By user 07/15/2025 Aluminium-J , automotive-J , FSW-J , Technical Data-J Applications , CAD , Efficiency , Magnesium alloys , Review , 自動車産業 , 자동차 , 자동차 산업
この紹介論文は「DAAAM International Scientific Book 2015」に発表された「A Critical Review of Friction Stir Welding Process」論文に基づいています。 1. 概要: 2. 要旨: 摩擦攪拌接合(FSW)は、航空宇宙、海洋、宇宙船、自動車などの製造業において、異なる金属合金や非金属を接合するために急速に普及している永続的な固相接合プロセスです。現在のシナリオでは、金属合金の溶接は、融接プロセスに対する独特の特徴、すなわち気孔欠陥の減少、熱影響部(HAZ)の減少、シールドガスの不要、環境に優しい、歪みの減少などにより、FSWに置き換えられています。この章では、摩擦攪拌接合のプロセス原理、冶金学的および機械的側面、予熱およびナノ粒子添加の効果など、摩擦攪拌接合の重要な側面について批判的評価が議論されました。FSWに関連する困難やその他の問題も、この分野で広範囲な研究を行うために世界の研究コミュニティにガイドラインを提供するために取り上げられています。 3. 序論: 溶接業界は19世紀以降大きく発展し、当初は融接技術が主流でした。しかし、融接は広い熱影響部、凝固欠陥、機械的性質の低下などの課題を提示します。特にアルミニウムやマグネシウムなどの反応性元素については、従来の融接方法の限界により、固相溶接技術、特に摩擦攪拌接合(FSW)の開発が必要でした。FSWは1991年にThe Welding Institute(TWI)のWayne Thomasと同僚によって発明され、工作物を溶融させることなく90%欠陥のない接合部を生成します。この技術は宇宙船製造において接合強度を30%~50%増加させ、製造時間を23日から6日に短縮することが実証され、FSWをグリーンテクノロジーとして確立しました。 4. 研究の要約: 研究テーマの背景: 従来の融接技術は、広い熱影響部、凝固欠陥、歪み、機械的性質の低下などの限界を抱えています。これらの問題は、高い強度対重量比により航空宇宙、海洋、自動車産業でますます使用されているアルミニウムおよびマグネシウム合金などの反応性元素を溶接する際に特に顕著です。 既存研究の現状: 論文は様々な材料にわたるFSWの広範囲な研究を検討し、研究の76%がアルミニウム合金に集中し、15%が鋼、6%がマグネシウム、3%が銅に関するものです。研究は工具形状効果、プロセスパラメータ最適化、微細構造解析、様々な合金システムでの機械的性質評価など、様々な側面をカバーしています。 研究の目的: この研究は摩擦攪拌接合プロセスの包括的で批判的なレビューを提供し、プロセス原理、冶金学的および機械的側面、予熱およびナノ粒子添加の効果をカバーし、この分野の将来の研究を導くために現在の研究のギャップを特定することを目的としています。 核心研究: 論文はアルミニウム合金、鋼、銅、マグネシウム、異種金属を含む様々な材料カテゴリーにわたるFSW研究を体系的に検討し、プロセスパラメータ、工具形状効果、微細構造変化、機械的性質を分析します。 5. 研究方法論 研究設計: この研究は包括的な文献レビュー方法論を用い、1991年のFSW発明から2015年まで発表されたFSW研究を体系的に分析します。 データ収集・分析方法: 著者らは様々な学術誌や会議から研究論文を収集・分析し、材料タイプ、プロセスパラメータ、研究焦点分野別に分類しました。「Fig. 5.Comparative study of published research work on FSW」に示されるように比較分析が実施されました。 研究テーマと範囲: レビューはアルミニウム合金(2xxx、5xxx、6xxx、7xxx、8xxxシリーズ)、鋼、銅、マグネシウム、チタン、プラスチック、異種金属組み合わせを含む多様な材料でのFSW適用と、ナノ粒子添加および予熱効果のような高度なトピックをカバーします。 6. 主要結果: 主要結果: レビューはFSWが融接と比較して優れた機械的性質を生成し、接合部が向上した引張強度、延性、疲労、破壊靭性を示すことを確認しました。工具回転速度、送り速度、スピンドル傾斜角を含むプロセスパラメータが接合品質に大きく影響します。工具形状、特にピンとショルダー設計は材料流動と熱生成において重要な役割を果たします。論文はまた、予熱とナノ粒子添加が接合特性をさらに向上させる可能性を強調しています。 図表名リスト: 7.
Read More
本稿は、「Euro PM2009 – Non-Ferrous Materials – Processing」に掲載された論文「Development of Platinum-Base Superalloy Components via Powder Metallurgy」に基づき作成されました。 1. 概要: 2. 要旨: ミンтек社は以前、白金基超合金を開発したが、これらの合金は鋳造が難しく成形性が限られているため、粉末冶金が潜在的な製造ルートとして検討された。本研究では、粉末冶金に基づく2つの方法を用いて、Pt₈₄:Al₁₁:Cr₃Ru₂の原子組成を持つ合金化白金粉末を製造した。最初の方法では、アルミニウム、クロム、ルテニウムの元素粉末を白金スポンジと共に溶融して予備合金を形成した。次に、この予備合金を再溶解し、水アトマイズ法で予備合金化白金粉末を製造した。2番目の方法では、水アトマイズ法で製造した純白金粉末を、アルミニウム、クロム、ルテニウムの元素粉末と混合し、機械的に合金化した。予備合金化粉末および機械的合金化粉末は、純白金粉末の形態、サイズ分布、密度を参照して特性評価され、一軸圧縮された。圧粉体は焼結された。光学顕微鏡、XRD、EDX分析を組み合わせて、焼結試料の粉末特性、微細構造、硬度を特性評価し、純白金圧粉体および同組成の鋳造合金と比較した。 3. 緒言: 白金は、自己触媒用途および宝飾品用途での使用でよく知られている。しかし、特定の合金元素の存在下でのニッケルとの特性の類似性から、構造用途向けの高温材料としての白金合金の使用に注目が集まっている。長年にわたり、ニッケル基超合金がこれらの用途の主要材料であった。航空機および陸上タービンのタービンブレードにおけるNBSAの使用は典型的な例である。しかし、より高い動作温度が要求される新しい用途のため、基材金属としてのニッケルはその温度限界に達しつつある。代替材料が必要とされ、イリジウム(1)、ロジウム(2)、白金(3)などの白金族金属は、より高い融点を持つという付加的な利点と共にニッケルと同様の挙動を示すため、有望な候補と見なされた。ミンтек社は、NBSAと同様の微細構造を持つ白金基超合金(PBSA)を開発した(4-6)。白金超合金の微細構造はPt-Al系に基づいている。この系は、Pt基γマトリックス中にγ’ Pt₃Al粒子を含む微細構造で構成される。このPt-Al基系をNiとCr(7)またはRuとCr(8)で合金化することにより、Pt₃AlのL1₂構造を首尾よく安定化させた。Pt₈₄:Al₁₁:Ru₂:Cr₃の組成を持つ四元合金が開発され、最良の構造を示すように最適化された(7)。白金基超合金の高温腐食挙動に関する研究では、NBSAを上回る良好な結果が示されている(9)。白金基超合金のクリープ特性に関する調査でも、特定の白金基合金が高い高温応力破断強度と延性を持ち、潜在的な高温合金であることが示されている(10)。しかし、PBSAの鋳造性および成形性の悪さから、従来の鋳造および成形方法によるこれらの合金の製造は困難であり、粉末冶金ルートを検討する必要性が生じている(4)。 4. 研究の要約: 研究テーマの背景: 白金基超合金(PBSA)は、ニッケルと同様の合金化特性を示しながらより高い融点を提供するため、高温構造用途向けのニッケル基超合金(NBSA)の代替として検討されている。[緒言] 従来の研究状況: ミンтек社は以前、Pt-Al系をベースとし、Pt基γマトリックス中にγ’ Pt₃Al析出物を特徴とし、Ni、Cr、Ruなどの合金元素によって安定性が向上したPBSAを開発した。[緒言] これらのPBSAは、良好な高温耐食性とクリープ特性を示したが、鋳造性および成形性の悪さが課題であった。[緒言] 研究の目的: 本研究は、これらの先端合金の鋳造および成形に伴う課題を克服するために、特にPt₈₄:Al₁₁:Cr₃Ru₂組成を対象として、PBSAの実行可能な製造経路としての粉末冶金を調査することを目的とした。[要旨、緒言] 核心研究: 本研究は、2つの異なる粉末冶金技術に焦点を当てた。第一に、予備形成合金の水アトマイズ法、第二に、元素粉末と水アトマイズ法による純白金とのメカニカルアロイングである。[要旨] これらの方法で製造された粉末の特性、およびそれらの焼結体の特性を徹底的に評価し、比較した。[要旨] 5. 研究方法論 研究デザイン: 本研究は、2つの粉末冶金ルートを用いて、目標組成Pt₈₄:Al₁₁:Cr₃Ru₂を持つ合金化白金粉末を製造するように設計された。(i) 予備合金化後の水アトマイズ法、(ii) 純Pt粉末と元素添加物のメカニカルアロイング。[実験手順] その後、粉末を圧縮・焼結し、得られた材料を特性評価して各ルートの有効性を評価した。[実験手順] データ収集・分析方法: 粉末製造には、Ptスポンジと元素成分を溶融して予備合金粉末を作製し、その後水アトマイズ法(水圧200バール、過熱度100℃)で処理し、150µm未満に篩分する工程が含まれた。[実験手順] メカニカルアロイング粉末は、水アトマイズ法で作製した純Pt粉末(500µm未満)を元素Al、Cr、Ruと共にミリングして調製した。[実験手順]粉末特性評価には、アーノルドメーターを用いた見かけ密度の測定、マルバーンマスターサイザー2000、光学顕微鏡、SEM、XRD、EDXを用いた粒子形状、サイズ、分布の評価が含まれた。[実験手順]予備合金粉末の粉末圧縮は、MPIF標準41に従って80トン一軸プレスを用いて行い、メカニカルアロイング粉末は17.50mmの金型を用いて10~35MPa(表1に詳細記載)の中程度の圧力で圧縮した。[実験手順、表1]焼結および熱処理はアルゴン雰囲気中で行い、試料を毎分8℃の昇温速度で1450℃まで加熱し、5時間保持した。[実験手順] 焼結後の熱処理には、一部の予備合金およびメカニカルアロイング圧粉体を1450℃で100時間再加熱し、メカニカルアロイング圧粉体を1250℃で100時間再加熱する工程が含まれた。[実験手順]圧粉体の特性評価には、純粋なバルク白金密度に対する圧粉体密度の評価が含まれた。焼結圧粉体は、焼結密度、微細構造(光学顕微鏡およびEDX使用)、硬度について分析し、同組成の鋳造合金と比較した。[実験手順] 研究トピックと範囲: 本研究は、粉末冶金によるPt基超合金部品(Pt₈₄:Al₁₁:Cr₃Ru₂)の開発に焦点を当て、予備合金化ルートとメカニカルアロイングルートの粉末製造法を比較した。[要旨、緒言] 研究範囲には、粉末特性の評価、および焼結圧粉体の微細構造と機械的特性の評価が含まれた。[要旨、緒言] 6. 主要な結果: 主要な結果: 粉末特性: 予備合金粉末は単峰性の粒子径分布を示し、粒子の50%が43.8µmより大きかった(図1および表2参照)。対照的に、メカニカルアロイング粉末はより微細で、粒子の50%が6.7µmより小さく、その粒子径分布は単峰性と二峰性の間であった(図1、表2)。両方の粉末タイプは丸みを帯びた不規則な形態を示した(図2)。EDX分析により、両方の粉末で合金化が成功したことが確認された(表3)。しかし、予備合金粉末では酸素が検出され、水アトマイズ中に酸化が起こったことを示唆する一方、ミリング粉末は無酸素であった。[粉末化学組成、表3]
Read More
この紹介論文は、「Proceedings of ICAA-6 (1998)」によって発行された論文「THE STATUS OF THE ALUMINUM INDUSTRY IN JAPAN」に基づいています。 1. 概要: 2. 抄録: 日本のアルミニウム産業は過去に2度、致命的な崩壊を経験しました。現在、1社を除いてアルミニウム製錬産業は存在しません。しかし、1人当たりのアルミニウム消費量は今日、世界最大にまで成長しました。本報告書では、まず生産技術の進歩や需要の増大など、日本のアルミニウム産業の歴史を概観します。次に、産業で利用されている主要設備について説明します。最後に、日本のアルミニウム産業の将来の発展に向けた課題について議論します。 3. 序論: 日本におけるアルミニウム新地金の生産は総需要の0.5%に過ぎませんが、最終製品の成長率は常にGNPの成長率を上回ってきました。日本のアルミニウムの歴史を概観することで、設備、技術、需要の観点から産業の現状を示したいと思います。また、明日のアルミニウム産業のための課題に取り組みたいと思います。 4. 研究の概要: 研究トピックの背景: 日本のアルミニウム産業は、製錬から加工中心の産業へと移行し、1人当たりの消費量が高いというユニークな地位を築いています。本稿では、その歴史的発展、現状、そして将来の課題を概観します。 先行研究の状況: 本稿は、日本のアルミニウム産業における生産、需要、技術的マイルストーンに関する歴史的データを参照しています。また、日本の様々なアルミニウム関連連盟や協会の統計データも参照しています。 研究の目的: 本報告書の目的は、日本のアルミニウム産業の歴史を概観し、利用されている主要設備を説明し、将来の発展のための課題を議論することです。これには、設備、技術、需要の観点から産業の現状を提示することが含まれます。 中核研究: 中核となる研究は、日本のアルミニウム産業の歴史的レビューを含み、その導入段階、製錬産業の歴史、アルミニウム製品の需要動向、圧延、押出、鋳造、ダイカスト、鍛造、線材などの様々な分野における設備と生産を網羅しています。また、市場動向を分析し、原材料、溶解・鋳造、圧延、押出、熱処理、成形・接合、表面処理、数値解析技術、多機能材料、環境・健康などの分野における将来の発展のための主要な課題を議論します。 5. 研究方法論 研究デザイン: 本稿は、日本のアルミニウム産業に関する歴史的および現在のデータを収集・提示する記述的レビューです。 データ収集と分析方法: データは、歴史的記録、日本アルミニウム連盟、日本軽金属協会、日本軽金属溶接・建設協会、日本自動車工業会、日本航空宇宙工業会などの組織によって発行された業界統計から収集されました。分析には、このデータに基づいて傾向を提示し、発展について議論することが含まれます。 研究トピックと範囲: 本研究は、生産技術の進歩と需要の成長を含む日本のアルミニウム産業の歴史を網羅しています。使用されている主要な設備を詳述し、将来の発展に関する課題を議論します。範囲には、製錬、圧延、押出、鋳造、ダイカスト、鍛造、線材生産、主要アルミニウム製品(自動車、鉄道車両、船舶、航空宇宙、建設、食品、電子機器)の市場動向、および技術開発課題が含まれます。 6. 主要な結果: 主要な結果: 日本のアルミニウム産業は製錬から加工中心の産業へと移行し、1人当たりの消費量は1989年以来世界最大です (Fig.8)。新地金の生産は最小限であり、ほとんどの原材料は輸入されています (Fig.2)。アルミニウム製品の需要は1996年に400万トンに達し (Fig.3)、圧延品、押出品、ダイカスト製品が大幅に成長しました (Fig.4)。自動車産業は主要な消費者であり、乗用車におけるアルミニウムの使用比率は増加しています (Fig.10, Fig.11)。将来の主要な課題には、リサイクル、高度な加工技術、新しい用途の開発が含まれます。 図の名称リスト: 7. 結論: 日本のアルミニウム産業は、基本的に製錬を除いた完全な加工ビジネスです。そのため付加価値は小さいです。また、価格も急速に下落しています。言うまでもなく、コスト削減のための技術開発は重要です。しかし、アルミニウム産業を世界トップの1人当たりアルミニウム消費量にふさわしいビジネスにするためには、新しい機能を追加し、新しい用途を開発することによって利用率を高め、価値を増大させることが我々の方向性です。 8. 参考文献: 9. 著作権:
Read More
この紹介論文の内容は、[出版社:International Journal of Electrical and Computer Engineering (IJECE)]によって発行された[論文タイトル:Induction motors with copper rotor: a new opportunity for increasing motor efficiency]という論文に基づいています。 1. 概要: 2. 抄録: 銅ロータ誘導電動機(CURIM)は、アルミニウムロータ(ALRIM)よりもロータ融解損失が少ないため、最近導入されました。さらに、CURIMを使用すると、IE4およびIE5の効率レベルに到達しやすくなります。CURIMは、小型モータ、エスカレーター、および電気自動車アプリケーションに有利です。ただし、CURIMは、スリップ、力率、温度上昇、およびトルク低下の問題を示すため、分析する必要があります。本研究では、割引手法を適用して、CURIMとALRIMを使用する経済的実現可能性を比較しました。循環運転のある砂糖会社で事例研究を実施し、そこで5.5 kWのモータが製粉機のフィーダーの中間導体に設置されます。この施設は、3〜6か月間、3シフトで稼働します。ALRIMに対するCURIMのコスト増加(ACI)は、1.1〜1.5倍でした。年間3,600時間および4,000時間の運転で、ACIが10%を超えると、投資回収期間が4年以上になり、正味現在価値(NPV)が直線的に増加することがわかりました。 3. 導入: アルミニウムロータ誘導電動機(ALRIM)の代わりに銅ロータ誘導電動機(CURIM)を使用すると、ロータ損失を大幅に削減できます。これは主に、銅の電気伝導率がアルミニウムの約170%であるためです。したがって、機械全体の損失も減少します。中電力誘導電動機では、総損失の15%〜25%から、効率が2%〜5%増加します[1]、[2]。ただし、アルミニウムと比較して銅の融点が高い(銅の場合は1,083°C、アルミニウムの場合は660°C)ため、銅の鋳造プロセスに関する問題を最初に解決する必要がありました。現れた根本的な困難は、ダイの寿命の短縮、純粋な銅の鋳造プロセスでの酸化、および溶融銅に分散した多孔性でした[2]。 電力コストが増加するにつれて、モータのライフサイクルコストが不可欠であるという認識が高まり、消費者はより効率的なモータに対してより高い初期コストを支払うことの利便性を認識しました[3]。さらに、政府の規制とインセンティブが推進要因となっています。そのため、多くの企業や団体が銅鋳造の欠点を解消するために取り組み、ロータ製造用のダイ材料と鋳造プロセスを開発し、大量生産を可能にし、経済的にしました[1]、[2]、[4]。 4. 研究の概要: 研究テーマの背景: 銅ロータ誘導電動機(CURIM)は、アルミニウムロータ(ALRIM)よりもロータ融解損失が少ないため、最近導入されました。さらに、CURIMを使用すると、IE4およびIE5の効率レベルに到達しやすくなります。CURIMは、小型モータ、エスカレーター、および電気自動車アプリケーションに有利です。 既存の研究の状況: アルミニウムと比較して銅の融点が高い(銅の場合は1,083°C、アルミニウムの場合は660°C)ため、銅の鋳造プロセスに関する問題を最初に解決する必要がありました。現れた根本的な困難は、ダイの寿命の短縮、純粋な銅の鋳造プロセスでの酸化、および溶融銅に分散した多孔性でした[2]。 研究の目的: 本論文では、構造特性と関連コスト、運転、損失、電気機械、エネルギー、および温度特性に基づいて、CURIMとALRIMを比較します。最後に、CURIMを同容量のALRIMに置き換えた結果を比較することにより、砂糖工場で5.5 kWモータを置き換える経済的実現可能性調査を実施します。 コアスタディ: CURIMでの銅鋳造プロセスに関する調査は、メーカーが製造した特定のタイプ(つまり、定格電力、極数、電圧)の銅ロータモータを設計、鋳造、および設置するコストが、別のメーカーのコストと異なる可能性があることを示しています。 5. 研究方法論: 研究デザイン: 循環運転のある砂糖会社で事例研究を実施し、そこで5.5 kWのモータが製粉機のフィーダーの中間導体に設置されます。この施設は、3〜6か月間、3シフトで稼働します。 データ収集と分析方法: 経済分析は、差分正味現在価値(Differential NPV)[27]の基準を使用して事例研究で実施されたため、同じまたはほぼ同じコスト(たとえば、固定子コスト、設置コスト、メンテナンスコスト)が排除されます。 研究テーマと範囲: 同容量のALRIMでCURIMを置き換えた結果を比較することにより、砂糖工場で5.5 kWモータを置き換える経済的実現可能性調査を実施します。 6. 主な結果: 主な結果: 図のタイトルリスト:
Read More
By user 07/10/2025 Aluminium-J , automotive-J , Salt Core-J , Technical Data-J Applications , CAD , Die casting , High pressure die casting , Microstructure , Salt Core , thermophysical properties , 金型 , 자동차
本稿は、「J. JFS (日本鋳造工学会誌)」に掲載された論文「Strength of Aluminum Borate Whisker Reinforced Alkali Halides Salt Core (ホウ酸アルミニウムウィスカで強化したアルカリハライド中子の強度)」を基に作成した紹介資料です。 1. 概要: 2. 抄録: 高圧ダイカスト用ソルト中子の研究を行った。3種類のアルカリハライド、すなわち塩化ナトリウムNaCl (98%)、臭化カリウムKBr (99.7%)、臭化ナトリウムNaBr (99.7%)をソルト材料として準備した。塩化カリウムKClの強化に最適な強化材であるホウ酸アルミニウムウィスカをソルト中子の強化材として選択した。これらのソルト材料を電気抵抗炉で溶解し、30Kの過熱度で永久鋳型に鋳込んだ。強度を決定するために4点曲げ試験を実施した。KBrおよびNaBrの最大ウィスカ添加率は約10 vol%であり、ウィスカ添加量の増加に伴い強度は約25 MPaまで直線的に増加した。これらの塩とは対照的に、NaClはホウ酸アルミニウムウィスカで強化できなかった。SEM-EDX局所分析の結果、NaCl中の凝集したウィスカ近傍でのみマグネシウム不純物が検出され、NaCl中のマグネシウム不純物が強度にある程度影響を与えることが示唆された。高純度NaCl (99.5%)は実際にホウ酸アルミニウムウィスカで強化でき、最大ウィスカ添加率は約7.6 vol%で、最大強度はウィスカ添加に伴い約20 MPaまで直線的に増加した。 3. 緒言: 消失性中子を利用したダイカストプロセスは、複雑なアンダーカット形状を有する製品の製造法として注目されている。一般的にダイカスト法は、金型を利用した鋳造法の中で生産性、製造コストに最も優れているものの、成形に消失性中子を必要とするアンダーカット品への適用は困難であった。しかし、鋳物の需要の多くを占める自動車部品への要求として製品の軽量化や機械的強度の向上、部品点数の低減によるコスト削減などがあり、アンダーカット品のダイカスト化が近年ますます切望されるようになってきている。通常ダイカストプロセスでは、溶湯の高速射出時に中子に大きな衝撃力がかかるために消失性中子には高い強度が要求される。一方で、鋳造後の製品から熱処理なしで短時間に中子を除去できることも同様に重要である。つまり、中子は強度と除去性を兼ね備えていなければならず、こうした消失性中子として砂中子 [Ref. 1, 2]、金属置き中子 [Ref. 3, 4]、プラスチック中子、ソルト中子 [Ref. 5-7] などがこれまでに提案されている。この中でソルト中子は、コンクリート並みの高強度を有しかつソルト自身が水溶性であるために除去性も極めてよいという点で優れていることが報告されている。ソルト中子の成形方法には焼結法と溶融成形法があるが、形状自由度の点で溶融成形法は優位であるにもかかわらず、これまであまり研究されていない。そこで前報 [Ref. 7] では、塩化カリウムをセラミックウィスカ・粒子で強化し溶融成形したソルト中子の強度について検討し、ホウ酸アルミニウムウィスカを強化材に用いると特異的に高強度が得られ、ダイカストへの使用に適していることを報告した。そこで本報では、塩化カリウムと化学的に似た性質をもつアルカリハライド類である塩化ナトリウム、臭化ナトリウム、臭化カリウムについてもホウ酸アルミニウムウィスカによる強化が可能かどうかについて検討した。 4. 研究の概要: 研究テーマの背景: 本研究は、特に自動車部品向けの高圧ダイカストにおいて、複雑なアンダーカット形状を製造するための、高強度で容易に除去可能な消失性中子の必要性に取り組んでいる。ソルト中子は有望であるが、最適な性能を得るための強化についてはさらなる調査が必要である。 従来の研究状況: 従来の研究では、溶融成形によりホウ酸アルミニウムウィスカで強化されたKClベースのソルト中子が高い強度を示すことが示唆されていた [Ref. 7]。しかし、この強化方法が他のアルカリハライドに適用可能かについては十分に理解されていなかった。ソルト中子の製造方法としては焼結法と溶融成形法が知られており、溶融成形法は形状自由度に優れるものの、研究はあまり進んでいなかった。 研究の目的: 本研究の目的は、溶融成形時にホウ酸アルミニウムウィスカが異なるアルカリハライド塩(NaCl、KBr、NaBr)に及ぼす強化効果を調査し、それらの性能を以前に研究されたKClベースの中子と比較すること、特にNaClの強化における不純物の影響に焦点を当てることであった。 研究の核心: 研究の核心は、様々な量のホウ酸アルミニウムウィスカで強化された3種類のアルカリハライド(工業用NaCl、KBr、NaBr、および高純度NaCl)からソルト中子を調製することであった。これらの材料を溶解し、永久鋳型に鋳造した。得られたソルト中子の機械的強度は、4点曲げ試験を用いて決定した。ウィスカの分散、破壊挙動、および特にNaCl中の不純物の役割を理解するために、SEMおよびEDXを含む微細構造解析を実施した。 5. 研究方法論
Read More
本紹介論文は、「[International Journal of Engineering Research & Technology (IJERT)]」により発行された論文[Optimisation of Casting parameters of Squeeze cast LM-24 Al-Si Alloy]に基づいています。 1. 概要: 2. 抄録: 従来のダイカスト法では、高いゲート速度での溶湯流動が非層流を引き起こし、鋳造品の品質に影響を与えます。従来のダイカスト部品に一般的に見られる潜在的な欠陥は、凝固収縮およびガス巻き込みに起因する気孔です。スクイズ鋳造や半凝固鋳造(チクソキャスティングやレオキャスティング[1]など)のような高健全性ダイカストプロセスが開発されてきました。しかし、スクイズ鋳造は半凝固プロセスよりも単純で経済的です。スクイズ鋳造プロセスは、比較的遅い溶湯の金型への供給速度と凝固中の高圧印加を利用します。調査によると、遅い射出速度は乱流を低減し、空気の巻き込みを少なくし、凝固中に印加される圧力は収縮孔やガス気孔を除去し、熱抵抗を減少させ、凝固を促進し、鋳造材料の微細構造と機械的特性の改善に効果があります。このプロセスの軽量非鉄金属合金への適合性は、自動車および航空宇宙産業向けのこの新興プロセスに対する需要を増大させています。本研究では、9%のSiを含むアルミニウム-シリコン合金LM-24について、直接スクイズ鋳造プロセスの研究が行われました。LM-24は、薄肉鋳造に適した優れた鋳造特性を持つ、広く使用されている圧力ダイカスト用アルミニウム合金です。実験計画とパラメータは、圧力、湯流れ温度、金型温度の変動を伴って編成されました。結果は、スクイズ鋳造材料の密度の増加が、気孔のほぼ完全な除去、表面仕上げの改善、微細構造の改善、硬度および引張強度の増加を示しています。乱流を避けるために、供給速度はより低い値に制御されます。LM-24アルミニウム合金の場合、700°Cの湯流れ温度、200°Cの金型温度、および100 MPaの圧力が、より良い機械的特性を得るための最適な組み合わせであることがわかりました。 3. 緒言: 鋳造による金属成形技術は紀元前4000年まで遡ります。圧力ダイカストは、鋳造品の大量生産の需要拡大に応えて1820年代初頭に登場しました。金属ダイへの圧力下での金属射出は、最初は手動クランクを使用した純粋に機械的なものでした。その後、用途の拡大に伴い、空気圧および油圧システムが使用されるようになりました。しかし、進歩は1920年代のコールドチャンバープロセスの開発まで限定的でした。スクイズ鋳造のアイデアは、凝固中の溶融金属に蒸気圧をかけるというもので、早くも1878年にChernovによって考案されました。最初の科学的なスクイズ鋳造実験は、1931年にドイツでG. WelterによってAl-Si合金に対して行われ、1937年にはV. M. Plyatskiiが加わりました。西洋での研究の大部分は、アルミニウム合金、銅合金、マグネシウム合金に焦点が当てられてきました。 スクイズ鋳造プロセスは、比較的遅い溶湯の金型への供給速度と凝固中の高圧印加を利用します。主なバリエーションは次のとおりです。 4. 研究の要約: 研究トピックの背景: 高いゲート速度と非層流を特徴とする従来のダイカストプロセスは、しばしば凝固収縮やガス巻き込みによる気孔などの欠陥を引き起こします。これらの限界を克服するために、スクイズ鋳造や半凝固鋳造(例:チクソキャスティング、レオキャスティング [1])のような高健全性ダイカストプロセスが開発されました。スクイズ鋳造は、特に自動車および航空宇宙産業向けの高品質な軽量非鉄合金部品を製造するための、よりシンプルで経済的な代替手段として提示されています。 従来研究の状況: スクイズ鋳造の概念は1878年から知られており、1930年代から体系的な科学的調査が開始されました。これまでの研究は、主にアルミニウム、銅、マグネシウム合金に集中しています。溶湯の低速供給と凝固中の高圧印加を含むこのプロセスは、乱流、空気の巻き込み、気孔を低減し、それによって鋳造部品の微細構造と機械的特性を向上させることが確立されています。 研究目的: 本研究の主な目的は、アルミニウム-シリコン合金LM-24(9% Si含有)の直接スクイズ鋳造プロセスのパラメータを調査し、最適化することでした。この研究は、鋳造されたLM-24合金の機械的特性を向上させるための、印加圧力、湯流れ温度、および金型温度の最適な組み合わせを決定することを目的としました。 核心的研究: 研究の核心は、LM-24アルミニウム合金の直接スクイズ鋳造に関する実験的調査でした。実験計画は、主要なプロセスパラメータである印加圧力(0、40、60、80、100 MPa)、湯流れ温度(660°C、700°C、750°C)、および金型温度(200°C、250°C)を体系的に変化させることに焦点を当てました。これらの変動が、鋳造合金の得られた表面仕上げ、機械的特性(極限引張強さ、耐力、伸び、硬度を含む)、および微細構造に及ぼす影響を徹底的に評価し、最適な処理条件を特定しました。 5. 研究方法論 研究デザイン: 本研究では直接スクイズ鋳造プロセスを用いました。調査材料は、9%のSiを含むアルミニウム-シリコン合金LM-24(BS1490:1988)であり、その詳細な組成はTable-1に示されています。合金の溶解は、電気抵抗加熱式のるつぼ炉(最高温度1200℃)で行われ、酸化を防ぐために工業用アルゴンガスを注入して不活性雰囲気としました。Figure-2に概略図が示されている、金型加熱、凝固中の加圧、鋳造品突き出しの関連設備を備えた総合的な直接スクイズ鋳造機(容量50T、突き出しシリンダー容量25T)が使用されました。Figure-3に示すダイとパンチは、硬化鋼EN24から製造され、二硫化モリブデン(MoS2)でコーティングされました。200℃または250℃への金型予熱は、デジタル温度コントローラーを備えた携帯型電気ヒーターを使用して行われました。 データ収集・分析方法: あらかじめ計量された量の溶融LM-24合金を下型キャビティに注入しました。注入前に、溶湯表面の自然酸化を防ぐためにホウ酸と硫黄の混合物を溶湯表面に散布し、酸化物や不純物を除去するために溶湯をスキミングしました。 研究トピックと範囲: 本研究は、LM-24 Al-Si合金の直接スクイズ鋳造における鋳造パラメータの最適化に焦点を当てました。研究の範囲は以下の通りです。 6. 主要な結果: 主要な結果:
Read More
本稿は、「Asian Pacific Conference for Materials and Mechanics 2009 at Yokohama, Japan, November 13-16」で発表された論文「NOTCH EFFECT ON FATIGUE STRENGTH OF DIE CAST AM60 MAGNESIUM ALLOY」に基づいています。 1. 概要: 2. アブストラクト: 本研究は、ダイカストAM60マグネシウム合金の疲労強度に及ぼすノッチ効果を調査するものである。平滑試験片および様々な応力集中係数(Kt)を持つノッチ付き試験片を用いて、4点曲げ試験を実施した。結果は、疲労寿命および疲労限度が、ある点(Kt=2.55)までKtが増加するにつれて減少し、それを超えるKtのさらなる増加は疲労強度を著しく変化させないことを示した。ノッチ付き試験片の疲労限度は、非伝播き裂が観察されなかったため、疲労き裂発生限度に対応することが見出された。き裂は一貫してノッチ底部から発生し、内部の鋳造欠陥はこの結果に影響を与えなかった。AM60合金のノッチ感度は、Ktの増加(1.57から2.09へ)に伴い初期に増加し、その後Ktがさらに増加すると減少した。 3. 緒言: マグネシウム合金は、低密度、高比強度、優れた鋳造性および被削性などの固有の優れた特性により、航空宇宙および自動車産業分野で注目を集めている。これらの用途における構造部品の多くは、優れた疲労特性を要求する。したがって、マグネシウム合金に関するこれまでの研究の多くは、周囲環境下および腐食環境下での疲労特性に焦点が当てられてきた。しかしながら、将来の工学的応用の観点からは、疲労ノッチ感度に関する情報を有することも重要である。なぜなら、平滑材の疲労性能が良好であっても、ノッチ材の疲労性能は非常に劣る可能性があるからである。工学部品においては、ショルダー、キー溝、オイルホール、溝、ねじ山などの幾何学的不連続部、すなわちノッチが必然的に存在し、応力集中のためにノッチ底部で疲労破壊が非常に頻繁に発生する。したがって、特にマグネシウムおよびその合金のような新興材料の場合、ノッチ付き部品の疲労強度を調査することは非常に重要である。本研究では、ダイカストAM60マグネシウム合金の疲労強度に対するノッチ効果を理解するために、異なる応力集中係数Ktを持つ一定深さのノッチ付き試験片を用いて4点曲げ試験を実施した。 4. 研究の概要: 研究テーマの背景: マグネシウム合金は、低密度や高比強度といった有利な特性により、航空宇宙や自動車などの分野でますます利用されている。これらの合金で作られた多くの構造部品にとって、優れた疲労性能は重要な要件である。 先行研究の状況: マグネシウム合金に関する従来の研究は、主に周囲環境および腐食条件下での疲労特性に集中してきた。しかし、実用的な工学設計のためには、疲労ノッチ感度に関する情報が不可欠である。なぜなら、ノッチを有する部品の疲労性能は、平滑材の疲労性能が良好であっても、著しく劣る可能性があるからである。ノッチは工学部品に一般的に見られ、応力集中のために疲労破壊の主要な起点となる。 研究の目的: 本研究の目的は、「異なる応力集中係数Ktを持つ一定深さのノッチ付き試験片を用いて、ダイカストAM60マグネシウム合金の疲労強度に対するノッチ効果を理解すること」であった。 研究の核心: 研究の核心は、ダイカストAM60マグネシウム合金に対する4点曲げ疲労試験の実施であった。平滑試験片とノッチ付き試験片の両方が試験された。ノッチ付き試験片は、一定のノッチ深さ(0.1 mm)を特徴としたが、ノッチ底半径(ρ = 1 mm, 0.3 mm, 0.25mm, 0.15 mm, 0.1 mm)を変化させることで、異なる理論応力集中係数(Kt = 1.57, 2.09,
Read More
高品質・異材接合・低歪み。製造プロセスの革新を実現します。 摩擦攪拌接合(FSW)とは? 摩擦攪拌接合(Friction Stir Welding)は、材料を溶かすことなく、特殊なツールを回転させながら圧力を加えて接合する画期的な「固相接合技術」です。融点以下の温度で接合するため、従来の溶融溶接で発生しがちだった気孔(ブローホール)や割れなどの欠陥がなく、極めて高品質な接合部を実現します。 FSWが選ばれる理由:6つのメリット 主な適用分野 当社のFSW技術は、最先端産業のクリティカルな部品製造に採用されています。 キャストマンの強み:選ばれる技術力 お問い合わせ 貴社の課題を、次世代の接合技術で解決しませんか? 摩擦攪拌接合(FSW)に関するご相談、試作・量産のお見積りは、お気軽にお問い合わせください。専門スタッフが、お客様の製品開発を強力にバックアップいたします。 Contact UsTel : +82-31-351-5022Fax: +82-31-351-5033E-mail : sales@castman.co.kr
本稿は、「Electrica」誌に掲載された論文「New Optimal Heat Sink Design with Concave Fins for Cooling System in Light Emitting Diode Lamp」に基づいています。 1. 概要: 2. 要旨: ヒートシンクは、発光ダイオード(LED)ランプの設計および運用において最も重要な問題の1つと考えられています。技術カタログの製造業者は、LEDチップが許容できる最高温度を示しており、この温度範囲が満たされない場合、光出力の低下やランプ出力の色変化が生じます。冷却システムの選択と設計は、通常、ヒートシンクの製造に関連するコストに影響します。本稿では、LEDランプ冷却システム用に凹型フィンを組み込んだ新しいヒートシンクシステムを紹介しました。このヒートシンクの能力を調べるために、支配的な熱収支方程式を解くために数値的手法が適用されました。熱伝達と粒子群最適化(PSO)アルゴリズムの結合数値解に基づいて、異なるLEDランプ容量における最小電子チップ温度とヒートシンク重量を達成するための最適形状が決定されました。包括的なデータベースが作成され、異なるLEDランプ能力に対する2つの目的最適解に基づいて遺伝的計画ツールの入力として使用されました。遺伝的プログラミングの結果に基づいて、LED電力に関する最適な幾何学的パラメータを決定するための解析的関係が提示されました。したがって、数値的分解能や最適化なしに、所与の電力に対する最適形状を決定することが可能です。結果に基づくと、凹型フィンを備えた最適ヒートシンクでは、固定断面を持つヒートシンクと比較して、シンクの効率と体積が大幅に改善されます。 3. 緒言: 発光ダイオード(LED)ランプは、照明にダイオードを使用する固体ランプであり、適切な熱管理が行われないと性能に悪影響を及ぼす可能性のある熱を発生します。ヒートシンクシステムは、一般的にLED電子チップの温度を標準範囲内に維持するために使用されます。LEDランプにおけるヒートシンクに影響を与える問題は、使用される材料の価格と製造コストです。したがって、LEDランプの冷却システムの設計と最適化に関する多くの研究が行われてきました。本稿では、LEDランプの冷却効率を改善し、材料使用量を削減するために設計された凹型フィンを備えた新しいヒートシンクシステムを紹介します。 4. 研究の概要: 研究テーマの背景: LEDランプは熱を発生し、不適切な熱管理は、光出力の低下や色の変化などの性能低下、および寿命の短縮につながる可能性があります。ヒートシンクは、この熱を管理するために不可欠です。材料(多くはアルミニウム)のコストと製造により、性能を維持しながら経済的実行可能性を確保するためには、ヒートシンク設計の最適化が重要です。本研究は、最小体積で熱伝達のための最大外部表面積を実現する凹型フィンを備えた新しいヒートシンク設計に焦点を当てています。 先行研究の状況: これまでの研究では、様々なLED冷却戦略が検討されてきました。Lioら[1]は、ジェット冷却構成を検討しました。Jangら[2]は、LEDヘッドランプ用の空気循環冷却装置を分析しました。Luら[3]は、高出力LEDパッケージ用のループヒートパイプを調査しました。Wangら[4]は、熱電冷却を用いたLEDパッケージの熱損失をモデル化しました。Dengら[5]は、高出力LED用の液体金属冷却を提案しました。Anithambigaiら[6]は、デュアルインターフェース法を研究しました。Kimら[7]は、ハイブリッドピンフィンを含むスマートヒートシンクを検討しました。Costaら[11]は、スパイラルヒートシンクを数値的に分析しました。Parkら[14, 19]は、中空シリンダーや煙突を備えた設計を含むスパイラルヒートシンクを提案し、改良しました。Sökmenら[17]は、LED自動車ヘッドランプ用の円筒形フィンの計算熱分析を行いました。これらの研究は、熱性能の向上、コスト削減、LED冷却システムの最適化に向けた継続的な取り組みを浮き彫りにしています。 研究の目的: 本研究の主な目的は、最小の電子チップ温度と最小のヒートシンク重量を達成する凹型フィンを備えたヒートシンクシステムを開発することでした。さらに、本研究は、最適化結果から導出された解析的関係を提供し、LEDランプの電力に基づいてヒートシンクの最適な幾何学的パラメータを決定することを目指しました。これにより、さらなる数値的分解能や最適化を必要とせずに、所与の電力に対する最適形状を見つけることが可能になります。 研究の核心: 本研究の核心は以下の通りです。 5. 研究方法論 研究デザイン: 本研究では、数値的および計算論的アプローチを採用しました。提案された凹型フィン付きヒートシンクの熱解析は、モデリングおよび熱伝達方程式の解法のためにCOMSOLソフトウェアを使用して実施されました。その後、ヒートシンクの幾何学的寸法は、COMSOLと連携するMATLABで実装された多目的粒子群最適化(MOPSO)アルゴリズムを使用して最適化されました。最適化は、電子チップ温度とヒートシンク体積の両方を最小化することを目的としました。最後に、最適化されたデータベースから解析的方程式を導出し、最適な幾何学的パラメータとLEDランプ電力との相関関係を明らかにするために遺伝的プログラミングが使用されました。 データ収集および分析方法: 本研究は、定常状態の熱収支方程式の解法に基づいています。ρCpu.∇T –∇.(k∇T)=0 (1)ここで、速度(u)はゼロです。LEDランプによって生成された熱(P)は、内面からヒートシンクに入ります。-n.q = P (2)外面からの放熱は自由対流によって起こり、対流熱伝達係数(h)はヌセルト数(Nu)に関する実験的相関関係[22]を使用して決定されます。Nu = [(0.09112El0.6823)-3.5 + (0.5170El0.2813)-3.5]-3.5/3.5 (3)ここで、Elはエレンバス数です。El = gβ(T-Tamb)Prwc4 / Lv2
Read More
By user 07/02/2025 Aluminium-J , automotive-J , Technical Data-J Applications , CAD , Die casting , Microstructure , Quality Control , Sand casting , STEP , 自動車産業 , 金型 , 금형 , 자동차 , 해석
鋳物の品質を左右する「鋳型」の科学:亜鉛合金の硬度と強度を最大化するベントナイトの最適比率とは? 本技術概要は、Zatil Alyani Mohd Amin氏らによって発表された学術論文「Properties of Zinc alloy cast product with different composition of Silica Sand and Bentonite in Green Sand Mould」に基づいています。ハイプレッシャーダイカスト(HPDC)の専門家向けに、株式会社CASTMANのエキスパートが要約・分析しました。 キーワード エグゼクティブサマリー 課題:なぜこの研究がダイカスト専門家にとって重要なのか 自動車産業や装飾品分野において、軽量化と高機能化の要求が高まる中、亜鉛合金は重要な役割を担っています。ダイカストや砂型鋳造など様々な製造法が存在しますが、特にグリーンサンド鋳造法は、低コストで砂を再利用できるため、多品種少量生産において依然として強力な選択肢です。 しかし、この方法には課題も伴います。鋳型の品質が最終製品の品質に直結するため、鋳肌の粗さ、内部欠陥、機械的強度のばらつきなどが常に問題となります。本研究は、グリーンサンドの主成分であるケイ砂とベントナイト(粘土)の配合比が、鋳造される亜鉛合金(Zn-3Al-2Mg)の物理的・機械的特性にどのような影響を及ぼすかを解明することを目的としています。この研究は、鋳型と溶湯の相互作用という鋳造の基本原理を深く探求しており、その知見はプロセスが異なるHPDCの専門家にとっても、品質向上へのヒントを与えてくれます。 アプローチ:研究方法の概要 本研究では、この課題を解明するために、体系的な実験が計画されました。 研究チームは、ケイ砂とベントナイトの比率を7段階に変化させたグリーンサンド鋳型を準備しました(Table 1参照)。ベントナイトの含有量は、5%から17%の範囲で設定され、水分量は全ての鋳型で一定に保たれました。 この鋳型に、Zn-3Al-2Mg(亜鉛-アルミニウム3%-マグネシウム2%)の三元合金を溶融して注入しました。鋳造後、得られた7種類のサンプルに対して、以下の評価を実施しました。 このアプローチにより、鋳型の組成という単一の変数が、最終製品の複数の品質指標にどのように影響するかを直接的に比較することが可能になりました。 発見:主要な研究結果とデータ 実験の結果、鋳型のベントナイト含有量が鋳造品の特性に顕著な影響を与えることが明らかになりました。 HPDCオペレーションへの実践的な示唆 この研究はグリーンサンド鋳造に関するものですが、その根本的な知見はHPDCの現場にも応用できます。 論文詳細 Properties of Zinc alloy cast product with different composition of Silica Sand and Bentonite in Green Sand
Read More