Tag Archives: Aluminum Diecasting

Fig2 Rotor core assembly(A) and squirrel cage(B)

高効率電動機用Cuロータの半溶融成形とプロセスパラメータ制御

本紹介資料は、「韓国塑性加工学会誌 (Transactions of Materials Processing)」に掲載された論文「고효율 전동기용 Cu Rotor의 반응고 성형과 공정변수 제어 (Process Control and Thixoforming of Cu Rotor for High Efficiency Motors)」に基づいて作成されました。 1. 概要: 2. 抄録 (Abstract): 中小誘導電動機のロータは、通常アルミニウムダイカストによって製造されてきた。誘導電動機の効率を向上させるために、新たに開発されたCu-Ca合金が研究された。Ca含有量が1.0wt%未満のCu合金の電気伝導度は80% IACS以上であった。Cu-Ca合金は150℃以上の広い半溶融域を持つため、チクソフォーミングプロセスに適している。本研究では、従来のアルミニウムダイカストロータを置き換えるために、チクソフォーミングプロセスを用いたCuロータが開発された。チクソフォーミングされたロータの微細組織分析が行われた。不完全充填が誘導電動機の効率に及ぼす影響について議論された。 3. 緒言 (Introduction): 電動機は電気エネルギーをロータの回転によって機械的エネルギーに変換する装置であり、家庭だけでなく産業分野で広く使用されている。エネルギー変換過程において、電動機の種類によっては7~25%のエネルギー損失が発生するため、電動機の効率向上は省エネルギーにおいて重要である。誘導電動機の効率は、ロータの電気伝導度に大きく影響される。現在、商業的に生産されている中小電動機ロータは、主に純アルミニウムをダイカストで製造している。これは、アルミニウムの低コスト、複雑形状の製造容易性、銅合金ダイカストに比べて金型寿命が長いことによる。しかし、アルミニウムの電気伝導度は純銅の約60%レベルであるため、効率向上のためにはロータ材料を電気伝導度の高い銅合金に転換することが望ましい。銅合金は優れた機械的特性(強度、耐疲労性、耐クリープ性)を持ち、エネルギー効率、耐久性、性能に優れた電動機の製造を可能にする。しかし、銅合金は融点が高い(1083℃)ため、ダイカスト時に金型の摩耗が激しく、経済的な金型寿命を期待することが難しい[2]。この問題を解決する方策として、AlおよびMg合金部品の製造に広く用いられている半溶融成形法(チクソフォーミング)がある。半溶融成形は固液共存域で成形が行われ、液相線よりも100℃以上低い温度で成形するため、ダイカストに比べて金型の摩耗率が低く、鋳造欠陥が少ない利点がある。本研究では、広い固液共存域を持つCu-Ca合金を使用し、SIMAプロセス(Strain Induced Melt Activated)を通じて球状化組織を形成した後、プロセスパラメータの制御を通じて高効率電動機用ロータの半溶融成形を行った。成形された試作品の効率測定を通じて、誘導電動機の効率向上について議論する。 4. 研究の要約: 研究テーマの背景: エネルギー消費削減のため、高効率電動機への要求が高まっている。従来の誘導電動機ロータはアルミニウムダイカストで作られており、アルミニウムの低い電気伝導度のために効率が制限される。銅は優れた伝導性と機械的特性を持つが、融点が高いために金型損傷の問題があり、従来のダイカスト適用が困難である。 従来の研究状況: アルミニウムダイカストはロータ生産の確立された方法である。チクソフォーミング(半溶融成形)は、Al、Mg合金においてプロセス温度の低減と欠陥削減のために用いられる技術である。Cu-Ca合金の電気伝導度や半溶融特性に関する研究が行われてきた[3]。SIMAプロセスは、チクソフォーミングに適した球状微細組織を得る方法として認識されている[4-5]。 研究の目的: 本研究は、従来のアルミニウムダイカストロータを代替し、誘導電動機の効率を向上させるために、Cu-Ca合金を用いた半溶融成形プロセスによって銅ロータを開発することを目的とした。研究は、半溶融成形プロセスパラメータの制御、結果として得られる微細組織と充填特性の分析、そしてこれらの要因が最終的なモータ効率に及ぼす影響の評価に焦点を当てた。 中核研究内容: 本研究の中核内容は以下の通りである: 5. 研究方法論 研究設計: 本研究は実験的アプローチを採用した。材料選定(Cu-Ca合金)および真空誘導溶解(VIM)とSIMAプロセスを用いた準備から開始した。3HPロータ形状に対して、加熱条件やビレット形状などのプロセスパラメータを変更しながら半溶融成形試験を実施した。欠陥分析には、目視検査、断面切断、顕微鏡観察が含まれた。内部品質評価のために非破壊検査(RT)を使用した。最終的に、生産されたCuロータの効率を測定し、基準となるアルミニウムダイカスト(Al D/C)ロータと比較した。 データ収集および分析方法: 研究テーマと範囲: 本研究は、誘導電動機ロータ生産のためのCu-Ca合金、特にCu-0.5%Caの半溶融成形性に焦点を当てた。適切な半溶融微細組織を得るためのSIMAプロセス適用を調査した。範囲は、特定の3HPロータ設計(Fig

Read More

Fig. Gating System with Rotor.

コンプレッサーローターダイのゲーティングシステム設計のためのカスタマイズされたソフトウェアの開発

この紹介資料は、’NOVATEUR PUBLICATIONS’ が発行した ‘Development of Customized Software for Designing Gating System of Compressor Rotor Dies’ 論文に基づいています。 1. 概要: 2. 概要 (Abstract): 欠陥のない高圧ダイカスト部品を得るための重要な要素は、ゲーティングシステムの設計です。ゲーティングシステムは、鋳造中の溶融合金の流路です。このプロジェクトでは、高圧ダイカスト金型のゲーティングシステム設計のための体系的なアプローチが開発されました。これには、業界の現在の設計慣行を研究し、これを機械選択、ゲート、ゲートランナー、ランナー、およびオーバーフロー設計に関する規則の知識ベースに変換することが含まれていました。全体のアプローチは、Visual C# を使用して Windows ベースのプログラムで実装されました。産業事例研究で正常にテストされました。これは、高圧ダイカスト金型設計の分野で初めての試みであり、業界に大きな関心と価値を提供することが期待されます。 3. 研究概要: 研究テーマの背景: ゲーティングシステムは、欠陥のない高圧ダイカスト部品にとって非常に重要です。これは、金型キャビティへの溶融金属の流れを制御します。 先行研究の現状: 既存の設計慣行は、過去のパフォーマンスから導き出された経験と確立された規則に大きく依存しています。最適なゲーティングシステム設計を成功裏に決定する単一の方程式はありません。広範囲な文献がありますが、鋳造のサイズと形状の変動により、設計はケースバイケースであることがよくあります。 研究目的: ゲーティングシステム設計のための体系的で知識ベースのアプローチを開発し、それをコンピュータプログラムに実装することです。 コア研究: 「Diecast」と呼ばれるプロジェクトは、産業設計慣行を、機械選択、ゲート、ゲートランナー、ランナー、およびオーバーフロー設計のための一連の規則に変換します。Visual C++ を使用して Windows ベースのプログラムで実装されています。 4. 研究方法論 研究デザイン: この研究には、ゲーティングシステム設計プロセスを論理的で相互依存的なステップに分割することが含まれていました。各ステップの方程式とロジックが収集され、検証されました。 データ収集と分析方法: データは、文献と産業ソースの両方から収集されました。このシステムは、テキストファイル形式で保存された材料特性と機械パラメータのデータベースを使用します。 研究テーマと範囲: この研究は、以下を含むゲーティングシステム全体の設計をカバーしています。 5. 主な結果: 主な結果: 図名リスト: 6. 結論: 主な結果の要約:

Read More

Fig. 2. Flowchart for cast design.

ダイカスト金型設計システム開発に関する研究

この論文概要は、[The International Journal of Advanced Manufacturing Technology]で発表された論文「[A Study on Development of a Die Design System for Diecasting]」に基づいています。 1. 概要: 2. 研究背景: ダイカストは、高い射出圧力で鋳造合金を注入することにより、短いリードタイムと良好な表面品質で多数の製品を製造する成形方法の一つです。自動車、航空宇宙、エレクトロニクスなどの産業において、ダイカスト部品の利用は増加の一途を辿っています。ダイカストは、複雑な形状や薄肉の製品を高生産性、滑らかな表面、優れた寸法精度で製造できるという利点を持つ一方で、少量生産にはコスト高となるため不向きです。しかし、ダイカスト金型の設計は、実際には試行錯誤法によって行われており、経済的損失と時間的ロスを引き起こしています。既存のCAD/CAMシステムは、射出成形などの分野では普及していますが、ダイカスト金型設計への応用は限られています。また、現在の現場での実務は、溶融金属の流れや金型内の熱伝達を解析する能力が不足しているため、経験に頼る部分が多く、特にランナー・ゲートシステムにおいては、試作鋳造と修正を繰り返すことが多く、加工時間とコストの増加につながっています。ランナー、ゲート、ビスケット、オーバーフロー、エアベントなど、ダイカスト金型設計は複雑な要素を考慮する必要があり、熟練した設計者の経験が不可欠です。設計の欠陥が後工程で発見された場合、金型の修正に多大な時間と労力が浪費される可能性があります。 3. 研究目的と研究課題: 本研究は、従来のダイカスト金型設計の限界を克服するために、コンピュータ支援設計(CAD)システムの開発を目的としています。主な研究目的は、特にランナー・ゲートシステムに焦点を当て、金型設計プロセスを自動化することです。本研究では、以下の主要な研究課題に取り組みます。 研究仮説は、確立されたダイカストの原則とアルゴリズムを組み込んだルールベースのCADシステムが、金型設計の効率と精度を大幅に向上させ、試行錯誤による反復作業に関連する開発時間とコストを削減できるというものです。 4. 研究方法: 本研究では、ダイカスト金型設計用のCADシステム構築に焦点を当てたシステム開発アプローチを採用しています。研究デザインは、AutoCAD環境でAutoLISP言語を用いてアルゴリズム開発とシステム実装を中心に行いました。特にランナー・ゲートシステムにおける金型設計の自動化プロセスを示すフローチャートベースの方法論を提示しています。 データ収集は、ランナーおよびゲート設計に関連する既存のダイカスト知識、経験則、および確立された方程式の収集を含みます。この知識ベースがルールベースシステムの基盤となります。分析方法は、鋳造設計、金型レイアウト設計、および金型生成のためのアルゴリズムの開発と実装を含みます。システムの機能は、キャップ形状製品(モータープーリー)とモータープーリー製品への適用事例を通して実証され、設計プロセスを自動化する能力を示しています。研究範囲は、アルミニウム合金ダイカストの金型設計に限定され、ランナー・ゲートシステムを主な重点としています。 5. 主な研究成果: 本研究の主要な成果は、ダイカスト金型設計用の機能的なCADシステムの開発です。主な研究成果は以下の通りです。 図表名リスト: 6. 結論と考察: 本研究では、特にランナー・ゲートシステムの自動化に重点を置いて、ダイカスト金型設計に特化した自動化CADシステムを開発しました。本研究は、CAD環境に統合されたルールベースのアプローチを用いて、金型設計プロセスを合理化し、強化する可能性を示しています。 学術的意義: 本研究は、アクセスしやすく効果的な金型設計システムを作成するためのアルゴリズムを提供します。金型設計の実践的な知識と経験的な側面を、構造化された手順の枠組みに形式化し、定量化します。これは、金型設計を経験に基づいた芸術から、より体系的でエンジニアリング主導のプロセスへと移行させる上で重要です。 実用的意義: 開発されたシステムは、ダイカスト業界に大きな実用的意義をもたらします。特にランナー・ゲートシステムなどの金型設計の主要な側面を自動化することにより、ダイカストの専門知識が限られているエンジニアであっても、金型設計タスクをより効率的に実行できるようになります。これにより、設計サイクル時間の短縮、開発コストの削減、および最適化されたランナーおよびゲート構成による金型性能の向上が期待できます。システムの試行錯誤を最小限に抑える能力は、材料の無駄と生産の遅延を削減します。 研究の限界: 著者らは、現在のシステムには限界があることを認めています。アンダーカットのある製品の金型設計にはまだ対応していません。さらに、パーティング面の決定は依然としてユーザーの入力に依存しており、システムの適用可能性は主に単一印象金型で実証されています。 7. 今後のフォローアップ研究: 開発されたCADシステムの機能と範囲を拡張するために、今後の研究方向が提案されています。 8. 参考文献: 9. 著作権: この資料は、「[ J. C. Choi, T.

Read More

Figure 11. Micrographs of fractured (a) α-Al15(Fe,Mn,Cr)3Si2 particle and (b) β-Al5FeSi platelet after wear testing.

高温部品用耐摩耗性ダイカストAlSi9Cu3(Fe)合金の設計

この論文概要は、[Metals]ジャーナルに掲載された[Design of Wear-Resistant Diecast AlSi9Cu3(Fe) Alloys for High-Temperature Components]論文に基づいています。 1. 論文概要 本研究は、高温環境で使用できる耐摩耗性ダイカストアルミニウム-シリコン-銅合金を開発するために、AlSi9Cu3(Fe)合金を鉄(Fe)、マンガン(Mn)、クロム(Cr)元素の添加によって改良することに焦点を当てています。鉄、マンガン、クロムの含有量を様々に変化させた(Fe:0.80、1.00、1.20 wt.%; Mn:0.25、0.40、0.55 wt.%; Cr:0.06、0.10 wt.%)複数の合金を作製し、室温から200℃までの範囲でブリネル硬さ測定とピンオンディスク摩耗試験を実施しました。金属組織学および画像解析技術を用いて、異なる合金レベルにおける微細組織の変化を定量的に評価しました。その結果、Fe、Mn、Cr含有量の増加は、主に多面体、ブロック状、星状の形態を持つ一次および二次Feリッチ粒子の析出を促進することが示されました。これらの化合物は、化学組成や形態の変化に影響されない高い硬度を示しました。高温では、ダイカスト合金は常に低い平均硬度と耐摩耗性を示しましたが、特に200℃において顕著でした。しかし、Feリッチ粒子の量を増やすことで、合金の軟化を補償できることがわかりました。 主要情報: 2. 研究背景:自動車の軽量化、高温部品、そしてアルミニウム合金の限界 自動車分野におけるアルミニウムベース合金の需要増加は、車両の軽量化と性能向上へのニーズに起因しています。軽量材料の使用は、エネルギー効率と環境要件を満たすために不可欠です。Al-Si合金は、その優れた鋳造性と重量比の高い機械的特性により、自動車産業で広く使用されています。 引張特性や疲労特性に加えて、特にピストン、シリンダーブロック、内燃機関のシリンダーライナーなどの高温部品向けに、Al-Si系合金のトライボロジー特性を改善するための多大な研究努力が払われています[1-4]。 しかし、アルミニウム合金は本質的に十分な耐摩耗性を備えていません[5]。シリコン合金化は、硬質Si結晶の形成を促進することにより、鋳造Al合金の耐摩耗性を改善するための一般的な方法ですが、被削性を低下させます。過共晶Al-Si合金(Si > 13 wt.%)は、通常、トライボロジー用途に使用されますが、商業用途ではSi含有量は20 wt.%を超えません[9]。 鉄(Fe)は、Al-Si合金のトライボロジー特性を改善できると報告されており[10]、少量の鉄添加は、高温における材料の機械的特性と熱安定性を向上させます[11]。しかし、鉄は一般的にAl-Si鋳造合金の不純物と見なされており、最終的な機械的特性に悪影響を与えます。これは、典型的には脆いβ-Al₅FeSi (β-Fe)相の形成に起因し、微細組織中に針状粒子として現れます。針状粒子の先端は応力集中点として作用し、β-Fe相の存在は、引張特性(延性と極限引張強度)および耐摩耗性を全体的に低下させます[12]。それにもかかわらず、高圧ダイカスト(HPDC)プロセスで発生するダイソルダー現象を軽減または排除するために、アルミニウムダイカスト合金には高いFe含有量が必要です。 したがって、Al-Si合金におけるβ-Fe針状粒子の負の影響を軽減するための一般的な解決策は、遷移金属(Mn、Cr、Ni、Mo、Co)および一部のアルカリ土類金属(Sr、Be)を添加して、β-Fe相の形態をより害が少なく、よりコンパクトな形状に修正することです[13-15]。 最も広く使用されている合金元素であるマンガンとクロムは、針状のβ-Fe相の代わりに、硬質の一次α-Al₁₅(Fe,Mn,Cr)₃Si₂ (α-Fe)粒子(スラッジ[18])の析出を誘導します。[19]で報告されているように、β-Feをα-Fe相に置き換えることで耐摩耗性が向上します。α-Fe粒子は、β-Fe相と比較してα-Alマトリックスとの結合が優れているため、界面マトリックス/粒子での亀裂形成の可能性を低減します。 スラッジ形成は、HPDC鋳造プロセスにおける典型的な問題であり、ここでは、金型と工具の動作寿命を延ばすために、溶融温度が他の鋳造プロセスよりも一般的に低くなっています。溶融および保持温度と時間に加えて、合金の化学組成がスラッジ形成に影響を与えます。スラッジ係数(鉄当量値[20,21]とも呼ばれる)は、一次α-Fe粒子の析出を予測するための有用なパラメータとして広く受け入れられています。スラッジ係数は、合金中の初期の鉄、マンガン、クロム含有量から決定できます[22,23]: スラッジ係数 (SF) = (wt.%Fe × 1) + (wt.%Mn × 2) + (wt.%Cr × 3) (1) このような状況において、自動車産業は、優れた耐摩耗性と高温耐性、そして大量生産への適合性との間で最良の妥協点を見出すことを求めています。このため、耐摩耗性自動車部品は、過共晶Al-Si合金をHPDCではなく低圧ダイカストによって製造されています。過共晶合金の高いシリコン結晶密度は、金型と工具の寿命を短縮するためです。 逆に、HPDCを使用する能力は、高い生産速度、短いサイクル時間、およびより複雑な形状の鋳造品の製造など、いくつかの利点を提供できます。これは、金型の低い摩耗率を保証するために必要な過共晶Al-Si合金の使用を維持し、耐摩耗性と高温特性を最適化するためにスラッジ粒子を適切に設計することによって達成できます。 本研究では、ダイカストAlSi9Cu3(Fe)合金を分析しました。化学組成の変動は、EN 1706:2010規格[24]の許容誤差範囲内で、鉄、マンガン、クロムの含有量を段階的に増加させることによって系統的に得られました。本論文では、Fe、Mn、Cr合金元素の含有量を増加させた提案合金群を調査し、微細組織、硬度、高温耐摩耗性を考慮しています。 3. 研究目的と研究課題 本研究の目的は、高温部品に適した耐摩耗性ダイカストAl-Si-Cu合金を開発することです。これを達成するために、AlSi9Cu3(Fe)合金をベースとして、鉄(Fe)、マンガン(Mn)、クロム(Cr)の含有量を制御することにより、合金特性を改善することを目指しています。

Read More

COPPER DIE-CASTING SOLUTIONS

구리 다이 캐스팅은 높은 경도, 높은 부식 저항성, 최고의 기계적 특성, 우수한 내마모성, 좋은 치수 안정성, 강철 부품의 강도에 근접한 우수한 특성을 제공합니다. 고전도성 구리를 사용한 버스바, 전력 케이블, 가정용 전선 및 고압 선로 등 산업에 적용되고 있습니다. 복잡한 형상의 비표준 구성 요소의 경우 고압 다이 캐스팅 방법을 사용하여 구리로 주조할 수 있습니다. 그러나 순수

Read More

COPPER DIE-CASTING SOLUTIONS

銅ダイキャスティングは高い硬度、優れた耐食性、最高の機械特性、優れた耐摩耗性、優れた寸法安定性、鋼部品の強度に匹敵する優れた特性を提供します。 高導電性銅を使用したバスバー、電力ケーブル、家庭用配線、および高圧送電線など、産業に適用されています。 複雑な形状の非標準構成要素の場合、高圧ダイキャスティング方法を使用して銅で鋳造することができます。 ただし、純粋な銅は鋳造が非常に難しく、表面のひび割れ、収縮、および内部の気孔が発生しやすいです。銅ダイキャスティングは非常に高い導電度の鋳造物が必要な場合に主に使用されます。 Applications Copper Die-Casting Solutions MOLD LIFE POROSITY OPERATION CONDITION TECHNICALISSUE Damage to die due to continuous exposure to thermal stress– Thermal stress due to temperature difference in die and molten metal– Melt temperature : 1,350°C, Die temperature : 2~300°C– Temperature differ– ence of approx. 1,000°CShorter die life span compared to dies

Read More

INNOVATION AND RESEARCH

CASTMANは常にどのようにより良い方法で仕事を進めるかを検討しています。革新は産業を発展させるために使用される高度なツールと技術を開発するのに良い方法です。 技術革新はいくつかの重要な利点を提供します。これにより製品が向上し、リードタイムが短縮され、コストが削減されます。 私たちは薄い壁のアルミダイキャスティングなどの革新を通じて、重量を軽減し、より高い強度の部品を開発し、高品質の製品を提供できる技術を保有しています。 私たちの研究開発と革新技術は、お客様のビジネスに高品質な製品を提供します。 CASTMANの持つ革新的な技術がお客様のビジネスをどのように向上させるかを検討し、製品開発に困難があればいつでもご連絡ください。 ありがとうございます。  Project List YEAR PRODUCT MATERIAL CUSTOMER 2021 Mass Produce EGR Mixer (Salt Core Technology) Received IR52 Jang Youngsil Award Relocated and expanded manufacturing plant 2019~2020 EGR Mixer using the salt method  Al Hyundai Motor Company 2016 Copper Rotor for Turbo Blower Motor Cu Korean Turbo Blower Company 2016 Copper

Read More

高圧ダイカストに使用される塩コア技術

製造業の発展に伴い、アルミニウムダイカスト部品はさまざまな分野でますます使用されており、中空のダイカスト部品は構造の強度を高め、重量を軽減することができます。真空ダイカスティングは主に自動車部品に使用され、薄い壁を作ることができます。ソルトコアを使用して、ダイカスティング中に水で取り除かれる複雑な中空部品を製造することができます。 Competitive Cost Reduction Products Made by Replacing Sand Core with Salt Core Technology Salt core 水に溶解される塩コアは、低圧鋳造や砂鋳造で使用される砂コアと比較して、鋳造後に高圧水で取り外すことができる、水に溶ける塩で作られたコアを指します。 塩コアは強度が高く、クリーンな鋳造表面仕上げ、気泡が少なく、取り外しが容易で、部品への損傷が最小限であり、環境にやさしいです。また、塩もリサイクルが可能です。そのため、自動車産業ではますます塩コアが使用されるでしょう。 高圧ダイカストでは、ツールのコアは温度が680〜720℃、速度が20〜50m/sの溶融合金の衝撃に耐える必要があります。そのため、水に溶ける塩は強度が高く、高圧および低圧ダイカストの要件を満たす必要があります。また、塩コアの収率は高圧ダイカストと一致し、塩コアの引張強さは少なくとも20MPaでなければなりません。さらに、良好に溶けやすく、清掃が容易であり、合金との反応がなく、リサイクル利用に対応している必要があります。 高圧ダイカストの収率とコアの製造を考慮して、塩コアを製造する主な方法は射出法です。ダイカスト中に塩コアの固化時間は合金よりも長いため、生産効率に悪影響を与えます。塩コアの製造と充填・固化のシミュレーションの基準を提供し、ダイカスト中のクラックのリスクの可能性を見つけるためには、塩コアの評価システムを確立する必要があります。 -Smooth surface quality-High thermal shock resistance-Water soluble-Thermal insulation -No chemical binders used-No separate coating material used-Do not use harmful substances-Integrated core support structure -Possible to design complex internal flow channels-Undercut molding possible-Surface quality specification available-Can

Read More

A heat sink is designed to maximize its surface area in contact with the cooling medium surrounding it, such as the air

アルミニウムダイキャスティング | ALUMINUM DIECASTING PARTS

キャストマンは先進的なダイカスティング活動を通じて優れたダイカスティング製品を紹介し、製造業への継続的な貢献をしています。ハイプレッシャーダイカスティングは多くの部品を迅速に製造するために最適化された非常に優れたプロセスであり、キャストマンは高度なエンジニアリング技術を有しています。 キャストマンのハイプレッシャーダイカスティングを使用すると、厳格に管理されたプロセスを通じてどんな複雑な形状の部品でも迅速に生産することができます。 Aluminium Diecasting Parts | CASTMANは主要市場で産業用部品向けのアルミニウムダイキャスティングサービスを提供しています。私たちは高品質な要件を満たす製品を提供できます。アルミニウムダイキャスティング分野のリーディングメーカーであるCASTMANは、以下のようなさまざまな製品を供給できます。 カスタム押出散熱板の製造 カスタム押出散熱板の製造をお手伝いいたします。必要な合金、表面仕上げ、および2次加工を取得できるさまざまな機能を提供しています。 通常、散熱板を作成するために使用される2つの材料があります。散熱板は通常、アルミニウムまたは銅で作られています。それぞれには独自の利点があります。 Heat Sink by High conductivity Aluminum Alloy Integrated Heat Sink with Cooling Capability アルミニウムヒートシンク アルミニウムはヒートシンクの最も一般的な材料です。特に、押出しアルミニウムヒートシンクはほとんどのプロジェクトに適しています。金属は軽く、比較的熱伝導率が優れています。 銅ヒートシンク 銅はアルミニウムよりも熱伝導率がはるかに優れています。ただし、欠点は重量とコストです。金属は時折、熱伝導率の重要性が軽量化よりも重要な場合に使用されます。 各ヒートシンク製造プロセスには独自の利点と欠点があります。ヒートシンクを作成する方法にはさまざまなものがあります。 1. 押出しヒートシンク ほとんどのヒートシンクは押出しアルミニウムで作られています。このプロセスはほとんどのアプリケーションに適しています。押出しヒートシンクは低コストで提供され、カスタム仕様を簡単に製造できます。Castmanの場合、押出しヒートシンクのパフォーマンスはCFD(熱流解析)を使用して最大限に向上させることができます。 2. スキッドヒートシンク この方法は通常、銅を使用して堅固な金型から生産されます。これらのヒートシンクは高い設計の柔軟性を提供し、高いフィン密度を実現できます。銅ヒートシンクはより多くの表面積と熱放散の機会を作り出し、高い性能を提供しますが、通常は重量が欠点です。 3. CNC加工ヒートシンク CNC加工ヒートシンクは高い熱伝導率を提供し、最も複雑な形状を得ることができます。ただし、コストがかかり、各部品の生産時間のために大量生産には適していない場合があります。 顧客の製品仕様に適したヒートシンクのタイプを製作 ヒートシンクは電子デバイスで発生した熱を吸収し放散するのに役立ちます。設計要件とボリューム要件に応じて適切なタイプを選択する必要があります。 材料に関して、アルミニウムは重量とコストを節約しますが、銅は最高水準の熱伝導率を提供します。押出しやジョイントから鍛造や加工までさまざまな製造オプションが利用可能です。それぞれの利点と欠点があります。 また、さまざまな仕上げオプションを提供しています。ヒートシンクの最も一般的な表面仕上げの一つは陽極酸化処理です。この電気化学プロセスは表面放射率、耐食性、耐摩耗性、および電気絶縁性を向上させます。ペイントやパウダーなどのコーティングは絶縁体の役割を果たすため、お勧めされません。 Castmanで生産することで、高品質の製品を保ちながらかなりのコスト削減が可能です。 いつでも製品生産に関するお問い合わせをお寄せください。お手伝いできることがあります。 Contact UsTel : +82-31-351-5022Fax: +82-31-351-5033E-mail : sales@admincastman.mycafe24.comjapan@admincastman.mycafe24.com(Japan Sales)