all_theses/414.
- [28] Fantetti N, Szczesniak M. High ductility magnesium seat back structure. 1994 SAE International Congress & Exposition, Detroit, Michigan, USA, 1994: 940404. https://doi.org/10.4271/940404.
- [29] Long Z G, Zhang L, Xing X L. Magnesium alloy frame for car seat. SAECCE2020, 2020, 2: 51-54. https://doi.org/10.26914/ c.cnkihy.2020.023532. (In Chinese)
- [30] Brambilla S, Perotti P. Die casted magnesium front seat frame: An application for small and medium size cars. 1997 SAE International Congress and Exposition, Detroit Michigan, USA, 1997: 970323. https://doi.org/10.4271/970323.
- [31] Weiler J P, Sweet C, Adams A, et al. Next generation magnesium liftgate-utilizing advanced technologies to maximize mass reduction in a high volume vehicle application. In: Proceedings of the 2016 IMA World Magnesium Conference, Rome, Italy, 2016.
- [32] Blanchard P J, Bretz G T, Subramanian S, et al. The application of magnesium die casting to vehicle closures. 2005 SAE World Congress, Detroit Michigan, USA, 2005: 2005-01-0338. https:// doi.org/10.4271/2005-01-0338.
- [33] Weiler J J. A review of magnesium die-castings for closure application. Journal of Magnesium and Alloys, 2019, 7: 297-304. https://doi.org/10.1016/j.jma.2019.02.005.
- [34] Jekl J, Auld J, Sweet C, et al. Development of a thin-wall magnesium side door inner panel for automobiles. In: Proceedings of the 2015 IMA World Magnesium Conference, Detroit Michigan, USA, 2015.
- [35] Jonason P, Nilsson P, Isacsson M. MAGDOOR-magnesium in structural application. SAE International Body Engineering Conference and Exposition, Detroit Michigan, USA, 1999: 1999- 01-3198. https://doi.org/10.4271/1999-01-3198.
- [36] Pan F S, Yang M B, Chen X H. A review on casting magnesium alloys: Modification of commercial alloys and development of new alloys. Journal of Materials Science & Technology, 2016, 32(12): 1211-1221. http://dx.doi.org/10.1016/j.jmst.2016.07.001.
- [37] Kubásek J, Dvorský D, Čavojský M, et al. WE43 magnesium alloy-material for challenging applications. Kovove Material, 2019, 57(3): 159-165. https://doi.org/10.4149/km_2019_3_159.
- [38] Maltais A, Dube D, Fiset M, et al. Improvements in the metallography of as-cast AZ91 alloy. Materials Characterization, 2004, 52(2): 103-119. https://doi.org/10.1016/j.matchar.2004.04.002.
- [39] Kiełbus A, Rzychoń T, Cibis R. Microstructure of AM50 die casting magnesium alloy. Journal of Achievements in Materials and Manufacturing Engineering, 2006, 18(1-2): 135-138.
- [40] Chadha G, Allison J E, Jones J W. The role of microstructure on ductility of die-cast AM50 and AM60 magnesium alloys. Metallurgical and Materials Transactions: A, 2007, 38A: 286- 297. https://doi.org/10.1007/s11661-006-9027-z.
- [41] Wang G G, Weiler J P. Recent developments in high-pressure die-cast magnesium alloys for automotive and future applications. Journal of Magnesium and Alloys, 2023, 11(1): 78-87. https:// doi.org/10.1016/j.jma.2022.10.001.
- [42] Park S S, Park Y S, Kim N J. Microstructure and properties of strip cast AZ91 Mg alloy. Metals and Materials International, 2002, 8(6): 551-554. https://doi.org/10.1007/BF03178256.
- [43] Zhao H L, Guan S K, Zheng F Y. Effects of Sr and B addition on microstructure and mechanical properties of AZ91 magnesium alloy. Journal of Material Research, 2007, 22(9): 2423-2429. https://doi.org/10.1557/JMR.2007.0331.
- [44] Candan S, Unal M, Koc E, et al. Effects of titanium addition on mechanical and corrosion behaviours of AZ91 magnesium alloy. Journal of Alloys and Compounds, 2011, 509(5): 1958-1963. https://doi.org/10.1016/j.jallcom.2010.10.100.
- [45] Afsharnaderi A, Malekan M, Emamy M, et al. Microstructure evolution and mechanical properties of the AZ91 magnesium alloy with Sr and Ti additions in the as-cast and as-aged conditions. Journal of Materials Engineering and Performance, 2019, 28: 6853–6863. https://doi.org/10.1007/s11665-019- 04396-2.
- [46] Khomamizadeh F, Naml B, Khoshkhooel S. Effect of rare-earth element additions on high-temperature mechanical properties of AZ91 magnesium alloy. Metallurgical and Materials Transactions: A, 2005, 36A: 3489-3494. https://doi.org/10.1007/s11661-005- 0022-6.
- [47] Cížek L, Greger M, Pawlica L, et al. Study of selected properties of magnesium alloy AZ91 after heat treatment and forming. Journal of Materials Processing Technology, 2004, 157-158: 466-471. https://doi.org/10.1016/j.jmatprotec.2004.07.149.
- [48] Zhu Y L, Liu F Y, Xin R L, et al. Improving mechanical properties of an AZ91 alloy by properly combining aging treatment and torsion deformation. Materials Science & Engineering: A, 2020, 779: 139156. https://doi.org/10.1016/j.msea.2020.139156.
- [49] Ma Y L, Chen Q J, Wang Y, et al. Research progress in casting magnesium alloys of AM family. Materials Reports, 2007, 8: 84-87. (In Chinese)
- [50] Tian Z, Song B, Liu Y B. Application and development of AM magnesium alloy in automobile industry. Automobile Technology & Material, 2004, 7: 21-23. (In Chinese)
- [51] Luo A A, Sachdev A K. 12-Applications of magnesium alloys in automotive engineering. Advances in Wrought Magnesium Alloys, 2012, 4: 393-426. https://doi.org/10.1533/9780857093844.3.39.
- [52] Luo A A, Renaud J, Nakatsugawa I, et al. Magnesium castings for automotive applications. JOM, 1995, 47: 28-31. https://doi. org/10.1007/BF03221226.
- [53] He F, Li J P, Yang Z. The microstructure and mechanical properties of as cast AM60-Ti magnesium alloy. Special Casting & Nonferrous Alloys, 2008, 3: 227-229. (In Chinese)
- [54] Zhang S, Song J F, Liao H X, et al. Effect of boron on the grain refinement and mechanical properties of as-cast Mg alloy AM50. Materials, 2019, 12: 1100. https://doi.org/10.3390/ma12071100.
- [55] Mert F, Özdemir A, Kainer K U, et al. Influence of Ce addition on microstructure and mechanical properties of high pressure die cast AM50 magnesium alloy. Transactions of Nonferrous Metals Society of China, 2013, 23(1): 66-72. https://doi.org/10.1016/ S1003-6326(13)62430-9.
- [56] Zhou G B. Effect of Y, Sb and Cd on microstructure and properties of AM50 magnesium alloy. Master’s Dissertation, Nanjing: Nanjing University of Aeronautics and Astronautics, 2012. (In Chinese)
- [57] Sevik H, Acikgoz S, Kurnaz S C. The effect of tin addition on the microstructure and mechanical properties of squeeze cast AM60 alloy. Journal of Alloys and Compounds, 2010, 508(1): 110-114. https://doi.org/10.1016/j.jallcom.2010.07.185.
- [58] Su G H, Zhang L, Cheng L R, et al. Microstructure and mechanical properties of Mg-6Al-0.3Mn-xY alloys prepared by casting and hot rolling. Transactions of Nonferrous Metals Society of China, 2010, 20(3): 383-389. https://doi.org/10.1016/ S1003-6326(09)60150-3.
- [59] Mao Z L, Huang X F, Chuang H J. Effect of neodymium on structure and mechanical properties of AM60 magnesium alloys. China Foundry Machinery & Technology, 2008, 1: 15-17. (In Chinese)
- [60] Wang L G, Zhang B F, Guan S K, et al. Effects of RE, B on microstructure and properties of AM60 alloy. Rare Metal Materials and Engineering, 2007, 36: 59-62. (In Chinese)
- [61] Zander D, Schnatterer C, Kuhnt C. Influence of heat treatments and Ca additions on the passivation behaviour of high-pressure die cast AM50. Materials and Corrosion, 2016, 66(12): 1519- 1528. https://doi.org/10.1002/maco.201508273.
- [62] Hoseini S M B, Malekan M, Emamy M, et al. Microstructure, tensile and bending behaviour of the as-cast AM50 alloy modified with different antimony and copper additions. Materials Science and Technology, 2021, 37(1): 86-102. https://doi.org/10. 1080/02670836.2020.1866847.
- [63] Mert F, Blawert C, Kainer K U, et al. Influence of cerium additions on the corrosion behaviour of high pressure die cast AM50 alloy. Corrosion Science, 2012, 65: 145-151. https://doi. org/10.1016/j.corsci.2012.08.011.
- [64] Itoh D, Terada Y, Sato T. Effect of calcium additions on creep properties of a die-cast AM50 magnesium alloy. Materials Transactions, 2008, 49(9): 1957-1962. https://doi.org/10.2320/ matertrans.MAW200830.
- [65] Teimoory F S, Emamy M, Malekan M. Effect of Pr on the grain refinement and mechanical properties of AM50 alloy in as-cast condition. AIP Conference Proceedings, Kish Island, Iran, 2018, 1920(1): 020016. https://doi.org/10.1063/1.5018948.
- [66] Yang M, Liu Y H, Song Y L. Corrosion and mechanical properties of AM50 magnesium alloy after being modified by 1 wt.% rare earth element gadolinium. Journal of Rare Earths, 2014, 32(6): 558-563. https://doi.org/10.1016/S1002-0721(14)60108-3.
- [67] Zhao P, Wang Q, Zhai C, et al. Effects of strontium and titanium on the microstructure, tensile properties and creep behavior of AM50 alloys. Materials Science and Engineering: A, 2007, 444(1-2): 318-326. https://doi.org/10.1016/j.msea.2006.08.111.
- [68] Fechner D, Maier P, Hort N, et al. Development of a magnesium recycling alloy based on AM50. Materials Science Forum, 2007, 539-543: 108-113. https://doi.org/10.4028/www.scientific.net/ MSF.539-543.108.
- [69] Matsubara H, Ichige Y, Fujita K, et al. Effect of impurity Fe on corrosion behavior of AM50 and AM60 magnesium alloys. Corrosion Science, 2013, 66: 203-210. https:// doi.org/10.1016/ j.corsci.2012.09.021.
- [70] Yang M, Liu Y H, Liu J A, et al. Effect of T6 heat treatment on corrosion resistance and mechanical properties of AM50 magnesium alloy. Materials Research Innovations, 2015, 19: S10-259-S10-264. https:// doi.org/10.1179/143289171 5Z.0000000002160.
- [71] Qiu X, Yang Q, Guan K, et al. Microstructures and tensile properties of Mg-Zn-(Gd)-Zr alloys extruded at various temperatures. Rare Metals, 2017, 36(12): 962-970. https://doi. org/10.1007/s12598-017-0966-x.
- [72] Wang G, Guo C X, Pang S J. Thermal stability, mechanical properties and corrosion behavior of a Mg-Cu-Ag-Gd metallic glass with Nd addition. Rare Metals, 2017, 3: 183-187. https:// doi.org/10.1007/s12598-017-0885-x.
- [73] Jiang H S, Qiao X G, Zheng M Y, et al. The partial substitution of Y with Gd on microstructures and mechanical properties of as-cast and as-extruded Mg-10Zn-6Y-0.5Zr alloy. Materials Characterization, 2018, 135: 96-103. https://doi.org/10.1016/ j.matchar.2017.11.025.
- [74] Yu H H, Li C Z, Xin Y C, et al. The mechanism for the high dependence of the Hall-Petch slope for twinning/slip on texture in Mg alloys. Acta Materialia, 2017, 128: 313-326. https://doi. org/10.1016/j.actamat.2017.02.044.
- [75] Li Y F, Zhang A, Li C M, et al. Recent advances of high strength Mg-RE alloys: Alloy development, forming and application. Journal of Materials Research and Technology, 2023, 26: 2919- 2940. https://doi.org/10.1016/j.jmrt.2023.08.055.
- [76] King J F. Development of practical high temperature magnesium casting alloys. Magnesium Alloys and their Applications, WileyVCH Verlag GmbH & Co. KGaA, 2006: 14-22. https://doi. org/10.1002/3527607552.ch3.
- [77] Nie J F. Precipitation and hardening in magnesium alloys. Metallurgical and Materials Transactions: A, 2012, 43: 3891- 3939. https://doi.org/10.1007/s11661-012-1217-2.
- [78] Kang Y H, Huang Z H, Wang S C, et al. Effect of pre-deformation on microstructure and mechanical properties of WE43 magnesium alloy II: Aging at 250 and 300 °C. Journal of Magnesium and Alloys, 2020, 8(1): 103-110. https://doi.org/10.1016/ j.jma.2019.11.012.
- [79] Li J L, Chen R S, Ma Y Q, et al. Effect of Zr modification on solidification behavior and mechanical properties of Mg-Y-RE (WE54) alloy. Journal of Magnesium and Alloys, 2013, 1(4): 346-351. https:// doi.org/10.1016/j.jma.2013.12.001.
- [80] Gui Y W, Li Q A, Chen J. Effects of Sm content on microstructures and mechanical properties of casting Mg-Y-Nd-Sm-Zr alloys. Materials Research Express, 2018, 5(7): 076515. https:// iopscience.iop.org/article/10.1088/2053-1591/aad07e.
- [81] Li J L, Ma Y Q, Chen R S, et al. Effects of shrinkage porosity on mechanical properties of a sand cast Mg-Y-RE (WE54) alloy. Materials Science Forum, 2013, 747-748: 390-397. https://doi. org/10.4028/www.scientific.net/MSF.747-748.390.
- [82] Zhan L, Sun J, He J G, et al. Research status on the lightweight of the automotive seat. Automobile Parts, 2015, 11: 68-73. 10.19466/j.cnki.1674-1986.2015.11.019. (In Chinese)
- [83] Lee H S, Kim J H, Kang G S, et al. Development of seat side frame by sheet forming of DP980 with die compensation. International Journal of Precision Engineering and Manufacturing, 2017, 18: 115-120. https://doi.org/10.1007/s12541-017-0014-7.
- [84] Oh W J, Lee C M. A study on the sheet forming of the lower seat rail using 1180 TRIP steel. International Journal of Precision Engineering and Manufacturing, 2018, 19: 299-302. https://doi. org/10.1007/s12541-018-0036-9.
- [85] Forsmark J H, Boileau J, Houston D, et al. A microstructural and mechanical property study of an AM50 HPDC magnesium alloy. International Journal of Metalcasting, 2012, 6: 15-26. https://doi. org/10.1007/BF03355474.
- [86] Wang X J, Zhu S M, Easton M A, et al. Heat treatment of vacuum high pressure die cast magnesium alloy AZ91. International Journal of Cast Metals Research, 2014, 27(3): 161-166. https://doi.org/10.1179/1743133613Y.0000000091.
- [87] Suman C. Heat treatment of magnesium die casting alloys AZ91D and AM60B. 1989 SAE International Congress and Exposition, Detroit, Michigan, USA, 1989: 890207. https://doi. org/10.4271/890207.
- [88] Tański1 T, Dobrzański L A, Čížek L. Influence of heat treatment on structure and properties of the cast magnesium alloys. Advanced Materials Research, 2007, 15-17: 491-496. https:// doi.org/10.4028/www.scientific.net/AMR.15-17.491.
- [89] Fu P H, Luo A A, Jiang H Y, et al. Low-pressure die casting of magnesium alloy AM50: Response to process parameters. Journal of Materials Processing Technology, 2008, 205(1-3): 224-234. https://doi.org/10.1016/j.jmatprotec.2007.11.111.
- [90] Luo A A, Sachdev A K, Powell B R. Advanced casting technologies for lightweight automotive applications. China Foundry, 2010, 7(4): 248-254.
- [91] Czerwinski F. Magnesium injection molding. Springer New York, NY, 2008. https://doi.org/10.1007/978-0-387-72528-4.
- [92] Vinarcik E J. High integrity die casting processes. John Wiley & Sons, Inc., New York, 2003.
- [93] Vanli A S, Akdogan A, Sonmez H. Investigation the effects of process parameters on product quality in cold chamber high pressure die casting of magnesium alloys. International Journal of Arts and Sciences, 2010, 3(9): 320-325.
- [94] ASM Handbook Committee. Properties and selection: Nonferrous alloys and special purpose materials. ASM Handbook, 1990, Volume 2. https://doi.org/10.31399/asm. hb.v02.9781627081627
- [95] Aghion E, Moscovitch N, Arnon A. The correlation between wall thickness and properties of HPDC magnesium alloys. Materials Science and Engineering: A, 2007, 447(1-2): 341-346. https:// doi.org/10.1016/j.msea.2006.10.065.
- [96] Woo S H, Han B S, Yoo H J, et al. Development of magnesium seat frames using the vacuum die casting process. Journal of Korean Society for Precision Engineering, 2009, 26: 88-97.
- [97] Uchida M. Development of vacuum die casting process. China Foundry, 2009, 6(2): 137-144.
- [98] Li Z X, Zhang W C, Li D J, et al. Effect of vacuum-assisted die casting on the thermal conductivity and mechanical properties of LA42 magnesium alloy. Special Casting & Nonferrous Alloys, 2023, 43: 590-595. https://doi.org/10.15980/j.tzzz.2023.05.003. (In Chinese)
- [99] Brown Z, Luo A A, Musser M, et al. Development of supervacuum die casting process for magnesium alloys. North American Die Casting Association Transactions, 2009, T09-043: 723-729.
- [100] Yuan J, Zhao B H. Effects of post treatment on deformation of die casting generator bracket. Special Casting & Nonferrous Alloys, 2010, 30: 645-648. (In Chinese)
- [101] Liang C S, Yu L L, Xie Y J. Discussion on the application of trimming die in die casting products. In: Proc. 2023 Chongqing Foundry Annual Conference, Chongqing, 2011: 291-292. https://doi.org/10.26914/c.cnkihy.2023.009736. (In Chinese)
- [102] Sayak R B E E. Investigation of flash-free die casting by overflow design optimization. Master’s Dissertation, Columbus, Ohio, USA: The Ohio State University, 2014.
- [103] Wu W, Huang Z L. The ways to reduce the flashes and improve the accuracy of die casting. Special Casting & Nonferrous Alloys, 1998(Supplement): 43-45. (In Chinese)
- [104] Wu L P, Zhao J J, Xie Y P, et al. Progress of electroplating and electroless plating on magnesium alloy. Transactions of Nonferrous Metals Society of China 2010, 20(supplement 2): s630-s637. https://doi.org/10.1016/S1003-6326(10)60552-3.
- [105] Seifzadeh D, Rajabalizadeh Z. Environmentally-friendly method for electroless Ni-P plating on magnesium alloy. Surface and Coatings Technology, 2013, 218: 119-126. https://doi. org/10.1016/j.surfcoat.2012.12.039.
- [106] Wang Z C, Jia F, Yu L, et al. Direct electroless nickel-boron plating on AZ91D magnesium alloy. Surface & Coatings Technology, 2012, 206(17): 3676-3685. https://doi.org/10.1016/ j.surfcoat.2012.03.020.
- [107] Saji V S. Review of rare-earth-based conversion coatings for magnesium and its alloys. Journal of Materials Research and Technology, 2019, 8(5): 5012-5035. https://doi.org/10.1016/ j.jmrt.2019.08.013.
- [108] Pommiers B S, Frayret J, Uhart A, et al. Determination of the chemical mechanism of chromate conversion coating on magnesium alloys EV31A. Applied Surface Science, 2014, 298: 199–207. https://doi.org/10.1016/j.apsusc.2014.01.162.
- [109] Guo Y, Frankel G S. Characterization of trivalent chromium process coating on AA2024-T3. Surface and Coatings Technology, 2012, 206(19-20): 3895-3902. https://doi. org/10.1016/j.surfcoat.2012.03.046.
- [110] Ogle K, Tomandl A, Meddahi N, et al. The alkaline stability of phosphate coatings I: ICP atomic emission spectroelectrochemistry. Corrosion Science, 2004, 46(4): 979- 995. https://doi.org/10.1016/S0010-938X(03)00182-3.
- [111] Jiang L, Wolpers M, Volovitch P, et al. The degradation of phosphate conversion coatings by electrochemically generated hydroxide. Corrosion Science, 2012, 55: 76-89. https://doi. org/10.1016/j.corsci.2011.10.004.
- [112] Jian S Y, Chu Y R, Lin C S. Permanganate conversion coating on AZ31 magnesium alloys with enhanced corrosion resistance. Corrosion Science, 2015, 93: 301-309. https://doi. org/10.1016/j.corsci.2015.01.040.
- [113] Liang C S, Lv Z F, Zhu Y L, et al. Protection of aluminium foil AA8021 by molybdate-based conversion coatings. Applied Surface Science, 2014, 288: 497-502. https://doi.org/10.1016/ j.apsusc.2013.10.060.
- [114] Dabalà M, Armelao L, Buchberger A, et al. Cerium-based conversion layers on aluminum alloys. Applied Surface Science, 2001, 172: 312-322. https://doi.org/10.1016/S0169- 4332(00)00873-4.
- [115] Rudd A L, Breslin C B, Mansfeld F. The corrosion protection afforded by rare earth conversion coatings applied to magnesium. Corrosion Science, 2000, 42(2): 275-288. https:// doi.org/10.1016/S0010-938X(99)00076-1.
- [116] Rocca E, Juers C, Steinmetz J. Corrosion behavior of chemical conversion treatments on as-cast Mg-Al alloys: Electrochemical and non-electrochemical methods. Corrosion Science, 2010, 52(6): 2172-2178. https://doi.org/10.1016/j.corsci.2010.02.036.
- [117] Zhou W Q, Shan D Y, Han E H, et al. Structure and formation mechanism of phosphate conversion coating on die cast AZ91D magnesium alloy. Corrosion Science, 2008, 50(2): 329-337. https://doi.org/10.1016/j.corsci.2007.08.007.
- [118] Hawke D, Albright A. A phosphate-permanganate conversion coating for magnesium. Metal Finishing, 1995, 93(10): 34-38. https://doi.org/10.1016/0026-0576(96)80428-4.
- [119] Salman S A, Okido M. 8-anodization of magnesium (Mg) alloys to improve corrosion resistance. Corrosion Prevention of Magnesium Alloys, 2013: 197-231. https://doi.org/10.1533/978 0857098962.2.197.
- [120] Blawert C, Dietzel W, Ghali E, et al. Anodizing treatments for magnesium alloys and their effect on corrosion resistance in various environments. Advanced Engineering Materials, 2006, 8(6): 511-533. https://doi.org/10.1002/adem.200500257.
- [121] Salman S A, Mori R, Ichino R, et al. Effect of anodizing potential on the surface morphology and corrosion property of AZ31 magnesium alloy. Materials Transactions, 2010, 51(6): 1109-1113. https://doi.org/10.2320/matertrans.M2009380.
- [122] Wu C S, Zhang Z, Cao F H, et al. Study on the anodizing of AZ31 magnesium alloys in alkaline borate solutions. Applied Surface Science, 2007, 253: 3893-3898. https://doi. org/10.1016/j.apsusc.2006.08.020.
- [123] Chen R S, Lu G D. Design key points and material selection of the magnesium alloy die casting mold. MW Metal Forming, 2011, 3: 26-27. (In Chinese)
- [124] Friedrich H E, Mordike B L. 6 technology of magnesium and magnesium alloys. In: Magnesium Technology, Springer, Berlin, Heidelberg, 2006: 219-430. https://doi.org/10.1007/3-540- 30812-1_6.
- [125] Timelli G, Capuzzi S, Bonollo F. Optimization of a permanent step mold design for Mg alloy castings. Metallurgical and Materials Transactions: B, 2015, 46: 473-484. https://doi. org/10.1007/s11663-014-0197-6.
- [126] Wang J D, Lu C, Ding W J. Key technologies for the design of Mg alloy die casting and die. Special Casting & Nonferrous Alloys, 2002, 2: 24-26+2. https://doi.org/10.15980/ j.tzzz.2002.02.011. (In Chinese)
- [127] Tan G Y. Structure design principles of die-casts for automobile use. Special Purpose Vehicle, 2000, 3: 40-41+47. (In Chinese)
- [128] Renner F, Zenner H. Fatigue strength of die-cast magnesium components. Fatigue & Fracture of Engineering Materials & Structures, 2002, 25: 1157-1168. https://doi.org/10.1046/ j.1460-2695.2002.00607.x.
- [129] Shawki G S A, Kandeil A Y. A review of design parameters and machine performance for improved die casting quality. Journal of Mechanical Working Technology, 1988, 16(3): 315-333. https://doi.org/10.1016/0378-3804(88)90059-9.
- [130] Chavan R, Kulkarni P S. Die design and optimization of cooling channel position for cold chamber high pressure die casting machine. IOP Conference Series: Materials Science and Engineering, 2020, 810: 012017. https://doi.org/10.1088/1757- 899X/810/1/012017.
- [131] Zhao K P. Simulation and optimization of gating system of die casting die for magnesium alloy AM60B part. Die & Mould Industry, 2008, 1: 53-56. https://doi.org/10.16787/ j.cnki.1001-2168.dmi.2008.01.015. (In Chinese)
- [132] Zhang Y W, Cheng T S. Automobile weight lightening and Mg-alloy mold. Automobile Technology & Material, 2003, 11: 1-4. (In Chinese)
- [133] Jadhav A R, Hujare D P, Hujare P P. Design and optimization of gating system, modification of cooling system position and flow simulation for cold chamber high pressure die casting machine. Materials Today: Proceedings, 2021, 46(17): 7175-7181. https://doi.org/10.1016/j.matpr.2020.11.346.
- [134] Han J L. Numerical design of Mg seat frame and its die-casting process optimization. Master’s Dissertation, Chongqing: Chongqing University, 2008. (In Chinese)
9. 著作権表示:
本資料は、Feng Qiuの論文「Thin-walled and large-sized magnesium alloy die castings for passenger car cockpit: Application, materials, and manufacture」に基づいて作成されました。
論文出典: https://doi.org/10.1007/s41230-024-4100-z
本資料は上記の論文に基づいて要約作成されたものであり、商業目的での無断使用は禁止されています。
Copyright © 2025 CASTMAN. All rights reserved.
Thin-walled and large-sized magnesium alloy die castings for passenger car cockpit-Application, materials, and manufactureDownload