Tag Archives: Die casting

Figure 1. NPV and Payback period function as the initial incremental cost for 4,000 h of operation

銅ロータ誘導電動機:モータ効率向上のための新たな機会

この紹介論文の内容は、[出版社:International Journal of Electrical and Computer Engineering (IJECE)]によって発行された[論文タイトル:Induction motors with copper rotor: a new opportunity for increasing motor efficiency]という論文に基づいています。 1. 概要: 2. 抄録: 銅ロータ誘導電動機(CURIM)は、アルミニウムロータ(ALRIM)よりもロータ融解損失が少ないため、最近導入されました。さらに、CURIMを使用すると、IE4およびIE5の効率レベルに到達しやすくなります。CURIMは、小型モータ、エスカレーター、および電気自動車アプリケーションに有利です。ただし、CURIMは、スリップ、力率、温度上昇、およびトルク低下の問題を示すため、分析する必要があります。本研究では、割引手法を適用して、CURIMとALRIMを使用する経済的実現可能性を比較しました。循環運転のある砂糖会社で事例研究を実施し、そこで5.5 kWのモータが製粉機のフィーダーの中間導体に設置されます。この施設は、3〜6か月間、3シフトで稼働します。ALRIMに対するCURIMのコスト増加(ACI)は、1.1〜1.5倍でした。年間3,600時間および4,000時間の運転で、ACIが10%を超えると、投資回収期間が4年以上になり、正味現在価値(NPV)が直線的に増加することがわかりました。 3. 導入: アルミニウムロータ誘導電動機(ALRIM)の代わりに銅ロータ誘導電動機(CURIM)を使用すると、ロータ損失を大幅に削減できます。これは主に、銅の電気伝導率がアルミニウムの約170%であるためです。したがって、機械全体の損失も減少します。中電力誘導電動機では、総損失の15%〜25%から、効率が2%〜5%増加します[1]、[2]。ただし、アルミニウムと比較して銅の融点が高い(銅の場合は1,083°C、アルミニウムの場合は660°C)ため、銅の鋳造プロセスに関する問題を最初に解決する必要がありました。現れた根本的な困難は、ダイの寿命の短縮、純粋な銅の鋳造プロセスでの酸化、および溶融銅に分散した多孔性でした[2]。 電力コストが増加するにつれて、モータのライフサイクルコストが不可欠であるという認識が高まり、消費者はより効率的なモータに対してより高い初期コストを支払うことの利便性を認識しました[3]。さらに、政府の規制とインセンティブが推進要因となっています。そのため、多くの企業や団体が銅鋳造の欠点を解消するために取り組み、ロータ製造用のダイ材料と鋳造プロセスを開発し、大量生産を可能にし、経済的にしました[1]、[2]、[4]。 4. 研究の概要: 研究テーマの背景: 銅ロータ誘導電動機(CURIM)は、アルミニウムロータ(ALRIM)よりもロータ融解損失が少ないため、最近導入されました。さらに、CURIMを使用すると、IE4およびIE5の効率レベルに到達しやすくなります。CURIMは、小型モータ、エスカレーター、および電気自動車アプリケーションに有利です。 既存の研究の状況: アルミニウムと比較して銅の融点が高い(銅の場合は1,083°C、アルミニウムの場合は660°C)ため、銅の鋳造プロセスに関する問題を最初に解決する必要がありました。現れた根本的な困難は、ダイの寿命の短縮、純粋な銅の鋳造プロセスでの酸化、および溶融銅に分散した多孔性でした[2]。 研究の目的: 本論文では、構造特性と関連コスト、運転、損失、電気機械、エネルギー、および温度特性に基づいて、CURIMとALRIMを比較します。最後に、CURIMを同容量のALRIMに置き換えた結果を比較することにより、砂糖工場で5.5 kWモータを置き換える経済的実現可能性調査を実施します。 コアスタディ: CURIMでの銅鋳造プロセスに関する調査は、メーカーが製造した特定のタイプ(つまり、定格電力、極数、電圧)の銅ロータモータを設計、鋳造、および設置するコストが、別のメーカーのコストと異なる可能性があることを示しています。 5. 研究方法論: 研究デザイン: 循環運転のある砂糖会社で事例研究を実施し、そこで5.5 kWのモータが製粉機のフィーダーの中間導体に設置されます。この施設は、3〜6か月間、3シフトで稼働します。 データ収集と分析方法: 経済分析は、差分正味現在価値(Differential NPV)[27]の基準を使用して事例研究で実施されたため、同じまたはほぼ同じコスト(たとえば、固定子コスト、設置コスト、メンテナンスコスト)が排除されます。 研究テーマと範囲: 同容量のALRIMでCURIMを置き換えた結果を比較することにより、砂糖工場で5.5 kWモータを置き換える経済的実現可能性調査を実施します。 6. 主な結果: 主な結果: 図のタイトルリスト:

Read More

Fig. 1. The geometrical shape of fragment of studied surface, topography of 3D surface, sand cast alloys; A) EN AC-AlSi12(b), B) EN AC-AlSi9Cu3(Fe)

Stereometry specification of anodization surface of casting aluminium alloys

本紹介論文は、「Journal of Achievements in Materials and Manufacturing Engineering」誌に掲載された論文「Stereometry specification of anodization surface of casting aluminium alloys」に基づいています。 1. 概要: 2. 抄録: 目的: 本研究の目的は、鋳造法および陽極酸化処理パラメータがアルミニウム鋳造合金上に形成される陽極酸化皮膜の特性に及ぼす影響を提示することです。設計/方法論/アプローチ: FRT社のレーザープロファイル測定ゲージMicroProfを用いて、圧力ダイカストおよび砂型鋳造によって鋳造された2種類のアルミニウム鋳造合金について調査を実施しました。結果: 研究には、アルミニウム鋳物上に得られた陽極酸化皮膜の化学組成、形状、および粗さの影響分析が含まれていました。研究の限界/含意: アルミニウム鋳造合金の陽極酸化皮膜に関する研究に貢献します。実用的意義: 実施された調査は、特にアルミニウム鋳造合金の耐食性向上を目的とした、将来の陽極酸化プロセスの最適化の方向性など、今後の研究分野を示しています。独創性/価値: 例えば、過酷な環境下で使用される建築構造物、電子部品、航空宇宙産業および自動車産業における建設部品の材料としての応用可能性が広がります。 3. 緒言: 近年、世界の多くの科学センターにおいて、様々な産業分野でのアルミニウム合金の使用が継続的に増加しており、アルミニウムおよびその合金、ならびにアルミニウムマトリックス複合材料の製造技術も発展しています[1-5]。陽極酸化皮膜は、アルミニウム製の電子部品、家庭用品、器具の部品、庭園用家具、観光・スポーツ用品、自動車付属品、アルミニウム建材の要素などに適用される保護・装飾機能を持ちます。酸化物皮膜は、コンデンサの電極用に設計されたアルミニウム箔にも製造されます。硬質陽極酸化皮膜は、航空宇宙産業および自動車産業に応用できます。アルミニウム基板に強固に結合した陽極酸化皮膜は、耐食性があります。耐食性は、皮膜中の細孔やピット、または有害な合金形成元素や不純物、特に銅や不純物の存在によって低下する可能性があります。アルミニウムと銅の金属間化合物相は、陽極酸化中に溶解し、皮膜の硬度と厚さを低下させ、多孔性を増大させます。形成された酸化膜の厚さに対する陽極酸化皮膜の厚さの増加は、1Vあたり約0.001 µmです。多孔質で導電性の皮膜は、電解液によって溶解される基本層から形成されます。基本層は、表面層に変換されるのと同じ速度で進行するアルミニウム酸化物の形成によって同時に回復されます。このようにして、基本層はほぼ一定の電圧でその厚さを維持します。形成プロセス中、アルミニウム酸化物は質量要素のわずかな増加と体積の増加を示します。酸化物皮膜は基板に非常に強く固定されています。酸化物皮膜の溶解は、pH 8.8を超える塩基性溶液またはpH 4.0未満の酸性溶液でのみ可能です[13-15]。 4. 研究の概要: 研究トピックの背景: アルミニウム合金の使用は、アルミニウム、その合金、およびアルミニウムマトリックス複合材料の製造技術の進歩とともに、様々な産業で継続的に増加しています[1-5]。陽極酸化皮膜は、電子部品、家庭用品、自動車付属品、航空宇宙および自動車産業を含む広範な用途で、保護および装飾目的でアルミニウムに適用されます。 従来の研究状況: 陽極酸化皮膜は、アルミニウム基板に固定されると耐食性があることが知られています。しかし、この耐性は、細孔、ピット、または銅などの有害な合金形成元素によって損なわれる可能性があり、これらは陽極酸化中に溶解し、硬度と厚さを低下させ、多孔性を増加させる可能性があります。これらの皮膜の形成と特性、それらの厚さの増加(1Vあたり約0.001 µm)および溶解特性が研究されてきました[12, 13-15]。 研究の目的: 本研究の目的は、鋳造アルミニウム合金の陽極酸化プロセスで作製された陽極酸化皮膜の特性を調査し、電解液および鋳造方法が得られた陽極酸化皮膜に及ぼす影響を評価することです。(出典: “Stereometry specification of anodization surface of casting aluminium alloys”, Section 1. Introduction)

Read More

Fig. 9: Microstructures and EDX results of purified NaCl (99.5%) reinforced by aluminum borate whisker. Whisker addition is 3.8vol%. (a) is SEM image with low magnification. (b) and (c) are enlarged area in fig. 6 (a). (d) and (e) are EDX results analyzed at fig.6 (b) and (c), respectively.

ホウ酸アルミニウムウィスカで強化したアルカリハライド中子の強度

本稿は、「J. JFS (日本鋳造工学会誌)」に掲載された論文「Strength of Aluminum Borate Whisker Reinforced Alkali Halides Salt Core (ホウ酸アルミニウムウィスカで強化したアルカリハライド中子の強度)」を基に作成した紹介資料です。 1. 概要: 2. 抄録: 高圧ダイカスト用ソルト中子の研究を行った。3種類のアルカリハライド、すなわち塩化ナトリウムNaCl (98%)、臭化カリウムKBr (99.7%)、臭化ナトリウムNaBr (99.7%)をソルト材料として準備した。塩化カリウムKClの強化に最適な強化材であるホウ酸アルミニウムウィスカをソルト中子の強化材として選択した。これらのソルト材料を電気抵抗炉で溶解し、30Kの過熱度で永久鋳型に鋳込んだ。強度を決定するために4点曲げ試験を実施した。KBrおよびNaBrの最大ウィスカ添加率は約10 vol%であり、ウィスカ添加量の増加に伴い強度は約25 MPaまで直線的に増加した。これらの塩とは対照的に、NaClはホウ酸アルミニウムウィスカで強化できなかった。SEM-EDX局所分析の結果、NaCl中の凝集したウィスカ近傍でのみマグネシウム不純物が検出され、NaCl中のマグネシウム不純物が強度にある程度影響を与えることが示唆された。高純度NaCl (99.5%)は実際にホウ酸アルミニウムウィスカで強化でき、最大ウィスカ添加率は約7.6 vol%で、最大強度はウィスカ添加に伴い約20 MPaまで直線的に増加した。 3. 緒言: 消失性中子を利用したダイカストプロセスは、複雑なアンダーカット形状を有する製品の製造法として注目されている。一般的にダイカスト法は、金型を利用した鋳造法の中で生産性、製造コストに最も優れているものの、成形に消失性中子を必要とするアンダーカット品への適用は困難であった。しかし、鋳物の需要の多くを占める自動車部品への要求として製品の軽量化や機械的強度の向上、部品点数の低減によるコスト削減などがあり、アンダーカット品のダイカスト化が近年ますます切望されるようになってきている。通常ダイカストプロセスでは、溶湯の高速射出時に中子に大きな衝撃力がかかるために消失性中子には高い強度が要求される。一方で、鋳造後の製品から熱処理なしで短時間に中子を除去できることも同様に重要である。つまり、中子は強度と除去性を兼ね備えていなければならず、こうした消失性中子として砂中子 [Ref. 1, 2]、金属置き中子 [Ref. 3, 4]、プラスチック中子、ソルト中子 [Ref. 5-7] などがこれまでに提案されている。この中でソルト中子は、コンクリート並みの高強度を有しかつソルト自身が水溶性であるために除去性も極めてよいという点で優れていることが報告されている。ソルト中子の成形方法には焼結法と溶融成形法があるが、形状自由度の点で溶融成形法は優位であるにもかかわらず、これまであまり研究されていない。そこで前報 [Ref. 7] では、塩化カリウムをセラミックウィスカ・粒子で強化し溶融成形したソルト中子の強度について検討し、ホウ酸アルミニウムウィスカを強化材に用いると特異的に高強度が得られ、ダイカストへの使用に適していることを報告した。そこで本報では、塩化カリウムと化学的に似た性質をもつアルカリハライド類である塩化ナトリウム、臭化ナトリウム、臭化カリウムについてもホウ酸アルミニウムウィスカによる強化が可能かどうかについて検討した。 4. 研究の概要: 研究テーマの背景: 本研究は、特に自動車部品向けの高圧ダイカストにおいて、複雑なアンダーカット形状を製造するための、高強度で容易に除去可能な消失性中子の必要性に取り組んでいる。ソルト中子は有望であるが、最適な性能を得るための強化についてはさらなる調査が必要である。 従来の研究状況: 従来の研究では、溶融成形によりホウ酸アルミニウムウィスカで強化されたKClベースのソルト中子が高い強度を示すことが示唆されていた [Ref. 7]。しかし、この強化方法が他のアルカリハライドに適用可能かについては十分に理解されていなかった。ソルト中子の製造方法としては焼結法と溶融成形法が知られており、溶融成形法は形状自由度に優れるものの、研究はあまり進んでいなかった。 研究の目的: 本研究の目的は、溶融成形時にホウ酸アルミニウムウィスカが異なるアルカリハライド塩(NaCl、KBr、NaBr)に及ぼす強化効果を調査し、それらの性能を以前に研究されたKClベースの中子と比較すること、特にNaClの強化における不純物の影響に焦点を当てることであった。 研究の核心: 研究の核心は、様々な量のホウ酸アルミニウムウィスカで強化された3種類のアルカリハライド(工業用NaCl、KBr、NaBr、および高純度NaCl)からソルト中子を調製することであった。これらの材料を溶解し、永久鋳型に鋳造した。得られたソルト中子の機械的強度は、4点曲げ試験を用いて決定した。ウィスカの分散、破壊挙動、および特にNaCl中の不純物の役割を理解するために、SEMおよびEDXを含む微細構造解析を実施した。 5. 研究方法論

Read More

Fig. 3 ‒ Dummy ground model.

アルミニウム溶湯の酸化皮膜強度

この紹介論文は、「[発行ジャーナル/学会名は提供文書に記載なし(著者はロシア、エカテリンブルク、ウラル連邦大学所属)]」によって発行された論文「[Strength of oxide skin on aluminum melts]」に基づいています。 1. 概要: 2. 要旨: 複製アルミニウムフォーム技術における「溶湯-充填材」境界面の浸透圧を、A999、AlMg5Si、およびAlSi9MgFe1合金について研究した。0.2 mm未満のサイズの充填材分率における浸透圧は、ラプラス方程式によって支配されることが示されている。充填材分率のサイズが大きくなると、浸透圧は一定に保たれ、「溶湯-充填材」境界面の酸化皮膜の破断によって定義されるものとする。この破断はマイクロクラックの出現につながり、酸化皮膜の成長速度は進化するチャネル内の溶湯の漏出速度よりも遅くなる。アルミニウム合金の酸化皮膜の結晶構造に欠陥を形成する不純物元素は、マイクロクラックの形成に影響を与える。マグネシウム添加の影響は、皮膜中のMgAl2O4の形成とその強度の低下につながる。しかし、酸化皮膜強度に最も強い影響を与えるのは鉄であり、鉄の割合が0.8%を超えると層状タイプの金属間化合物(Al5FeSi)を形成し、これにより純アルミニウムでは20000 MPaであった酸化皮膜の最小浸透圧がAlSi9MgFel合金では7000 MPaに減少することが保証される。 3. 緒言: 酸素含有雰囲気中のアルミニウム溶湯は酸化皮膜で覆われる。それはスピネルタイプの結晶構造である(1)。純アルミニウム上に現れる皮膜は、大部分が非晶質構造であるのに対し、700 °Cを超えると立方晶系のγ相結晶が現れる(2)。金属マトリックス複合材料の接着破壊における強度性能の低下、および表面欠陥/空孔による水素吸収(鋳物のガス欠陥の基本的な原因)の原因となるのは、アルミニウム皮膜のγ相である。後者は水素化学吸着の焦点である(3)。1000 °Cまでの温度では、アルミニウムγ酸化物が形成される(2)。格子寸法はアルミニウム格子の寸法に対応し、したがって高い凝集力をもたらすダンコフ-コノベエフスキーの原理に従う(4)。溶湯表面の酸化皮膜の成長速度は非常に速い。溶湯表面から酸化皮膜を除去した場合、皮膜の成長速度はアレニウスの式に従う(5)。酸化皮膜は鋳物形成のプロセスに大きく影響する。それは相境界を通るガス拡散を防ぐ。その十分に高い強度により、酸化皮膜は流動性に影響を与える。適合する基礎によって支持された固定エッジを持つ円形プレートの軸に対称なものとしてモデル化することによる皮膜強度の研究は、純粋な酸化アルミニウムが最大破壊応力強度の条件下で低い破壊応力を有することを示した。応力拡大係数は、微細な表面欠陥が存在する場合、非常に低い荷重が皮膜の破壊につながる可能性があることを示した(6)。(7)によると、Al-Si-Cu系合金は、その中の銅の割合が2%変化すると流動性が1.5倍異なる。これは、合金の粘度、熱伝導率、結晶化間隔の変化によっては条件付けられない。Al-Cu系またはアルミニウムベースのより多成分系における銅の割合の増加は、酸化皮膜内のCuOの形成につながる。保持期間後、CuOはCu2Oに遷移し、それによって皮膜に亀裂および破断を提供する。それは水素の割合の減少につながるが、皮膜の保護特性を低下させる。流動性の急激な成長は、酸化皮膜内のCu2Oの存在によって説明され、これは酸化皮膜の機械的強度を著しく低下させる応力集中剤である(8, 9)。したがって、溶湯の運動エネルギーの流動損失は低くなる。MgO皮膜は緩く多孔質の構造を有する。通常および高温でのマグネシウム自体の高い活性を考慮すると、溶融中の酸素吸収は非常に激しくなる。最大1.5%のマグネシウム割合を有するアルミニウム合金では、酸化皮膜はマグネシウムおよびアルミニウムの酸化物と、組成MgAl2O4のそれらの共同スピネルを含む。溶湯体積内では、このスピネルは第2列のコンディショニング剤として作用し、したがってより多数の核生成中心を提供する。金属マトリックス複合材料の場合、スピネルの生成を提供する高いマグネシウム含有量は、二重皮膜欠陥の低減により機械的特性を改善する(10, 11, 12, 13)。さらに、最大2%の鉄を含む合金のグループがダイカスト用に開発されている(14)。これらの合金では、一方では、冷却時に形成される金属間化合物Al5FeSiがアインシュタインの式に従って合金粘度を上昇させるが、他方では、それらは酸化皮膜をより柔らかくする。ダイカストの場合、鋳物の壁厚が小さく、溶湯の冷却速度が著しい条件下では、開発された合金の化学組成から判断すると、溶湯の流れに対する酸化皮膜の抵抗が中心的な役割を果たす。浸透法による複合鋳物の製造過程において、鋳物の壁厚がダイカストの場合よりもさらに薄い場合、充填材の多孔質媒体への溶湯の流れを開始するためには、「溶湯-充填材」境界の酸化皮膜を破壊する必要がある(15)。したがって、最小浸透圧は酸化皮膜破壊圧と等しくなり、完成品の透磁率係数を変化させる機会を制限する(16)。 4. 研究の概要: 研究トピックの背景: 酸素含有雰囲気中のアルミニウム溶湯は酸化皮膜を発生させる。これらの皮膜は通常結晶性であり、700°Cを超えるとγ相が現れ、金属マトリックス複合材料の強度を低下させ、水素を吸収する可能性がある(1, 2, 3)。酸化皮膜の成長速度は速く、ガス拡散を防ぎ、その強度により流動性に影響を与えることで鋳造形成に大きく影響する(4, 5)。 従来の研究状況: 従来の研究では、純粋な酸化アルミニウムは破壊応力が低いことが示されていた(6)。Al-Si-Cu合金では、銅含有量が皮膜中の酸化銅(CuO、Cu2O)の形成を通じて流動性に影響を与え、これらは応力集中点として作用する(7, 8, 9)。アルミニウム合金中のマグネシウムは、皮膜中にMgOおよびMgAl2O4スピネルを形成し、これは緩く多孔質である(10, 11, 12, 13)。ダイカスト合金中の鉄は、Al5FeSi金属間化合物を形成し、酸化皮膜をより柔らかくすることができる(14)。浸透による複合鋳造では、酸化皮膜の破壊が不可欠である(15, 16)。 研究の目的: 本研究は、特定の化学元素がアルミニウム溶湯の酸化皮膜強度に及ぼす影響を研究することを目的としている。鉄の影響の研究は、鉄が市販のアルミニウム合金に常に伴うため、最も技術的に有望である。Al-Si-Cu系合金の使用は電気機械的腐食につながるため、避ける方が良い。したがって、Al-Si-Fe(AlSi9MgFe1)およびAl-MSi(AlMg5Si)系の合金が研究対象として選択された。 核心的研究: 研究の核心は、異なるアルミニウム溶湯(A999、AlMg5Si、およびAlSi9MgFe1)の酸化皮膜強度に対する化学元素、特にマグネシウムと鉄の影響を調査することであった。これは、複製アルミニウムフォーム技術と実験装置(Figure 1)を使用して、様々な充填材(NaCl)分率サイズで「溶湯-充填材」境界の酸化皮膜を破壊するのに必要な浸透圧を測定することによって達成された。この研究は、これらの元素が溶湯の流れに対する酸化皮膜の抵抗にどのように影響するかに焦点を当てた。 5. 研究方法論 研究デザイン: 酸化皮膜強度を研究するために、生産品に近いパターンが使用された(Figure 1)(15)。金属の試験装入物は、実験室用マッフル型抵抗炉SNOL 1,6.2,5.1/9-13で溶解された。温度制御は、Kタイプのクロメル-アルメル熱電対によって実現された。微細分散溶融石英製のKSBM-345るつぼが、金属の溶解および注入に使用された。GOST R 51574-2000に準拠したNaClが充填材として使用された。内部寸法Ø30×180 mmの円筒形鋳鉄製鋳型(fig. 1, pos.

Read More

Fig. 1: Schematic of the rheo pressure die casting system, showing its functional parts

A356 Al合金のダイ充填およびレオ圧力ダイカストシステムを用いたステアリングナックル部品の開発に関する研究

この紹介論文は、「Journal of Materials Processing Technology」によって発行された論文「Studies on Die Filling of A356 Al alloy and Development of a Steering Knuckle Component using Rheo Pressure Die Casting System」に基づいています。 1. 概要: 2. 抄録: 本研究では、レオ圧力ダイカスト (RPDC) システムの一部として、半凝固スラリーのダイ充填を調査するために、数値流体力学 (CFD) モデルを開発する。ダイ充填キャビティは自動車のステアリングナックルのものに対応し、スラリーはA356アルミニウム合金で作られる。CFDシミュレーションで使用されるレオロジーモデルは実験的に決定される。現在の数値モデルから得られた結果には、ダイキャビティ内のスラリーの流動場、粘度変化、固相率分布、ダイ充填段階中のキャビティ内凝固中の温度および圧力分布が含まれる。本研究の主な目的は、開発された部品の望ましい微細構造および機械的特性のためのゲーティング配置、注入温度、および射出条件を決定することである。当該合金スラリーのダイ充填能力に対する射出条件の影響を研究するために、最終射出速度を2~3.2 m/sの間で変化させて5つの射出プロファイルを研究する。本研究の知見を裏付けるために、凝固した部品の異なる位置からサンプルを取得することにより、主に光学顕微鏡およびマクロ硬度測定の形で、微細構造形態および構造特性相関を研究した。 3. はじめに: 自動車産業における燃費向上のための要求は、自動車部品の軽量化、特に他の軽量自動車部品と比較して優れた強度対重量比および伸び値を必要とするサスペンション部品の軽量化に向けた努力を動機付けている。アルミニウムおよびマグネシウム合金の鍛造や従来のダイカストなどの伝統的な製造プロセスは、多段階の処理ステップ、一貫性のない機械的特性、デンドライト微細構造、および液体偏析などの課題を提示する。半凝固ダイカスト、特にレオダイカスト (RDC) およびその変形であるレオ圧力ダイカスト (RPDC) は、改善された構造的完全性と費用対効果を備えた、健全でニアネットシェイプの部品を製造するための有望なワンステップソリューションとして浮上している。これらのプロセスの成功は、複雑なダイキャビティの適切な充填を保証するために、ほぼ球状の初晶粒子を持つ半凝固スラリーの調製に大きく依存する。多くの研究がチクソダイカスト (TDC) およびRDCを調査してきたが、RPDCにおけるダイ充填のCFDシミュレーション、特に実験的検証を伴うものは比較的少ない。本研究は、CFDシミュレーションを用いてA356 Al合金ステアリングナックルのRPDCプロセスパラメータを最適化し、実験作業によって検証することにより、このギャップを埋めることを目的とする。 4. 研究の概要: 研究トピックの背景: 主な動機は、燃費を向上させるための軽量自動車部品の必要性である。伝統的に鋼鉄または鋳鉄で作られていた自動車のサスペンション部品は、アルミニウムおよびマグネシウム合金を使用して開発されている。しかし、これらの軽合金の従来の製造方法では、しばしば欠陥や特性のばらつきが生じる。 従来の研究状況: 従来の研究では、従来のグラビティダイカスト (GDC)、高圧ダイカスト (HPDC)、スクイズキャスティング、およびチクソダイカスト (TDC) やレオダイカスト

Read More

Figure-2: shows a schematic diagram of Squeeze casting m/c.

Optimisation of Casting parameters of Squeeze cast LM-24 Al-Si Alloy

本紹介論文は、「[International Journal of Engineering Research & Technology (IJERT)]」により発行された論文[Optimisation of Casting parameters of Squeeze cast LM-24 Al-Si Alloy]に基づいています。 1. 概要: 2. 抄録: 従来のダイカスト法では、高いゲート速度での溶湯流動が非層流を引き起こし、鋳造品の品質に影響を与えます。従来のダイカスト部品に一般的に見られる潜在的な欠陥は、凝固収縮およびガス巻き込みに起因する気孔です。スクイズ鋳造や半凝固鋳造(チクソキャスティングやレオキャスティング[1]など)のような高健全性ダイカストプロセスが開発されてきました。しかし、スクイズ鋳造は半凝固プロセスよりも単純で経済的です。スクイズ鋳造プロセスは、比較的遅い溶湯の金型への供給速度と凝固中の高圧印加を利用します。調査によると、遅い射出速度は乱流を低減し、空気の巻き込みを少なくし、凝固中に印加される圧力は収縮孔やガス気孔を除去し、熱抵抗を減少させ、凝固を促進し、鋳造材料の微細構造と機械的特性の改善に効果があります。このプロセスの軽量非鉄金属合金への適合性は、自動車および航空宇宙産業向けのこの新興プロセスに対する需要を増大させています。本研究では、9%のSiを含むアルミニウム-シリコン合金LM-24について、直接スクイズ鋳造プロセスの研究が行われました。LM-24は、薄肉鋳造に適した優れた鋳造特性を持つ、広く使用されている圧力ダイカスト用アルミニウム合金です。実験計画とパラメータは、圧力、湯流れ温度、金型温度の変動を伴って編成されました。結果は、スクイズ鋳造材料の密度の増加が、気孔のほぼ完全な除去、表面仕上げの改善、微細構造の改善、硬度および引張強度の増加を示しています。乱流を避けるために、供給速度はより低い値に制御されます。LM-24アルミニウム合金の場合、700°Cの湯流れ温度、200°Cの金型温度、および100 MPaの圧力が、より良い機械的特性を得るための最適な組み合わせであることがわかりました。 3. 緒言: 鋳造による金属成形技術は紀元前4000年まで遡ります。圧力ダイカストは、鋳造品の大量生産の需要拡大に応えて1820年代初頭に登場しました。金属ダイへの圧力下での金属射出は、最初は手動クランクを使用した純粋に機械的なものでした。その後、用途の拡大に伴い、空気圧および油圧システムが使用されるようになりました。しかし、進歩は1920年代のコールドチャンバープロセスの開発まで限定的でした。スクイズ鋳造のアイデアは、凝固中の溶融金属に蒸気圧をかけるというもので、早くも1878年にChernovによって考案されました。最初の科学的なスクイズ鋳造実験は、1931年にドイツでG. WelterによってAl-Si合金に対して行われ、1937年にはV. M. Plyatskiiが加わりました。西洋での研究の大部分は、アルミニウム合金、銅合金、マグネシウム合金に焦点が当てられてきました。 スクイズ鋳造プロセスは、比較的遅い溶湯の金型への供給速度と凝固中の高圧印加を利用します。主なバリエーションは次のとおりです。 4. 研究の要約: 研究トピックの背景: 高いゲート速度と非層流を特徴とする従来のダイカストプロセスは、しばしば凝固収縮やガス巻き込みによる気孔などの欠陥を引き起こします。これらの限界を克服するために、スクイズ鋳造や半凝固鋳造(例:チクソキャスティング、レオキャスティング [1])のような高健全性ダイカストプロセスが開発されました。スクイズ鋳造は、特に自動車および航空宇宙産業向けの高品質な軽量非鉄合金部品を製造するための、よりシンプルで経済的な代替手段として提示されています。 従来研究の状況: スクイズ鋳造の概念は1878年から知られており、1930年代から体系的な科学的調査が開始されました。これまでの研究は、主にアルミニウム、銅、マグネシウム合金に集中しています。溶湯の低速供給と凝固中の高圧印加を含むこのプロセスは、乱流、空気の巻き込み、気孔を低減し、それによって鋳造部品の微細構造と機械的特性を向上させることが確立されています。 研究目的: 本研究の主な目的は、アルミニウム-シリコン合金LM-24(9% Si含有)の直接スクイズ鋳造プロセスのパラメータを調査し、最適化することでした。この研究は、鋳造されたLM-24合金の機械的特性を向上させるための、印加圧力、湯流れ温度、および金型温度の最適な組み合わせを決定することを目的としました。 核心的研究: 研究の核心は、LM-24アルミニウム合金の直接スクイズ鋳造に関する実験的調査でした。実験計画は、主要なプロセスパラメータである印加圧力(0、40、60、80、100 MPa)、湯流れ温度(660°C、700°C、750°C)、および金型温度(200°C、250°C)を体系的に変化させることに焦点を当てました。これらの変動が、鋳造合金の得られた表面仕上げ、機械的特性(極限引張強さ、耐力、伸び、硬度を含む)、および微細構造に及ぼす影響を徹底的に評価し、最適な処理条件を特定しました。 5. 研究方法論 研究デザイン: 本研究では直接スクイズ鋳造プロセスを用いました。調査材料は、9%のSiを含むアルミニウム-シリコン合金LM-24(BS1490:1988)であり、その詳細な組成はTable-1に示されています。合金の溶解は、電気抵抗加熱式のるつぼ炉(最高温度1200℃)で行われ、酸化を防ぐために工業用アルゴンガスを注入して不活性雰囲気としました。Figure-2に概略図が示されている、金型加熱、凝固中の加圧、鋳造品突き出しの関連設備を備えた総合的な直接スクイズ鋳造機(容量50T、突き出しシリンダー容量25T)が使用されました。Figure-3に示すダイとパンチは、硬化鋼EN24から製造され、二硫化モリブデン(MoS2)でコーティングされました。200℃または250℃への金型予熱は、デジタル温度コントローラーを備えた携帯型電気ヒーターを使用して行われました。 データ収集・分析方法: あらかじめ計量された量の溶融LM-24合金を下型キャビティに注入しました。注入前に、溶湯表面の自然酸化を防ぐためにホウ酸と硫黄の混合物を溶湯表面に散布し、酸化物や不純物を除去するために溶湯をスキミングしました。 研究トピックと範囲: 本研究は、LM-24 Al-Si合金の直接スクイズ鋳造における鋳造パラメータの最適化に焦点を当てました。研究の範囲は以下の通りです。 6. 主要な結果: 主要な結果:

Read More

FIGURE 4. a) Rotor slot parametrization, b) examples of slot shapes investigated during the optimization.

かご形誘導電動機:アルミニウムと銅ケージの設計ベース比較

この紹介論文の内容は、”[IEEE Open Journal of Industry Applications]”が発行した論文「Squirrel Cage Induction Motor: A Design-Based Comparison Between Aluminium and Copper Cages」に基づいています。 1. 概要: 2. 抄録: 多くの産業用途において、電気モーターの自己始動能力は、ドライブアーキテクチャを簡素化し、システムの信頼性を向上させるために依然として重要な要件です。このモーターのトポロジーの効率改善は、さまざまな国および国際的な規制当局によって、臨時の政策によって目標とされてきました。実際、エネルギー消費量の削減は、運用コストとCO2排出量の削減という2つの利点につながります。銅ケージの採用は、モーターの損失を低減するために成功していることが証明されています。しかし、これは始動トルクなどの他の性能指標に影響を与える可能性があります。本論文では、より一般的なアルミニウムケージと比較して、さまざまな動作条件下でのモーター性能を比較することにより、銅ケージの採用の利点と欠点を詳細に分析します。アルミニウムケージで最適化された一連の誘導機から始めて、直接的な材料ケージ置換の効果を電磁気的および熱的側面の両方で分析します。全体的な性能は、銅ケージに対して特別に最適化された機械と比較されます。提示された性能比較演習により、他の性能指標を悪化させることなく効率を改善することを目的とした一般的な設計ガイドラインが概説されています。 3. 導入: 最終的な世界の電力エネルギー消費量のほぼ50%が電気モーターの供給に使用されています[1]。電気モーターの大部分は定格出力が0.75kW未満ですが、図1(b)および(c)に示すように、電力エネルギー消費に最も大きな影響を与えるのは、市場全体の残りの小さな部分です。実際、0.75kWを超える定格出力を持つ電気モーターの10%が、総電力エネルギー消費量の91%を占めています[2]。図1(d)は、ヨーロッパにおける電力範囲別の電気モータータイプの分布を示しています[3]。明らかに、電力エネルギー消費量の点で最も影響力のあるモーターのトポロジーは、中高電力範囲で最も一般的なAC多相モーターです。グリッド接続された三相かご形誘導電動機(SCIM)は、市場で入手可能な幅広い種類のAC電気モーターの中で最大の市場シェアを占めています[4]。したがって、その効率を改善することは、CO2排出量の点で環境への影響を削減する上で最大の効果をもたらす可能性があります[5]。過去20年間で、ほぼすべての主要経済圏が、まずモーターの最小効率、そして最近ではドライブシステム全体の効率に関するいくつかの規制スキーム(最初は自主的なベースで、次に義務的に)を導入しました[6]。たとえば、ヨーロッパでは、委員会規則1781/2019 [7]は、インバーターと直接グリッド供給の両方の電気モーターの最小エネルギー効率要件に関する正確なタイムテーブルを設定しています。規制当局によって採用された電気モーターの効率クラスの定義と、効率を実験的に決定する方法論は、それぞれ国際規格IEC 60034-30-1/2およびIEC 60 034-2-1によって設定されています。 4. 研究の概要: 研究トピックの背景: かご形誘導電動機(SCIM)の効率改善は、規制圧力の増大とエネルギー消費量およびCO2排出量削減への世界的な焦点により、非常に重要です。銅ケージはモーター損失を低減することが示されていますが、始動トルクなどの他の性能指標への影響については、さらなる調査が必要です。 以前の研究の状況: 以前の研究では、コア軸方向の延長、より優れた磁性材料、銅ケージなどの方法を通じて、SCIMの効率改善を探求してきました。しかし、銅ケージの採用の包括的な効果、特に他の性能パラメータとのトレードオフに関する包括的な効果は、完全には理解されていません。既存の文献には、さまざまな回転子スロット設計と性能要件を考慮して、アルミニウムと銅ケージの体系的な比較が不足しています。 研究の目的: 本研究は、アルミニウムケージと比較して、SCIMで銅ケージを使用することの利点と欠点を分析することを目的としています。直接的な材料置換と最適化された銅ケージ設計が電磁気的および熱的性能に及ぼす影響を調査します。本研究は、始動トルクなどの他の重要な性能指標を損なうことなく効率を改善するための設計ガイドラインを提供しようとしています。 コアスタディ: コアスタディには、アルミニウムと銅ケージを使用したSCIMの設計ベースの比較が含まれています。アルミニウムケージ最適化設計から始めて、論文ではアルミニウムを銅に直接置換することの影響を分析します。さらに、これらの結果を銅ケージに対して特別に最適化されたSCIMと比較します。分析は、効率、始動トルク、電流比、および熱的挙動などのさまざまな性能指標を考慮して、電磁気的および熱的側面をカバーしています。本研究では、実験的テストによって検証された高速性能計算方法と、多目的最適化アルゴリズムを利用して、最適な回転子設計を導き出し、アルミニウムおよび銅ケージモーターの性能を比較します。 5. 研究方法論 研究デザイン: 本研究では、設計ベースの比較研究を採用しています。さまざまな性能要件(始動トルクと効率)に対してアルミニウムケージで最適化されたSCIMのベースライン設計から始まります。次に、研究では、これらのベースライン設計でケージをアルミニウムから銅に直接材料置換を実行します。最後に、銅ケージ用に特別にSCIM設計を最適化し、アルミニウムベースライン設計と直接銅置換の両方に対する性能を比較します。 データ収集と分析方法: 性能評価は、トルクと効率を迅速かつ正確に推定するために、混合分析-有限要素解析(FEA)法に依存しています。この方法は、市販のSCIMでの実験的テストを通じて検証されています。多目的最適化アルゴリズム(NSGA-II)は、さまざまな性能指標と制約条件を考慮して、アルミニウムと銅ケージの両方に対して最適な回転子形状を設計するために使用されます。熱-FEAは、後処理に使用され、固定子および回転子巻線の定常状態温度を評価します。分析された性能指標には、定格効率、始動トルク、電流比、力率、および熱特性が含まれます。 研究トピックと範囲: 本研究は、SCIMの回転子ケージ設計に焦点を当てており、特にケージ材料としてアルミニウムと銅を比較しています。範囲は以下を含みます。 6. 主な結果: 主な結果: 図リスト: 7. 結論: 本研究は、銅ケージがSCIMの効率を高めるための実行可能なソリューションを提供すると結論付けています。アルミニウムを銅に直接置換すると効率が向上しますが、始動電流が増加し、始動トルクに可変的に影響を与える可能性があります。最適化された銅ケージ設計は、アルミニウムケージモーターよりも高い効率を達成しながら、始動トルク能力を維持できます。設計ガイドラインは、電流比が制約されていない場合、直接的な銅置換が非常に効果的であることを強調しています。ただし、電流制限が課せられている場合は、始動性能を損なうことなく効率ゲインを最大化するために、最適化された銅回転子設計が必要です。直接置換と最適化された設計のどちらを選択するかは、特定のアプリケーション要件と設計の優先順位、特に始動電流制限と望ましい効率レベルによって異なります。 8.

Read More

Fig. 4: High pressure die casting test geometry shows critical sections which appear in real life engine blocks. The disc shaped casting indicates

高圧ダイカスト用新規耐摩耗性過共晶AlSi4Cu4FeCrMn合金

本紹介論文は、「International journal of metalcasting」に掲載された論文「New Wear Resistant Hypereutectic AlSi4Cu4FeCrMn Alloys for High Pressure Die Casting」に基づいています。 1. 概要: 2. 要旨: 本稿では、高圧ダイカスト(HPDC)に適した新しい耐摩耗性過共晶アルミニウム-シリコン合金を開発するための革新的なコンセプトを紹介する。従来の過共晶AlSi17Cu4Mg合金は、良好な耐摩耗性を提供するものの、高い鋳造温度と初晶シリコンの研磨性のためにHPDCにおいて課題を抱えている。提案されたアプローチは、鋳造温度を下げるためにシリコン含有量を17 wt.-%から14 wt.-%に低減し、鉄を添加して硬質のα-Al15Fe3Si2金属間化合物を形成することで、減少した初晶シリコンの体積分率を補償し、トライボロジー特性を向上させるものである。クロム(Cr)およびマンガン(Mn)の添加は、コンパクトなα相金属間化合物の形成を促進し、有害なβ-Al5FeSi板状晶の生成を回避するために用いられる。本研究では、これらの新しいAlSi14Cu4FeCrMn合金のスラッジ形成、微細構造、機械的特性、およびHPDCプロセス性を調査し、一体型エンジンブロックなどの用途において、鋳造性と耐摩耗性が向上した可能性を示している。 3. 緒言: 過共晶AlSi17Cu4Mg合金は、耐摩耗性が重要視される鋳物、例えば空調用コンプレッサーハウジングや一体型エンジンブロックなどに適用される。これらの合金は、低い熱膨張係数、ならびに室温および高温での良好な機械的特性も有している。これらの合金の高い耐摩耗性は、凝固中に形成される初晶シリコン結晶(硬度最大1148 HV)に由来する。過共晶Al-Si合金製のエンジンブロックは、鋳鉄ライナー付きのハイポ共晶Al-Siブロックと比較して軽量化を実現し、燃料消費量の削減、ひいてはCO2排出量の低減につながる[1]。過共晶Al-Si合金製の一体型エンジンブロックは、ダイ充填時の乱流が少ないため、低圧ダイカストプロセスによってのみ製造されている[2]。高圧ダイカストは最も生産性の高い鋳造プロセスの1つであるが、高圧ダイカストプロセスによる一体型エンジンブロックの製造は、以下の理由により制限されている: 4. 研究の概要: 研究テーマの背景: 本研究は、特にエンジン部品のような高い耐摩耗性が要求される用途向けの過共晶Al-Si合金に焦点を当てている。これらの合金は有益である一方、高圧ダイカスト(HPDC)での使用は、高い鋳造温度や金型摩耗といった、高いシリコン含有量に関連する問題によって制約を受けている。 先行研究の状況: 先行研究によれば、微細な初晶シリコン粒子の均一な分布が、シリンダーブロック表面の最適な特性を得るための鍵であり、これは従来、リンの添加によって達成されてきた。しかし、リンはシリコンの析出温度を上昇させ、鉄が存在すると有害なβ板状晶の形成を促進する可能性がある[6]。鉄(Fe)はアルミニウム鋳造合金における最も一般的な有害不純物である。典型的な二次Al-Si合金は、通常0.2 wt.-%から0.8 wt.-%の範囲の鉄レベルを含んでいる。高圧ダイカストでは、溶融Al合金が鋼製ダイに焼き付くのを防ぐために鉄がしばしば添加される。鉄は固溶アルミニウムへの溶解度が非常に低く、凝固中に様々なタイプの複雑な金属間化合物相を形成する。これらの金属間化合物鉄相の複雑な形状は、鋳造性、さらには合金の機械的特性に大きな影響を与える。Al-Si合金では、Al5FeSi相(β相としてよく知られている)とα-Al8Fe2Si相(通常スラッジとして知られている)が存在する。β-Al5FeSi相は非常に大きく硬い板状の形状をしており、機械的特性、特に延性に悪影響を与える。機械的特性の劣化の度合いは、体積分率と板状晶のサイズに依存する。両方のパラメータは、溶湯中の鉄含有量と凝固条件の関数である。冷却速度がβ相の長さに重要な影響を与えることはよく知られている。通常の鋳造条件と中程度の鉄レベルでは、β相は50 µmから500 µmの範囲のサイズに成長することがある。非常に高い冷却速度で凝固した少量の鉄を含む合金では、金属間化合物粒子は通常10 µmから50 µmのサイズを有する。さらに、β相の板状形態は、凝固中の供給困難を引き起こし、収縮気孔形成の傾向を高めることが予想される[7]。鋳造性および機械的特性に対する鉄のこの有害な影響を回避するために、β相の板状形態をよりコンパクトなα相に変換する必要がある。ここでは、マンガンが鉄の影響を中和し、β板状晶を金属間化合物α相形態に改質するための合金元素として広く使用されている。Siと共にMnが存在する場合、一次α-Al15(Fe,Mn)3Si2相は、コンパクト、星形、樹枝状、またはチャイニーズスクリプト結晶として現れることがある。α相のすべての形態は、β相よりも機械的特性に対する害が少ない。しかし、α相のコンパクトな形態が最良の解決策である。Al-Si-Fe溶湯へのMnとCrの複合添加は、コンパクトな形で成長するα相の析出にもつながる可能性がある。ここで、鉄はMnとCrによって部分的に置換され、α-Al15(Fe,Mn,Cr)3Si2相を形成する。約815 HVの高いマイクロ硬度のため[8]、α相は初晶シリコンに加えて耐摩耗性化合物として機能することができる。しかし、Al-Si溶湯中の複雑な金属間化合物α-Al15(Fe,Mn,Cr)3Si2粒子は、高い析出温度と溶湯よりも高い密度を有し、炉の底にスラッジとして沈降し、炉の有効容量を減少させる可能性がある。スラッジの形成は、溶湯中のMnとFeの減少により、合金のダイ焼き付き傾向を高める可能性もある[9]。スラッジ形成はしばしば工業的に発生し、溶湯の化学組成と炉温度の2つの変数に依存する。Fe、Mn、Crの量が増加すると、スラッジ形成温度が上昇し、炉内の溶湯温度に達することがある。したがって、元素の量は溶湯中で制限されなければならず、α相の析出温度が溶湯温度を超えないようにする必要がある。一方、これらの元素は、Si粒子の減少した体積分率を補償するコンパクトなα粒子の高い体積分率を得るために溶湯中に望まれる。ここでは、最適値を見つける必要がある。JorstadとGobrechtはスラッジ現象を研究し、Al-Si-Cu合金用のスラッジファクター(SF)を定義した。これは、スラッジ形成を引き起こす可能性のあるFe、Mn、Crの臨界比を決定するために使用できる[10,11]。このファクターは式(1)から計算される:Sludge Factor = Fe + 2 x wt. % Mn + 3 x wt. %Cr (1)スラッジファクターが高いほど、スラッジ形成温度が高くなり、ショットチャンバーとダイの摩耗に有害な結果をもたらす溶融および鋳造温度の上昇につながる。 研究目的: 本研究の目的は、高圧ダイカスト用に特別に調整された新しい耐摩耗性過共晶AlSi合金を開発することであった。既存の合金の限界を克服するための目的は以下の通りである:

Read More

Fig. 1 Experimental work: (a) Automatic MIG welding; (b) FSW process; (c) Three welded plates

溶接Al-6061プレートのFSW、MIG、TIG溶接法における比較分析

Al-6061プレート接合の最適解を探る:FSW、MIG、TIG溶接の強度と微細構造の徹底比較 本技術概要は、Aaluri Praveen Reddy氏およびSaurabh Dewangan氏によって執筆され、ACTA METALLURGICA SLOVACA(2023年)に掲載された学術論文「A COMPARATIVE ANALYSIS AMONG THE WELDED Al-6061 PLATES JOINED BY FSW, MIG AND TIG WELDING METHODS」に基づいています。HPDC専門家のために、CASTMANのエキスパートが要約・分析しました。 キーワード エグゼクティブサマリー 課題:なぜこの研究がHPDC専門家にとって重要なのか アルミニウム合金、特にAl-6061は、その軽量性、耐食性、加工性の良さから多くの産業で不可欠な材料です。しかし、その低い融点と高い熱伝導率のため、アーク溶接には特有の難しさが伴います。溶接部の品質、特に機械的強度の確保は、製品の信頼性に直結する最重要課題です。 従来、TIG溶接やMIG溶接が用いられてきましたが、近年では固相接合である摩擦攪拌接合(FSW)も注目されています。しかし、これらの3つの主要な溶接法を同一条件下で直接比較し、どの手法がAl-6061の接合に最適なのかを包括的に示した研究は多くありませんでした。本研究は、このギャップを埋め、エンジニアが用途に応じて最適な溶接法を選択するための、データに基づいた明確な指針を提供します。 アプローチ:研究手法の解明 本研究では、Al-6061合金プレート(寸法100×50×4 mm)の接合に、以下の3つの手法を用いました。 溶接後、各プレートからASTM-E8規格に準拠した引張試験片をワイヤ放電加工機(WEDM)で切り出しました。そして、引張試験、ロックウェル硬さ試験(Bスケール)、走査型電子顕微鏡(FESEM)による破面解析、そして微細構造観察を実施し、各溶接部の特性を詳細に評価しました。 発見:主要な結果とデータ 本研究から得られた主要な結果は、溶接法の選択がAl-6061接合部の性能に劇的な影響を与えることを示しています。 HPDCオペレーションへの実践的な示唆 この研究結果は、ダイカスト製品の二次加工やアセンブリにおける溶接プロセスの最適化に、直接的な知見を提供します。 論文詳細 A COMPARATIVE ANALYSIS AMONG THE WELDED Al-6061 PLATES JOINED BY FSW, MIG AND TIG WELDING METHODS 1. 概要: 2.

Read More

Fig. 3 Microstructures at different zones of the friction stir welded Cu-SS Joint Future work:

複合的な全視野イメージングと金属組織学的アプローチによる摩擦攪拌接合(FSW)された銅-ステンレス鋼継手の局所特性評価

異材接合の壁を越える:摩擦攪拌接合(FSW)における銅とステンレス鋼の接合界面で何が起きているのか? この技術概要は、S. Ramachandran氏らによる学術論文「A combined full-field imaging and metallography approach to assess the local properties of friction stir welded (FSW) copper-stainless steel joints」に基づいています。ハイプレッシャーダイカスト(HPDC)の専門家のために、株式会社CASTMANのエキスパートが要約・分析しました。 キーワード エグゼクティブサマリー 課題:なぜこの研究がHPDCの専門家にとって重要なのか エンジニアリングの世界では、異なる特性を持つ材料を組み合わせる「異材接合」のニーズが絶えず高まっています。しかし、例えば銅とステンレス鋼のように、物理的特性(融点:Cu-1085°C vs SS-1400-1500°C、熱伝導率:Cu-401 W/m-K vs SS-17-19 W/m-K)が大きく異なる材料を接合しようとすると、大きな壁に直面します。 論文のIntroductionで指摘されているように、従来の溶融溶接では、一方の材料が他方よりずっと早く溶けてしまい、金属間化合物や気孔、高温割れといった欠陥が発生しやすくなります[1]。これは製品の機械的特性を低下させ、早期破壊の原因となり得ます。この問題は、インサート成形などで異材を扱う機会のあるHPDCの現場においても、決して他人事ではありません。材料の健全性をいかに保つかは、あらゆる先進的な製造プロセスの共通課題です。 アプローチ:研究手法の解明 この課題を克服するため、研究者らは摩擦攪拌接合(FSW)というプロセスを採用しました。FSWは、回転するツールを材料に押し込み、摩擦熱と塑性流動によって材料を溶かすことなく接合する「固相接合」技術です。これにより、溶融溶接に伴う多くの問題が回避されます[2]。 本研究では、FSWで接合された銅とステンレス鋼の継手に対し、以下の複合的な分析手法が用いられました。 発見:主要な研究結果とデータ 本研究は、FSWによって銅とステンレス鋼の間に形成される複雑な接合部の特性を明らかにしました。 HPDCオペレーションへの実践的な示唆 この研究はFSWに関するものですが、その発見はHPDCの専門家にとっても重要な示唆を与えてくれます。 論文詳細 A combined full-field imaging and metallography approach to assess the local properties of friction

Read More