Tag Archives: finite element simulation

Fig. 2. (a) Family and shapes of terminals used ((1) spherical, (2) cylinders, (3) L shapes, (4) S shape or cranks, (5) modified cylinders, (6) special shapes); (b) Piece to be studied.

Zamak合金ダイカストプロセスの最適化

本稿は、「Procedia Manufacturing」に掲載された論文「Optimisation of die casting process in Zamak alloys」に基づいています。 1. 概要: 2. 抄録: 鋳造業は、人々の生活に大きな影響を与える世界の主要産業の一つです。ダイカストは、永久金型を使用し、溶融金属を圧力で射出することにより、より短いサイクルでの連続部品生産を可能にするプロセスです。本研究は、多くの鋳造部品がその構成部品に使用されている自動車産業に応用されるダイカストに焦点を当てています。この研究は、自動車部品用のZamak合金で射出される小型部品の品質を最大化するために開発されました。シミュレーションを用いて、ランナーの位置およびガス抜きが改善されました。 3. 緒言: 自動車産業は、安全性と環境問題に関する厳しい法律により、最も要求の厳しい分野の一つです。これにより、排出量の削減、燃費の向上、安全性の強化、性能の向上といった目標を、多くの場合より低コストで達成するための継続的な技術進歩が求められています [1, 2, 3]。品質はこの業界において最も重要な要素です。品質の低い製品は、評判の失墜、傷害、経済的損失といった深刻な結果につながる可能性があります [4]。その結果、総合的品質管理(TQM)のような強固な品質基準と管理哲学が広く導入されています [5, 6, 7]。高圧ダイカストは、再利用可能な鋼製金型を使用して、正確で寸法精度が高く、シャープに定義された、滑らかまたはテクスチャ加工された表面を持つ金属部品、特に非鉄鋳物を高速で生産するための一般的な製造プロセスです [8, 9]。このプロセスでは、溶融金属を高圧で金型に射出します。金型には、適切な充填と凝固を保証し、ガスが逃げることを可能にするために、ランナー、熱システム、ゲート、ベントなどの機能が組み込まれている必要があります。欠陥のない部品を得るためには、温度、圧力、時間を含む多くの変数を精密に制御する必要があります。 4. 研究の概要: 研究トピックの背景: 本研究は、自動車産業における部品品質に対する厳しい要求と、Zamak合金のような合金から小型で複雑な部品を製造するための高圧ダイカストの広範な使用を背景としています。具体的には、欠陥が機能性を損なう可能性のあるコマンドケーブル端子の製造における課題に取り組んでいます。多数の相互作用するプロセスパラメータを持つダイカスト固有の複雑さは、欠陥防止を重要な懸念事項としています。 先行研究の状況: これまでの研究や業界の慣行では、プロセスパラメータが慎重に管理されない場合、ポロシティなどのダイカスト欠陥が一般的であることが認識されています [12]。NADCAのような組織が助言するように、有限要素法(FEM)や数値流体力学(CFD)は、ダイカストプロセスを分析し最適化するための貴重なツールとして認識されています [10]。しかし、特定の部品の形状とそれが金属の流れに与える影響に関する実践的な理解は依然として重要です。研究対象の部品の初期調査では、顕微鏡分析(Fig. 3b)が示すように、主に閉じ込められたガスに起因するマイクロポロシティが明らかになり、金型設計の改善の必要性が示されました。 研究の目的: 本研究の主な目的は、自動車のコマンドケーブルに使用される小型Zamak合金部品の品質を最大化することでした。これは、金型設計を改善し、特にランナーの位置を最適化し、効果的なガス抜きを組み込むことによって達成されることになっていました。また、本研究は、欠陥を引き起こす要因を理解し、これらのタイプのコンポーネントの金型を設計するためのガイドラインを開発するためのツールとしてシミュレーションを使用することも目的としていました。 核心研究: 研究の核心は、鋳造欠陥が発生しやすいことで知られる「拡張H形状」(Fig. 2b)を特徴とする特定のZamak合金端子の高圧ダイカストプロセスの最適化でした。本研究では、シミュレーションを利用して以下を実施しました。 5. 研究方法論 研究計画: 本研究では、シミュレーションに基づく比較研究方法論を採用しました。選択されたZamak端子の既存のダイカストプロセスと金型設計を最初にシミュレーションしてベースラインを確立し、問題領域を特定しました。その後、金型設計の修正(ランナー、ベンティングシステム、スプルー)を概念化しました。これらの修正された設計は、充填プロセスの改善と欠陥の低減における有効性を予測するためにシミュレーションされ、初期設計との比較が可能になりました。 データ収集および分析方法: 有限要素シミュレーションソフトウェア、具体的にはFinite Solutions, Inc.のSOLIDCastおよびFLOWCastが、FLOW3Dの追加サポートを受けて、主要なツールとして使用されました。シミュレーションで使用された主要パラメータ(Table 1)には、溶融Zamak温度(440°C)、金型温度(100°C)、射出速度(5.093 m/s)、射出時間(0.30 s)、凝固時間(0.35 s)が含まれていました。Steel H-13金型材料の境界条件はTable 2に従って定義されました。シミュレーション出力の分析は、金型充填中の流体速度ベクトル(figure 4a)、空気混入、温度分布、キャビテーションポテンシャル、および表面欠陥の濃度などのパラメータに焦点を当てました。さらに、既存の欠陥を観察し特性評価するために、実際の部品に対して顕微鏡分析が行われました(Fig.

Read More

Fig. 2. (a) Family and shapes of terminals used ((1) spherical, (2) cylinders, (3) L shapes, (4) S shape or cranks, (5) modified cylinders, (6) special shapes); (b) Piece to be studied.

Zamak合金ダイカストプロセスの最適化

本稿は、「Procedia Manufacturing」に掲載された論文「Optimisation of die casting process in Zamak alloys」に基づいています。 1. 概要: 2. 抄録: 鋳造業は、人々の生活に大きな影響を与える世界の主要産業の一つです。ダイカストは、永久金型を使用し、溶融金属を圧力で射出することにより、より短いサイクルでの連続部品生産を可能にするプロセスです。本研究は、多くの鋳造部品がその構成部品に使用されている自動車産業に応用されるダイカストに焦点を当てています。この研究は、自動車部品用のZamak合金で射出される小型部品の品質を最大化するために開発されました。シミュレーションを用いて、ランナーの位置およびガス抜きが改善されました。 3. 緒言: 自動車産業は、安全性と環境問題に関する厳しい法律により、最も要求の厳しい分野の一つです。これにより、排出量の削減、燃費の向上、安全性の強化、性能の向上といった目標を、多くの場合より低コストで達成するための継続的な技術進歩が求められています [1, 2, 3]。品質はこの業界において最も重要な要素です。品質の低い製品は、評判の失墜、傷害、経済的損失といった深刻な結果につながる可能性があります [4]。その結果、総合的品質管理(TQM)のような強固な品質基準と管理哲学が広く導入されています [5, 6, 7]。高圧ダイカストは、再利用可能な鋼製金型を使用して、正確で寸法精度が高く、シャープに定義された、滑らかまたはテクスチャ加工された表面を持つ金属部品、特に非鉄鋳物を高速で生産するための一般的な製造プロセスです [8, 9]。このプロセスでは、溶融金属を高圧で金型に射出します。金型には、適切な充填と凝固を保証し、ガスが逃げることを可能にするために、ランナー、熱システム、ゲート、ベントなどの機能が組み込まれている必要があります。欠陥のない部品を得るためには、温度、圧力、時間を含む多くの変数を精密に制御する必要があります。 4. 研究の概要: 研究トピックの背景: 本研究は、自動車産業における部品品質に対する厳しい要求と、Zamak合金のような合金から小型で複雑な部品を製造するための高圧ダイカストの広範な使用を背景としています。具体的には、欠陥が機能性を損なう可能性のあるコマンドケーブル端子の製造における課題に取り組んでいます。多数の相互作用するプロセスパラメータを持つダイカスト固有の複雑さは、欠陥防止を重要な懸念事項としています。 先行研究の状況: これまでの研究や業界の慣行では、プロセスパラメータが慎重に管理されない場合、ポロシティなどのダイカスト欠陥が一般的であることが認識されています [12]。NADCAのような組織が助言するように、有限要素法(FEM)や数値流体力学(CFD)は、ダイカストプロセスを分析し最適化するための貴重なツールとして認識されています [10]。しかし、特定の部品の形状とそれが金属の流れに与える影響に関する実践的な理解は依然として重要です。研究対象の部品の初期調査では、顕微鏡分析(Fig. 3b)が示すように、主に閉じ込められたガスに起因するマイクロポロシティが明らかになり、金型設計の改善の必要性が示されました。 研究の目的: 本研究の主な目的は、自動車のコマンドケーブルに使用される小型Zamak合金部品の品質を最大化することでした。これは、金型設計を改善し、特にランナーの位置を最適化し、効果的なガス抜きを組み込むことによって達成されることになっていました。また、本研究は、欠陥を引き起こす要因を理解し、これらのタイプのコンポーネントの金型を設計するためのガイドラインを開発するためのツールとしてシミュレーションを使用することも目的としていました。 核心研究: 研究の核心は、鋳造欠陥が発生しやすいことで知られる「拡張H形状」(Fig. 2b)を特徴とする特定のZamak合金端子の高圧ダイカストプロセスの最適化でした。本研究では、シミュレーションを利用して以下を実施しました。 5. 研究方法論 研究計画: 本研究では、シミュレーションに基づく比較研究方法論を採用しました。選択されたZamak端子の既存のダイカストプロセスと金型設計を最初にシミュレーションしてベースラインを確立し、問題領域を特定しました。その後、金型設計の修正(ランナー、ベンティングシステム、スプルー)を概念化しました。これらの修正された設計は、充填プロセスの改善と欠陥の低減における有効性を予測するためにシミュレーションされ、初期設計との比較が可能になりました。 データ収集および分析方法: 有限要素シミュレーションソフトウェア、具体的にはFinite Solutions, Inc.のSOLIDCastおよびFLOWCastが、FLOW3Dの追加サポートを受けて、主要なツールとして使用されました。シミュレーションで使用された主要パラメータ(Table 1)には、溶融Zamak温度(440°C)、金型温度(100°C)、射出速度(5.093 m/s)、射出時間(0.30 s)、凝固時間(0.35 s)が含まれていました。Steel H-13金型材料の境界条件はTable 2に従って定義されました。シミュレーション出力の分析は、金型充填中の流体速度ベクトル(figure 4a)、空気混入、温度分布、キャビテーションポテンシャル、および表面欠陥の濃度などのパラメータに焦点を当てました。さらに、既存の欠陥を観察し特性評価するために、実際の部品に対して顕微鏡分析が行われました(Fig.

Read More

Fig. 4: 3D morphology of porosity in HPDC AM60 alloys: (a) overall view of porosities in specimen; (b) a zoom-in area showing four types of porosities, such as gas-shrinkage pore (c), gas-pore (d), net-shrinkage (e), and island-shrinkage (f) [25]

X線マイクロトモグラフィーを用いた高圧ダイカストアルミニウム合金の微細構造特性と分布:レビュー

本入門記事は、”Characteristics and distribution of microstructures in high pressure die cast alloys with X-ray microtomography: A review”([出版社]:China Foundry発行)に基づいて作成されています。 1. 概要: 2. 概要: AlおよびMg合金の高圧ダイカスト(HPDC)は、自動車産業でますます使用されています。鋳造品の微細構造は、鋳造品の機械的特性に決定的な影響を与え、その中で微細構造特性は、微細構造と特性の関係の研究の基礎となります。過去10年間で、HPDC AlおよびMg合金、特に微細孔とα-Feの微細構造特性は、X線マイクロコンピュータ断層撮影(μ-CT)を用いて、二次元(2D)から三次元に研究されてきました。本論文では、HPDC合金の微細構造の3D特性と形成メカニズム、その空間分布、および機械的特性への影響に関する現在の理解の概要を提供します。さらに、HPDC合金における異種微細構造の形成と制御のための今後の研究方向について概説します。 3. 序論: グローバルな工業化は、自動車の軽量化の要求を推進し、複雑な形状のニアネットシェイプ成形、高い生産効率、および低い生産コストという利点を持つAlおよびMg合金高圧ダイカスト(HPDC)部品の使用増加につながっています。HPDCは利点を提供しますが、従来のHPDC部品には、金型充填中の乱流による気孔が含まれていることがよくあります。これらの気孔は、機械的特性に悪影響を及ぼします。高真空ダイカスト(HVDC)技術は、気孔率を低減するために開発されましたが、Feのような不純物元素は依然として脆い金属間化合物を形成し、機械的特性に影響を与える可能性があります。微量合金化と金属間化合物特性の制御は、鋳造特性を最適化するために重要です。従来の2D分析技術は、微細構造の空間分布を明らかにするには限界があります。X線マイクロトモグラフィー(μ-CT)は、強力な3D技術として登場し、HPDC AlおよびMg合金の相特性と形成に関する理解を豊かにしています。本レビューでは、X線マイクロトモグラフィーを使用してHPDC合金の相特性と分布に関する現在の知識を要約し、今後の研究方向を強調します。 4. 研究の概要: 研究テーマの背景: 自動車産業における軽量車両の需要の高まりにより、AlおよびMg合金HPDC部品の使用が必要となっています。これらの鋳造品内の微細構造は、その機械的特性を決定的に決定します。微細構造と特性の関係を理解することは、鋳造性能を最適化するために不可欠です。気孔率と金属間化合物相は、HPDC合金の機械的挙動に影響を与える主要な微細構造の特徴です。 以前の研究状況: アルキメデスの原理、光学顕微鏡(OM)、走査型電子顕微鏡(SEM)などの従来の方法は、2D断面微細構造特性評価を提供していましたが、HPDC合金内の相の空間分布と形態を明らかにするには不十分です。これらの2D技術は、気孔の複雑さと体積を過小評価し、気孔数を過大評価する可能性があります。 研究の目的: 本研究は、X線マイクロコンピュータ断層撮影(μ-CT)を用いて、HPDC AlおよびMg合金の3D微細構造特性に関する現在の理解の包括的な概要を提供することを目的としており、特に微細孔とFeリッチ金属間化合物に焦点を当てています。本レビューでは、これらの微細構造の形成メカニズム、空間分布、および機械的特性への影響を網羅しています。 コアとなる研究: 本レビューの核心は、X線マイクロトモグラフィーを利用して以下を調査した研究を要約することに焦点を当てています。 5. 研究方法論 研究デザイン: 本研究は、X線マイクロトモグラフィーのHPDC AlおよびMg合金の微細構造の特性評価への応用に着目した様々な研究論文の知見を統合したレビュー論文です。 データ収集と分析方法: 本レビューのデータは、X線マイクロトモグラフィーを使用してHPDC AlおよびMg合金の微細構造を研究した出版物の包括的な文献調査を通じて収集されました。分析方法には、選択された出版物からの主要な知見、方法論、および結論を要約および統合することが含まれます。 研究テーマと範囲: 本レビューは、X線マイクロトモグラフィーを使用したHPDC AlおよびMg合金微細構造特性評価の範囲内で、以下のテーマに焦点を当てています。 6. 主な結果: 主な結果: 図の名前リスト: 7. 結論:

Read More

ワイヤアーク積層造形されたH13鋼-銅ハイブリッド部品の界面微細構造と形成メカニズム

この紹介論文は、「Journal of Materials Research and Technology」によって発行された論文「Interface microstructure and evolution mechanism of wire arc additively manufactured H13 steel-copper hybrid components」に基づいています。 1. 概要: 2. 抄録: 積層造形(AM)によって製造されたH13鋼-銅ハイブリッド構造は、特定の高温機械的特性を確保しつつシステムの冷却能力を向上させることができ、高圧ダイカスト金型において広範な応用可能性を示しています。本研究では、ワイヤアーク積層造形を用いて銅基板上にH13鋼を直接堆積させ、界面の微細構造を詳細に調査しました。界面構造の形成および進化メカニズムは、温度場シミュレーションと組み合わせて明らかにされました。界面におけるFe-Cu混合液体は2回の液相分離を経て、Feリッチ島およびCuリッチ島、ならびに分散したCuリッチ粒子を形成しました。冷却中のCuの体積収縮により、少数の気孔が形成されました。微小亀裂は、熱応力の影響と、旧オーステナイト粒界におけるCuリッチ粒子の分布によって引き起こされる高い亀裂感受性に起因すると考えられました。H13-Cu界面における元素分布の急激な変化と温度分布の連続的な変化により、H13の融点より低くCuの融点より高い温度を持つ拡張溶融プールが界面下に形成されました。微小硬さは、界面近傍の狭い範囲(約0.5 mm)でH13側からCu側に向かって徐々に減少しました。ハイブリッド部品の引張試験片は界面から離れたCu側で破断し、その引張強度(221 ± 2 MPa)はCu基板のレベルに達し、界面が良好な接合を形成したことを示しました。 3. 緒言: 単一材料の部品と比較して、多材料ハイブリッド部品は様々な材料の特性を組み合わせることができ、複雑な使用条件下での多様な性能および機能要件を満たすことができます。様々な多材料ハイブリッド構造の中でも、銅-鋼バイメタル部品は、銅の優れた熱伝導性および電気伝導性と、鋼の良好な機械的特性を組み合わせ、非常に高い応用可能性を持つ機能特性の組み合わせを実現します。この優れた包括的な機能特性により、銅-鋼バイメタル部品は航空宇宙、原子力産業、電力、自動車、金型などの産業分野で広く使用されています。銅-鋼ハイブリッド部品の従来の製造プロセスは、主にレーザー溶接、アーク溶接、電子ビーム溶接、拡散接合、爆発圧接などの溶接法です。しかし、これらの溶接法はハイブリッド部品を製造する際に形状および構造設計に限界があります。積層造形(AM)のニアネットシェイプ能力は、部品設計および製造の柔軟性を大幅に向上させます。これは銅-鋼ハイブリッド部品の製造において広範な開発の見通しを示しています。しかし、銅と鋼の間の熱物理的特性の不一致および機械的特性の違いにより、銅-鋼ハイブリッド部品のAMは依然として多くの課題に直面しています。まず、Fe-Cu状態図によれば、FeとCuの間には金属間化合物が存在しません。さらに、固相状態での溶解度は非常に限られています。溶解度およびFe-Cu系に存在する準安定混和ギャップの影響を受け、銅-鋼界面はしばしば液相分離の特性を示し、多くのCuリッチ島およびFe-rich島が分布します。これは機械的特性および疲労特性を損なう可能性があります。第二に、Cuの非常に高い熱伝導率(401 W m⁻¹K⁻¹)のため、熱が急速に放散され、溶融プールを安定に保つことが困難になります。これにより、材料の不十分な溶融が生じ、気孔が形成される可能性があります。最後に、銅と鋼の熱膨張係数の著しい違いは、ひずみの不整合と界面でのより高い残留応力を引き起こし、亀裂につながります。 4. 研究の概要: 研究テーマの背景: H13-Cuバイメタル構造は、H13鋼の高温機械的特性、特に耐熱衝撃性および耐熱疲労性と、銅の高い熱伝導性を組み合わせることができるため、特に高圧ダイカスト(HPDC)金型への応用において研究者から大きな関心を集めています。AMによって製造されたH13-Cuハイブリッド構造は、優れた高温機械的特性と高い熱伝導性を両立させ、システムの冷却能力を高め、十分な使用信頼性を確保することができます。しかし、H13とCuを直接接合することは、熱物理的特性の違いにより問題が発生する可能性があります。 先行研究の状況: 銅-鋼ハイブリッドのAMに関する先行研究では、プロセスパラメータの最適化、特定の走査戦略(例:アイランド走査)による欠陥低減、ビームシェーピング(リングモードレーザー)による混合低減、熱間等方圧加圧(HIP)による気孔・亀裂除去など、様々な試みが行われています。また、Inconel 718やDeloro 22などの高Ni含有中間層を追加することで、界面欠陥を効果的に低減し、ハイブリッド構造の接合強度を向上させることが示されています。これまでの研究の多くは、鋼基板上に銅を堆積させることに焦点を当てています。銅基板上に鋼を堆積させる研究、特にワイヤアーク積層造形(WAAM)を用いた研究は限られています。WAAMはレーザーベースのプロセスと比較して製造効率が高く、材料コスト(ワイヤベース)が低いという利点があります。さらに、銅を基板として使用する場合、高いレーザー反射率の問題が存在しません。しかし、予備実験では、Cu基板の非常に高い熱伝導率のため、従来のプロセスパラメータではCu基板を溶融させて安定した溶融プールを形成することが困難であることが判明しました。WAAMによるH13-Cuハイブリッド部品の製造に関する報告は、著者らの知る限り現在ありません。 研究目的: 本研究の目的は、WAAMを用いてCu基板上にH13鋼を直接堆積させることの実現可能性を評価することです。具体的には、以下の点を明らかにすることを目的としました。 研究の核心: 本研究の核心は、GMAWベースのWAAMを用いて、アニール処理された銅基板上にH13鋼ワイヤを直接堆積させることにあります。特殊な戦略として、(i) Cu基板の予熱(200 °C)、(ii) 基板に近い層(1~7層)に対してより高い入熱(高電流、低溶接速度)を使用、(iii) 揺動堆積戦略(振幅2 mm、周波数1 Hz)の採用、が挙げられます。得られたH13-Cu界面の微細構造をSEM、EDS、EBSD、TEMを用いて詳細に調査しました。堆積中の温度分布と熱履歴を組み合わせることで、界面構造の形成と進化メカニズムを明らかにしました。界面近傍の気孔や微小亀裂などの欠陥の原因についても議論しました。最後に、H13-Cu部品の機械的特性を評価しました。 5. 研究方法論 研究設計: 本研究では、実験的アプローチと数値モデリングを組み合わせました。WAAMを用いて銅基板上にH13鋼を積層造形しました。プロセスパラメータは、銅基板の高い熱伝導率を管理するために特別に調整されました。得られたバイメタル部品の界面について、詳細な微細構造解析と機械的特性試験を実施しました。界面形成メカニズムの理解を助けるために、堆積プロセスの熱的側面をモデル化する有限要素シミュレーションを使用しました。

Read More

Figure 1: Research idea framework for this study. This paper is divided into 3 main parts. In the first part, the size and spatial

ダイカスト Al 合金の局所応力/ひずみ場解析:実欠陥分布と RVE モデリングによる 3D モデルシミュレーション

この紹介論文は、[Publisher is not included in the paper] によって出版された [“Local stress/strain field analysis of die-casting Al alloys via 3D model simulation with realistic defect distribution and RVE modelling”] 論文の研究内容です。 1. 概要: 2. 要旨 ダイカストアルミニウム(Al)合金の変形と破壊挙動は非常に複雑です。特性の局所的なばらつきにより、材料の微細構造と機械的挙動は非常に異方性を示します。本論文では、実験および有限要素計算手法を用いて高圧鋳造 Al 合金部品の欠陥特性を定量的に研究し、局所的な気孔率と気孔サイズが塑性に及ぼす影響を解析することを試みました。実欠陥分布を持つ 3 次元固体は、3D X 線コンピュータ断層撮影を用いて得られ、有限要素モデル構築のための入力として使用されました。複合応力状態下における鋳造 Al 合金の損傷開始は、ミクロスケールからマクロスケールまで解析されます。微小多孔質凝集の 2 つのモードを通して亀裂伝播が生じます:凝集した気孔は、内部ネッキングと応力集中から亀裂を生成します。その後、それらは同じ方向に拡大し、特定の方向に凝集して最終的に破壊します。続いて、デジタル画像相関測定によって局所的な応力/ひずみ挙動を得ることにより、気孔率が不均一性に及ぼす影響を解明しました。さらに、微細構造の弾塑性変形に関する理論的枠組みと 3D 代表体積要素モデルを開発し、材料の周期的境界条件下での変形と損傷プロセスをシミュレーションしました。シミュレーション結果は、気孔周辺の局所的な応力/ひずみが変形とともに徐々に変化することを示しています。ダイカストプロセスにおいて、この方法は Al 合金の機械的挙動を予測する能力を示しています。 3. 研究背景: 研究テーマの背景: ダイカストアルミニウム(Al)合金は、自動車および航空宇宙産業において軽量化のために使用されています[1]。高圧ダイカスト(HPDC)は、Al 合金部品の主要な製造プロセスです[2, 3]。しかし、気孔タイプの欠陥は、製品の機械的特性に影響を与える可能性があります[4, 5]。気孔の存在は、微細構造の不連続性を引き起こし、外部荷重が加わったときに局所的な応力集中の可能性を高めます[6-8]. 先行研究の現状:

Read More

Fig. 17 e Static failure modes for the SPR joints under quasi-static tests.

高張力鋼とダイカストアルミニウムのセルフピアシングリベット接合におけるプロセスパラメータと熱処理の影響

この紹介論文は、Elsevier が発行した[“高張力鋼とダイカストアルミニウムのセルフピアシングリベット接合におけるプロセスパラメータと熱処理の影響”]論文の研究内容です。 1. 概要: 2. 概要(Abstract) 自動車の軽量化技術の発展において、鋼/ダイカストアルミニウム合金の適用は必然的な傾向です。セルフピアシングリベット(SPR)の接合プロセスは、車体の衝突安全性を保証するための重要な技術です。しかし、ダイカストアルミニウムは延性が低いため、ジョイントボタンに割れが発生しやすいという問題があります。本論文では、割れメカニズムを調査し、割れ抑制方法を検討することにより、SPR接合性を改善することを目的としています。鋼/ダイカストアルミニウム合金を用いたSPRの割れ抑制と成形品質に及ぼす熱処理、プロセスパラメータの影響を調査するために、パラメトリックスタディを実施しました。その結果、適切な熱処理、すなわちAlSi10MnMg-T6およびAlSi10MnMg-T7により、伸びが大きく、降伏強度が低いほどSPR接合性が向上することが示されました。一方、ダイの深さと直径は、割れの発生と成形品質に影響を与える主な要因です。据込みプロセスと同様に、リベット接合プロセスでは、接線引張応力が底面に発生し、底面に割れが発生します。本論文では、SPRジョイントのジョイント品質と機械的応答に及ぼす熱処理と積層方向の影響をさらに検討します。下板の引裂破壊は、鋼-アルミニウムジョイント(鋼が上板)の破壊を引き起こす主な要因です。熱処理は主にエネルギー吸収値に影響し、ピーク力への影響は比較的小さいです。鋼-アルミニウムジョイントの機械的特性は、アルミニウム-鋼ジョイント(アルミニウムが上板)よりも優れています。 3. 研究背景: 研究テーマの背景: 先行研究の状況: 研究の必要性: 4. 研究目的と研究課題: 研究目的: 主要な研究: 5. 研究方法 6. 主要な研究結果: 主要な研究結果と提示されたデータ分析: 図表リスト: 7. 結論: 主要な調査結果の要約: この研究は、鋼/ダイカストアルミニウムジョイントのSPRにおける割れメカニズムに関する詳細な理解を提供します。 接合性を改善し、割れを防止するための適切なプロセスパラメータと熱処理を選択するための実用的なガイダンスを提供します。 この研究結果は、鋼とダイカストアルミニウムの信頼性の高い接合を可能にすることにより、軽量自動車製造の進歩に貢献します。 8. 参考文献: 9. 著作権: この資料は、上記の論文を紹介するために作成されたものであり、商業目的での無断使用を禁じます。Copyright © 2025 CASTMAN. All rights reserved.

Establishing Guidelines to Improve the High-Pressure Die Casting Process of Complex Aesthetics Parts

複雑な美的部品のハイプレッシャーダイカストプロセスを改善するためのガイドラインの確立

この紹介記事は、[IOS Press]によって発行された論文「”Establishing Guidelines to Improve the High-Pressure Die Casting Process of Complex Aesthetics Parts”」の研究内容を紹介するものです。 1. 概要: 2. 概要 / 導入 本論文は、仕上げ加工を最小限に抑えるためのザマック合金製美的部品のハイプレッシャーダイカスト(HPDC)プロセスの最適化という課題に取り組んでいます。ザマック合金は融点が低いため複雑な形状の部品に適していますが、美的用途で欠陥のない表面仕上げを実現するには、射出パラメータと金型構成を注意深く制御する必要があります。本研究では、複雑な美的ザマック部品の鋳造における改善された結果のためのガイドラインを確立するために、SolidCast™ソフトウェアを使用した数値シミュレーションと経験的試験を通じて、HPDCプロセスとパラメータを調査します。論文の構成は、文献レビュー、方法論、実験設定、結果と考察、および将来の研究のための提案を含む結論で構成されています。 3. 研究背景: 研究トピックの背景: 軽量材料で作られた複雑な部品の使用はますます一般的になっています。ハイプレッシャーダイカスト(HPDC)は、これらの部品を迅速かつ費用対効果の高い方法で製造するために頻繁に採用されています。軽量合金であるザマックは、機械部品に広く使用されており、複雑な仕上げ加工が必要な美的部品にも応用できます。主な目的は、美的部品にHPDCを利用し、それによって仕上げ加工を削減または排除し、最終コストを削減することです。 既存研究の現状: 既存の研究では、ダイカストが幾何学的に複雑な金属部品、特に自動車産業における主要な製造技術として認識されています[1]。HPDCプロセスには、溶融材料の温度、射出圧力、射出時間、オーバープレッシャー、凝固時間など、いくつかのパラメータが関係しています[11-13]。スプルー、ゲート、位置決め、潤滑、厚さ、冷却システムなどの金型設計要素も重要です[14]。先行研究では、ゲート設計[15]、熱流[16, 17]、離型プロセス[18]、射出条件の最適化[19]などが検討されています。有限要素法(FEM)[20]に基づくソフトウェアは、ダイカストプロセスのシミュレーションの精度を向上させています[22-24]。しかし、鋳造プロセスは依然として欠陥が発生しやすく、最適な結果を得るためには、パラメータ、熱伝達、材料の流れを相関させるさらなる研究が必要です[25-28]。 研究の必要性: シミュレーションとプロセス最適化の進歩にもかかわらず、HPDC美的部品で高い表面品質を達成することは依然として困難であり、多くの場合、広範な仕上げ加工が必要です。表面欠陥を最小限に抑え、費用のかかる仕上げ加工を削減または排除するために、美的部品専用にHPDCパラメータと金型条件を最適化する必要があります。本研究は、単一の射出鋳造操作で欠陥のない美的ザマック部品を実現するための実用的なガイドラインを確立することを目的としています。 4. 研究目的と研究課題: 研究目的: 研究目的は、ザマック合金製の複雑な美的部品のハイプレッシャーダイカスト(HPDC)プロセスを改善するためのガイドラインを確立することです。目標は、射出パラメータと金型構成を最適化して、その後の仕上げ加工を最小限に抑えながら、単一の鋳造操作で良好な美的外観を備えた欠陥のない部品を取得することです。 主な研究課題: 主な研究課題は次のとおりです。 5. 研究方法 研究デザイン: 本研究では、「図1」に示すように、「経験的アプローチ(Empirical Approach)」と「高度なアプローチ(Advanced Approach)」を統合したハイブリッド方法論を採用しました。「経験的アプローチ」では、圧力、射出時間、冷却時間などの射出パラメータを調整することにより、体系的な実験を実施しました。「高度なアプローチ」では、SolidCast™ソフトウェアを使用した数値シミュレーションを利用して、材料の流れを分析し、金型設計を最適化しました。 データ収集方法: 経験的データは、PR METAL, Ltd.製のZM3装置を使用した一連のダイカスト試験を通じて収集されました。最初の射出試験のために確立されたパラメータを「表1」に示します。3!の要因計画法を使用し、パラメータセットごとに3回の試験を実施し、合計81回の試験を実施しました。数値シミュレーションデータは、SolidCast™ソフトウェアを使用して生成され、さまざまな金型およびランナー構成下での材料の流れと凝固をモデル化しました。 分析方法: 鋳造部品の品質は、主に表面欠陥と金型充填の完全性の目視観察によって評価されました。シミュレーション結果を分析して、材料の流れのパターンを理解し、潜在的な欠陥領域を特定し、金型設計の変更の影響を評価しました。「石川ダイアグラム(Ishikawa diagram)」(「図3」)を使用して、表面品質の問題に寄与する可能性のある要因を体系的に分析しました。 研究対象と範囲: 研究は、ザマック5合金のハイプレッシャーダイカストに焦点を当てました。材料組成は、3.8%Al、0.95%Cu、0.6%Mg、0.04%Fe、残部Znでした。ケーススタディ部品は、通常女性用財布に使用される美的部品でした。「図2」に示されているように、美的部品をケーススタディとして選択しました。実験は、単一キャビティ金型を使用して実施されました。この研究では、圧力、射出時間、冷却時間の影響を調査し、最初は金型形状、ゲート位置、ベントチャネルを一定に保ち、その後、シミュレーション結果に基づいて金型設計を変更しました。 6. 主な研究結果: 主な研究結果: 本研究により、美的ザマック部品のHPDCプロセスを改善するためのガイドラインが確立されました。「表2」は、最初の試験ラウンドからの特徴的な結果をまとめたもので、「充填不足(Lack

Read More

Figure 7.4: Manufacturing of the demo prototype. Pictures courtesy of Leichtmetallkompetenzzentrum Ranshofen.

複合鋳造およびその他のマルチマテリアル構造の設計と計算解析

この入門記事は、[Technische Universität Wien]によって発行された論文[“複合鋳造およびその他のマルチマテリアル構造の設計と計算解析”]の研究内容を紹介するものです。 1. 概要: 2. 概要 / 序論 概要マルチマテリアル軽量設計コンセプトは、異なる材料の利点を組み合わせるために、構造の各部分に「最高の」材料と製造プロセスを使用することを目指しています。当然のことながら、接合技術はこれらの構造の製造において主要な役割を果たします。複合鋳造プロセスは、鋳造プロセス中に鋳物を他の部品に接合することを可能にします。つまり、鋳造プロセスは、製造プロセスと接合プロセスの両方として機能します。 本論文の目的は、複合鋳造およびその他のマルチマテリアル構造の解析と設計のための計算手法を開発することです。有限要素法と漸近解析法の両方が使用されています。 複合鋳造の焼入れ(または冷却)中には、不均一な過渡温度場と関与する材料の異なる熱膨張係数により、残留応力が発生します。これらの応力は、構造の摩擦接続やその他の重要な特性(疲労寿命など)を決定するため、焼入れプロセスのシミュレーションは非常に重要です。 完全に接触する界面の場合、つまり冶金学的接合が存在しない場合、界面での熱伝達は接触またはギャップを介して行われ、複合鋳造のバイマテリアル界面での熱接触コンダクタンスは、接触圧力とギャップの開きに依存します。本論文の主要な発見は、一般に、この依存性を考慮することが、複合鋳造の焼入れプロセスのシミュレーションにとって非常に重要であるということです。 焼入れプロセス中、構造が幾何学的に単純であっても、バイマテリアル界面でギャップが開く可能性があります。ギャップが開くと、熱接触コンダクタンスが大幅に低下し、熱が主に開いたギャップと平行に流れるようになります。 フォームロッキングおよび/または摩擦接続を備えた鋼-アルミニウム複合鋳造の実例が提示されています。一般に、これらの接続の強度は、有限要素シミュレーションによって十分に予測できます。 マルチマテリアル構造の界面での材料特性の急激な変化により、局所的な応力集中が発生する可能性があります。線形弾性理論の仮定の下では、これらの応力集中は応力特異点として現れる可能性があります。これらの特異点の次数が幾何学的パラメータと材料パラメータにどのように依存するかを体系的に調べ、「設計チャート」を作成することにより、応力特異点の次数を直接登録できます。これらのチャートを使用すると、応力特異点の次数を最小限に抑えるか、規則的な応力場につながるような形状変更を決定できます。多くの場合、比較的わずかで局所的な形状変更によって大きな改善を達成できます。 キーワード:複合鋳造、マルチマテリアル構造、焼入れシミュレーション、熱接触コンダクタンス、有限要素解析、応力特異点。 3. 研究の背景: 研究トピックの背景: 既存研究の現状: 研究の必要性: 4. 研究目的と研究課題: 研究目的: 主要な研究: 5. 研究方法 研究デザイン: データ収集方法: 分析方法: 研究対象と範囲: 6. 主な研究成果: 主要な研究成果: 提示されたデータの分析: 図の名前リスト: 7. 結論: 主な調査結果の要約: 研究の学術的意義: 実際的な意味合い: 研究の限界と今後の研究分野: 8. 参考文献: 9. 著作権: この資料は上記の論文を紹介するために作成されたものであり、商業目的での無断使用は禁止されています。Copyright © 2025 CASTMAN. All rights reserved.

Figure 1. Proposed workflow of the optimization for the combination of topology optimization and process assurance. Starting from the initial design space, a TO with a volume target volume Vt and a parallel process simulation. The One-Step Optimization ends after the first iteration. In the iterative optimization, the design space VDS is modified for every new iteration with a step-length of λ on the basis of previous results.

構造最適化とプロセス保証の統合:鋳造部品の陰関数モデリング

この記事では、[MDPI Materials] によって発行された論文 [“構造最適化とプロセス保証の統合:鋳造部品の陰関数モデリング”] を紹介します。 1. 概要: 2. 概要または序論 製造可能な鋳造部品の構造最適化は、依然として挑戦的で時間のかかる課題です。今日では、トポロジー最適化 (TO) に続いて、設計案の手動再構築と、設計案を保証するためのプロセス保証シミュレーションが行われています。その結果、このプロセスは満足のいく妥協点に達するまで繰り返し反復されます。この記事では、陰関数ジオメトリモデリングを使用して、構造的およびプロセス的に最適化されたダイカスト部品を自動的に生成するために、構造最適化とプロセス保証の結果を組み合わせる方法を示します。したがって、現在の設計案を評価し、2つの反復間の製造可能性の改善を定量的に測定するための評価基準が開発されました。提案された方法をテストするために、片持ち梁をプルーフの例として使用します。組み合わせた反復法は、手動で設計された部品および直接最適化アプローチと比較され、機械的性能と製造可能性について評価されます。トポロジー最適化 (TO) とプロセス保証 (PA) 結果の組み合わせは自動化されており、設計案の手動再構築を大幅に強化することが示されています。さらに、製造可能性の改善は、計算量を削減しながら、この分野の以前の研究と同等以上であり、反復時間を大幅に短縮するために適切なメタモデルの必要性を強調しています。 3. 研究背景: 研究トピックの背景: 今日の製品開発は、市場投入までの時間の短縮と、エラーを最小限に抑えた製品設計の必要性によって特徴付けられます。したがって、部品は構造的に最適化され、プロセスも最適化されるべきです。なぜなら、最適化されたプロセス設計は、製造コストと不良率を削減するからです [1]。これらの最適化タスクは時間がかかり、高度な専門知識を必要とし、その結果を複数の手作業と組み合わせる必要があります。その結果、鋳造部品の構造最適化とプロセス保証を組み合わせるデジタルエンジニアリングには、大きな可能性があります [1-4]。 既存研究の現状: 基本的に、構造とプロセスの最適化は、2つの専門部門間で分担されており、部門間で部品が反復的に引き渡されます。各部門は、それぞれのプロセス用に取得したファイルを準備する必要があり、その後、最適化結果に基づいて新しい部品を手動で再設計する必要があります。このプロセスは、満足のいく妥協点に達するまで繰り返されます [1,2]。したがって、この記事では、構造的およびプロセス的に最適化された部品を自動的に作成するために、陰関数モデリングによる構造最適化とプロセス保証 (PA) の組み合わせに取り組みます。鋳造部品の構造最適化に関する既存の研究には、最小フィーチャサイズ、対称性、押し出しなどの製造制約を伴うトポロジー最適化 (TO) が含まれます。プロセスシミュレーションは、既知の形状の金型またはインゲートシステムを最適化するために使用されます。プロセス知識は、製造制約によって市販のTOに組み込まれていますが、プロセス知識のTOへのより深い統合は限られています。フルスケールの鋳造プロセスシミュレーションをTOに組み込んだ既存の研究は、高い反復時間のために計算コストが高くなります。 研究の必要性: 文献には、HPDC (高圧ダイカスト) および LPDC (低圧ダイカスト) 用の形状連動評価基準の開発に関するギャップがあり、TO中のプロセスシミュレーションの必要性を潜在的に減らすことができ、それでも設計案の製造可能性を質的に記述するのに十分な情報を示すことができます。設計案の形状を修正するための評価基準を調査し、プロセス全体を完全に自律化するために自動化を高度化する必要があります。この記事では、部品形状の修正のみに焦点を当てており、例えば [33] に示されているようなインゲートシステムの修正は、この記事の範囲外です。 4. 研究目的と研究課題: 研究目的: 本研究の目的は、TOとPAの結果を自動的に組み合わせ、構造的およびプロセス的に最適化された設計案を作成するための新しいワークフローを提示することです。鋳造プロセスベースの基準に基づいて、構造的に最適化された形状は、製造可能性を高めるために陰関数モデリングを介して修正されます。長期的な目標は、開発された基準を評価するためのメタモデルで鋳造プロセスシミュレーションを置き換えることです。 主な研究課題: 主な研究課題は、鋳造プロセス用の形状連動評価基準の機能性を開発し、証明することに焦点を当てています。ワークフローは、プロセス知識を鋳造部品のTOに統合し、陰関数モデリングを使用してTOとPAの結果を組み合わせます。PAには、CFDベースのプロセスシミュレーションに続いて、最短経路解析と評価基準の計算が使用されます。 研究仮説: 提案されたワークフローは、標準的なTO部品と比較して製造可能性が向上した新しい設計案をもたらすでしょう。TOとPAの組み合わせは、構造的およびプロセス的に最適化された部品につながるでしょう。 5. 研究方法 研究デザイン: この研究では、TOとPAを並行して実施し、その後、陰関数モデリングを使用してそれぞれの最良の側面を組み合わせるワークフローを採用しています。ワンステップ最適化と反復最適化アプローチを区別しています。ワークフローは、HPDCプロセスとLPDCプロセスの両方でテストされています。 データ収集方法: TOには、nTopologyソフトウェア (バージョン 3.0.4) と、SIMPを備えた密度ベースのTO法が使用されています。プロセスシミュレーションは、Flow-3D

Read More

Fig. 1. Microstructure of the AM60 die-casting Mg-alloy: (a) with low magnification picture shows the skin and the interior regions; a high magnification picture of (b) the interior region, and (c) the skin region

ダイカストマグネシウム合金のスキンおよび内部微細組織の構成挙動特性評価のための微小圧子技術の有用性

本論文概要は、[‘Elsevier’]が発行した論文「Utility of micro-indentation technique for characterization of the constitutive behavior of skin and interior microstructures of die-cast magnesium alloys」(ダイカストマグネシウム合金のスキンおよび内部微細組織の構成挙動特性評価のための微小圧子技術の有用性)に基づいて作成されました。 1. 概要: 2. 抄録 近年、自動車およびその他の構造用途向けの軽量鋳造マグネシウム合金部品の開発がますます推進されています。高圧ダイカストMg合金の微細組織は通常、バルク材料の微細組織とは著しく異なる微細粒の「スキン」を含んでいます。スキン微細組織の局所的な構成挙動の特性評価は、部品の全体的な機械的応答に影響を与える可能性があるため、関心を集めています。しかし、マクロ試験片に対する標準的な機械試験は、スキン微細組織の局所的な応力-ひずみ応答の特性評価には有用ではありません。本研究では、微小圧入実験と3次元(3D)有限要素ベースのシミュレーションを組み合わせた新しい方法論を提示し、鋳造高圧ダイカストAM60 Mg合金において、100 µmの長さスケールでのスキンおよび内部微細組織の局所的な応力-ひずみ(構成)挙動の計算を可能にします。この方法論は、逆問題に対する数値解法の開発を含みます。計算された構成方程式は、一軸圧縮下での合金の全体的なグローバル機械的応答に対するスキン厚さの影響をシミュレーションするために活用されます。 3. 研究背景: 研究テーマの背景: 自動車産業における軽量構造材料への需要の高まりにより、鋳造マグネシウム合金の開発が促進されました。自動車用Mg合金部品の製造に一般的に使用される高圧ダイカストプロセスは、「スキン効果」をもたらします。この現象は、鋳造表面付近に微細粒の「スキン」微細組織が現れることを特徴とし、これは内部のより粗い微細組織とは著しく異なります。このような微細組織の変化は、スキン領域と内部領域間の機械的挙動の差異につながる可能性があります。 既存研究の現状: 従来の巨視的スケールの機械試験は、スキン微細組織の微小なサイズのため、スキン微細組織の局所的な応力-ひずみ応答を特性評価するには不適切です。ナノ圧入技術は、約10 µmの長さスケールの個々の析出物や粒子を特性評価するのに役立ちます。しかし、デンドライトセルサイズが5〜10 µm程度の25 µmを超える長さスケールの多相鋳造微細組織の平均構成挙動を評価するには効率的ではありません。約100 µm程度のより大きな圧入サイズを持つ微小圧入は、このような多相微細組織の平均構成挙動を特性評価するのにより適していると考えられます。 研究の必要性: 高圧ダイカストMg合金部品の機械的応答の正確な有限要素(FE)ベースのモデリングのためには、スキン領域と内部領域間の構成挙動の潜在的な差異を考慮することが重要です。これらの明確な領域の局所的な応力-ひずみ関係を理解することは、局所的な応力分布を信頼性高く計算し、ダイカスト部品の全体的な機械的性能を予測するために不可欠です。 4. 研究目的と研究課題: 研究目的: 本研究の主な目的は、高圧ダイカストMg合金のスキンおよび内部微細組織の両方の平均応力-ひずみ挙動を特性評価するために、微小圧入技術と3D FEシミュレーションを組み合わせた方法論を開発し、検証することです。この方法論は、これらの領域の構成方程式を計算し、それらを活用してダイカスト合金の全体的な機械的応答に対するスキン厚さの影響をシミュレーションすることを目的としています。 主要な研究課題: 研究仮説: 5. 研究方法 研究デザイン: 本研究では、実験的アプローチと数値的アプローチを組み合わせて採用しています。AM60 Mg合金のスキンおよび内部領域の荷重-深さ曲線を生成するために、微小圧入実験を実施しました。次に、これらの実験データを3D FEシミュレーションと組み合わせて使用し、逆問題を解き、各領域の構成応力-ひずみ関係を決定することを目的としました。最後に、これらの構成モデルをさらなるFEシミュレーションに適用して、圧縮下での合金の全体的な機械的挙動に対するスキン厚さの影響を評価しました。 データ収集方法: 高圧ダイカスト条件下で鋳造された市販のAM60マグネシウム合金板に、ビッカース硬さ圧子を使用して微小圧入試験を実施しました。荷重-深さ曲線は、スキンおよび内部領域内の複数の位置で、荷重サイクルと除荷サイクルの両方で記録されました。平均荷重-深さ特性を取得するために、各領域で6回のランダムな圧入を行いました。 分析方法: 分析には、ANSYS®

Read More