Category Archives: Copper-J

Figure 3: Experimentation setup: vertical die casting machine of the capacity of 100 Tons (Industrial caseCGL)

数値シミュレーションアプローチを用いたシックスシグマ品質製品達成のための高圧ダイカストパラメータの解析と最適化

この紹介資料は、「International Journal of Engineering and Management Research」に掲載された論文「Analysis and Optimisation of High Pressure Die Casting Parameters to Achieve Six Sigma Quality Product Using Numerical Simulation Approach」に基づいています。 1. 概要: 2. 抄録: 高圧ダイカストにおける最適なパラメータ設定を予測するために、数値シミュレーションアプローチが提案されています。最適なパラメータの中でも、温度は他のパラメータよりも鋳造品質により大きな影響を与えることが示されました。本研究の成果は、ダイカストにおける不適切なプロセスパラメータ設定によって発生する鋳造欠陥の解決策を見つける上で有益でした。したがって、数値最適化技術と鋳造シミュレーションの組み合わせは、ダイカスト産業における鋳造製品の品質を向上させるためのツールとして役立ちます。本論文は、欠陥の原因となる射出圧力、溶湯温度、保持時間、プランジャー速度などの重要なパラメータを解析し、最適化することを目的としています。本研究論文では、有限要素解析技術を使用するProCASTシミュレーションソフトウェアを用いて、最適な圧力、温度、保持時間、プランジャー速度のパラメータを提供するための取り組みが行われました。溶湯温度、射出圧力、保持時間、プランジャー速度を変化させてパラメータを最適化する数値解析は、ホットスポットにおける凝固時間に関して、シミュレーションモデルにおける欠陥解析を研究するための重要なパラメータです。 3. 緒言: ダイカストプロセスは、プロセスパラメータの関与により、しばしば品質や生産性の低下に悩まされます。MohantyとJena (2014) によれば、ゼロ欠陥部品を達成するためにはプロセスパラメータを制御する必要があります。ダイカストプロセスにおける不良率は11~13%であることが判明しました。この不良の原因は、ブローホール、不十分な射出圧力、不適切な充填時間、気孔(ポロシティ)、ホットスポットです。プロセスパラメータを制御するためには、プロセスパラメータが鋳造に与える影響とその欠陥への影響を知る必要があります。本研究では、図1に示すように、ダイカストローター部品と、溶湯がゲーティングシステムに入る箇所と底部断面の2つの断面について調査します。 4. 研究概要: 研究テーマの背景: 高圧ダイカスト(HPDC)プロセスは、プロセスパラメータのばらつきにより、品質問題や生産性の低さに影響を受けやすいです。これらのばらつきは、ブローホール、気孔、不適切な充填、ホットスポットなどの鋳造欠陥を引き起こし、著しい不良率(11-13%)をもたらす可能性があります。 従来の研究状況: MohantyとJena(2014)などの従来の研究では、ゼロ欠陥部品を達成するためのプロセスパラメータ制御の必要性が強調され、業界の高い不良率が指摘されています。不良の主な原因として、不適切なパラメータ設定に直接関連する欠陥が特定されています。 研究目的: 本研究は、数値シミュレーションアプローチを用いて、重要なHPDCパラメータ、具体的には射出圧力、溶湯温度、保持時間、プランジャー速度を解析し、最適化することを目的としています。目標は、凝固時間を最小化し、それによって鋳造欠陥を削減し、製品品質をシックスシグマレベルに向上させる最適なパラメータ設定を決定することです。 中核研究: 本研究の中核は、有限要素解析(FEA)を用いるProCASTシミュレーションソフトウェアを使用して、ローター部品のHPDCプロセスをモデル化することです。体系的な数値最適化技術が適用され、定義された範囲内で4つの主要パラメータ(温度、圧力、速度、保持時間)が変化させられました(表2)。本研究では、これらの変化がローターおよび特定の断面(CS AAおよびCS BB、図1)のホットスポットにおける凝固時間に与える影響を分析します。目的は、欠陥解析と品質改善に不可欠と考えられる最小凝固時間を生み出すパラメータの組み合わせを特定することです。 5. 研究方法論 研究デザイン: 本研究では、数値シミュレーションと最適化の方法論を採用しています。ローター部品のHPDCプロセスは、有限要素法(FEM)に基づくProCASTソフトウェアを使用してシミュレーションされました。多段階最適化アプローチ(図5、図6)が用いられ、4つの主要パラメータ(温度、圧力、速度、保持時間)のそれぞれが、定義された範囲内の25レベルにわたって順次解析され(表2、図4)、凝固時間を最小化しました。 データ収集・分析方法: 研究テーマと範囲: 本研究は、アルミニウム合金ローター部品(外径100 mm、内径25

Read More

Fig. 3 Photographs of specimens at ambient temperature. (a) KCl–30 mol%NaCl. (b) K2CO3–50 mol% Na2CO3.

鋳造法により作製されたアルカリ炭酸塩およびアルカリ塩化物混合物塩中子の強度

本紹介論文は、「Materials Transactions / Japan Foundary Engineering Society」により発行された論文「Strength of Salt Core Composed of Alkali Carbonate and Alkali Chloride Mixtures Made by Casting Technique」に基づいています。 1. 概要: 2. 抄録: 高圧ダイカストプロセス用の消失性塩中子を開発するために、4つの二元系 NaCl-Na2CO3, KCI-K2CO3, KCI-NaCl および K2CO3-Na2CO3 の強度を調査した。永久鋳型鋳造技術を用いて溶融塩から作製した試験片の強度を決定するために、4点曲げ試験を実施した。NaCl-Na2CO3 系の強度は、Na2CO3 組成が 20 mol% から 30 mol% の間、および 50 mol% から 70 mol% の間で 20 MPa を超えた。最高強度は NaCl-70 mol%Na2CO3 の組成で約 30 MPa

Read More

Figure A. Outer rotor induction motor mesh operation and 2D FEA

多様な産業用途向け:外側回転子型低速誘導電動機の設計

この入門論文の内容は、「Journal of the Faculty of Engineering and Architecture of Gazi University」誌に掲載された論文「For different industrial applications: Outer rotor and low speed induction machine design」に基づいています。 1. 概要: 2. 概要: 「今日、発展を続ける新技術に伴い、非同期機の従来の用途領域に加えて、電動機および発電機としての用途領域が徐々に拡大しています。近年、電気自動車の電動機/発電機、風力タービン、マイクロ水力発電などの分野で誘導発電機の使用が普及し始めています。本研究は、外側回転子誘導電動機の用途、およびオプションで直接駆動発電機としても使用できる、低速、高トルク、高効率の外側回転子誘導電動機の設計を目的としています。16極、50Hz周波数、375rpm同期速度、1kWの外側回転子誘導電動機の設計、最適化、電磁解析を実施し、本研究の解析用に6つの異なるモデルを開発しました。固定子設計には1種類のスロットタイプと72スロット、回転子設計には59スロットと3種類の異なるスロットタイプを使用しました。かご形回転子には銅とアルミニウムの材料が好まれ、Ansys Maxwell電磁パッケージプログラムを用いて研究を実施しました。本研究では、Rmxprt-optimetricsモジュールを用いて最高の効率を得るために、機械の基礎サイズ、エアギャップ、スロット寸法を最適化しました。その後、有限要素法を用いて電磁解析を実施しました。機械の電動機動作領域に対して行った解析の結果、IEC 60034-30-1規格に従い、IE2およびIE3クラスの1.1kW出力の8極内側回転子非同期電動機の効率よりも高い効率が得られました。この結果から、外側回転子、低速、高トルクの誘導電動機を製造し、電動機として使用できることがわかりました。」 3. 導入: 非同期機は、その堅牢性と汎用性で知られており、多様な産業分野で電動機および発電機としてますます利用されています。従来の内側回転子型非同期機 (IRAMAK) が広く確立されている一方で、外側回転子型非同期機 (DRAMAK) は、特に電気自動車、風力タービン、マイクロ水力発電などの用途で注目を集めています。本論文では、DRAMAKの設計に焦点を当て、低速、高トルク、高効率のソリューションに対する需要の高まりに対応します。従来のDRAMAKの用途は、効率が低い冷却ファン(通常25%程度 [5])などのニッチな用途に限定されてきました。本研究は、高効率と高性能のために最適化された、要求の厳しい産業用途や直接駆動発電機構成に適した、革新的なDRAMAK設計を提示することにより、これらの制限を克服することを目的としています。本研究では、有限要素法 (FEM) 解析を活用して、IEC 60034-30-1規格に従ったIE2およびIE3クラスに準拠した効率レベルを目標に、外側回転子設計における異なるスロット形状と材料の影響を調査します。 4. 研究概要: 研究テーマの背景: 非同期機の応用範囲の拡大、従来の電動機用途を超えて、電気自動車、風力エネルギー、マイクロ水力発電などの新興分野における発電機機能を含むようになり、高度な機械設計が必要となっています。特に、これらの分野における効率的で高性能な電動機と発電機の需要が、最適化された外側回転子誘導電動機 (ORIM) のような革新的なソリューションの必要性を推進しています。 先行研究の現状: DRAMAKに関する先行研究は、主に冷却ファンなどのニッチな用途に焦点を当てており、多くの場合、効率と性能指標が低いことが特徴です。既存の文献では、従来のDRAMAK設計の効率、力率、トルク特性の限界が指摘されています。DRAMAKの性能を向上させるための様々な最適化技術とトポロジーが研究されてきましたが [6, 7, 8, 9, 10, 11, 12]、特に産業用および直接駆動発電機用途において、高性能IRAMAKに匹敵する高効率DRAMAKの開発には依然として大きな隔たりがあります。

Read More

Fig. 4. Output Power vs Speed

電気自動車アプリケーション用BLDCモータの性能向上

本入門資料は、”[電気自動車アプリケーション用BLDCモータの性能向上]”(”[www.isteonline.in]”発行)という論文に基づいています。 1. 概要: 2. 抄録: 今日の技術的に進んだ社会において、人々はますます現代的で便利、かつ環境に優しい選択肢を求めています。この傾向が特に顕著な分野の1つは輸送産業です。従来のガソリン動力車は、環境に深刻な脅威をもたらすCO2排出に大きく貢献しているためです。したがって、電気自動車(EV)への関心が、最近、その環境上の利点、高いエネルギー効率、および低騒音により高まっています。DCモータ、誘導モータ、永久磁石同期モータ、スイッチトリラクタンスモータ、およびブラシレスDCモータは、過去に電気自動車で使用されてきたさまざまな種類の電気モータです。しかし、ブラシレスDCモータは、その高出力密度、高い出力重量比、瞬時の速度制御、および高い効率性により、電気自動車にとって最も効率的な選択肢です。本論文では、Ansys Maxwell RMxprtを使用したシミュレーションを通じてBLDCモータの性能を向上させるためのさまざまな方法論を提案することにより、500W、2000rpm、および48V定格のブラシレスDCモータの分析を提示します。Ansys Maxwellを使用して、トルク、損失、トルクリップル係数、電力、および効率などのさまざまな設計パラメータをシミュレーションします。 3. 序論: 電気自動車(EV)の導入は、現在の燃料自動車に取って代わるものであり、輸送システムは新たなレベルの輸送システムへと進歩するでしょう。ガソリン車から電気自動車への転換は、既存の汚染問題の緩和に役立つでしょう。環境汚染を削減するための継続的な努力により、電気自動車市場は近年拡大しています。燃料資源が枯渇するにつれて、エネルギー効率の高い電気ドライブの使用が化石燃料に取って代わると予測されています。EVは、ICE(内燃機関)[8]と比較して環境への負荷が最も少ないです。政府のシンクタンクであるNITI AAYOGによると、EVは2030年までにインドのCO2排出量を1ギガトン削減できる可能性があります。電気自動車、特にバッテリ駆動の電気自動車の効率を向上させるためには、電力電子システムと制御技術が効果的である必要があります[1]。永久磁石モータ、誘導モータ、スイッチトリラクタンスモータ、または電気自動車で機能できるあらゆる種類の機械装置を使用することが提案され、調査されてきました。現在、BLDCモータは、産業界、特に自動車分野で広く使用されています[2]。過去数十年にわたり、電気自動車の開発は、信頼性の高い電気モータアクチュエータの需要を生み出しました。電気自動車のアクチュエータは、高い抵抗、シンプルな設計、および高速での動作能力のためにBLDCモータを検討する必要があります。 4. 研究の概要: 研究テーマの背景: 従来のガソリン動力車に関連する環境への懸念の高まりと、持続可能な輸送への世界的な推進により、電気自動車への関心が高まっています。BLDCモータは、効率と性能における固有の利点により、EV推進のための有望な技術として認識されています。 先行研究の状況: DCモータ、誘導モータ、永久磁石同期モータ(PMSM)、およびスイッチトリラクタンスモータ(SRM)を含む、さまざまな種類の電気モータがEVアプリケーション向けに検討されてきました。しかし、BLDCモータは、その高出力密度、効率、および制御性により際立っています。先行研究では、EV性能を最適化するための効果的な電力電子システムと制御戦略の必要性が強調されています。 研究の目的: 本研究は、特に電気自動車アプリケーション用のBLDCモータの性能特性を分析し、向上させることを目的としています。研究は、シミュレーションツールを使用した設計パラメータの最適化を通じてモータ性能を向上させることに焦点を当てています。 コアスタディ: 本研究の核心は、500W、2000rpm、および48V定格のBLDCモータの性能分析を含みます。Ansys Maxwell RMxprtソフトウェアを活用して、研究はモータ性能に対するさまざまな設計パラメータの影響を調査します。調査対象の主要な性能指標には、トルク、損失、トルクリップル係数、電力、および効率が含まれます。この研究では、これらのパラメータを最適化し、EVアプリケーション用のBLDCモータの全体的な性能を向上させるためのさまざまな方法論を探求します。 5. 研究方法論 研究デザイン: 本研究では、シミュレーションベースの設計アプローチを採用しています。Ansys Maxwell RMxprtソフトウェアを利用して、BLDCモータの性能をモデル化およびシミュレーションします。この方法により、初期段階で物理的なプロトタイプを作成する必要なく、さまざまな設計パラメータとそのモータ特性への影響を分析できます。 データ収集と分析方法: データは、Ansys Maxwell RMxprtで実施されたシミュレーションを通じて収集されます。固定子および回転子の材料、ワイヤゲージ、エアギャップなどのさまざまな設計パラメータが、シミュレーション環境内で変更されます。ソフトウェアは、効率、速度、トルク、および損失などの主要な性能指標に関するデータを計算して提供します。次に、このデータを分析して、各パラメータの変動がBLDCモータの性能に与える影響を評価します。 研究テーマと範囲: 本研究は、次のテーマを調査することにより、BLDCモータの性能向上に焦点を当てています。 6. 主な結果: 主な結果: シミュレーション結果は、材料の選択、ワイヤゲージ、およびエアギャップの最適化がBLDCモータの性能に大きな影響を与えることを示しています。 表 2: BLDC固定子および回転子材料の比較 材料 効率 (%) 速度定格 (rpm) トルク定格 (N.m) 総損失 (W) Steel_1010 85.259

Read More

Figure 3. Structure of rotor slots and tooth

ロータスロットと歯構造に基づく誘導モータの効率改善

この紹介資料は、[Journal of Intelligent Systems and Control]が発行した論文「Efficiency improvement of induction motors based on rotor slot and tooth structures」に基づいています。 1. 概要: 2. 抄録: 構造が単純で、メンテナンスが容易で、低コストであるため、誘導電動機(IM)はさまざまな産業で広く応用されており、産業で使用される交流(AC)電動機の60〜80%を占めています。しかし、IMの効率は非常に低く、わずかな改善でも大幅な省エネにつながる可能性があります。たとえば、効率が1%向上すると、数十億キロワット時を節約できます。したがって、本論文は、IMの効率を向上させ、エネルギー消費と温室効果ガス排出量を削減することを目的としています。定格出力7.5kW、IE3エネルギー効率クラスのIMについて、さまざまな変更を加えることで効率を改善します。逐次二次計画法アルゴリズムとfmincon関数を提案して、ロータスロットと歯の構造を変更し、ほぼ91%のモータ効率を実現しました。これは、元の効率よりも大幅な改善です。IMの効率を改善すると、特にIMがACモータの大部分を占める場合に、多くのエネルギーを節約できることに注意する必要があります。 3. 序論: 電気エネルギーは私たちの生活において重要な役割を果たしており、産業部門で消費される電気の大部分は電動機に使用されており、その中でも誘導電動機が最も広く使用されているタイプです。これらの電動機は費用対効果が高く、メンテナンスが容易で、信頼性が高く、電力網から直接運転できます。しかし、効率が低いことは大きな欠点であり、運転に関連する損失は総使用コストのかなりの部分を占める可能性があります。誘導電動機(IM)の損失は、ロータおよびステータの銅損、鉄損、摩擦および風損、その他の損失など、いくつかのタイプに分類できます。さまざまな研究を通じてこれらの損失を最小限に抑える努力がなされてきましたが、これらの機械の効率は電力に応じて70%から95%まで大きく異なる可能性があります[1]。定格値で最大の効率を発揮するように電動機を設計することは、効率的な動作を保証するために不可欠です(表1)。エネルギー効率の高い誘導電動機は、高速でより高い力率とより高い効率を示し、より低い入力で同じ出力を提供できます(図1)。IMが長期間低電圧で動作すると、ステータとロータの温度が上昇し、銅損が増加します[2、3]。特にIMのような高効率電動機の生産は、産業用途におけるエネルギーコストを削減するために非常に重要です。IMは他のタイプの電動機に比べていくつかの利点を提供しますが、低い効率は全体的なエネルギー効率を改善し、コストを削減するために必ず対処しなければならない重要な問題です[4]。 表1. 電動機の効率レベル [5] 効率クラス 最小効率 適用可能な電動機タイプ IE1 標準効率 すべての電動機タイプ IE2 高効率 すべての電動機タイプ IE3 プレミアム効率 三相電動機 IE4 スーパープレミアム効率 三相電動機 4. 研究の概要: 研究テーマの背景: 誘導電動機は、産業部門における電気エネルギーのかなりの部分を消費しています。広く使用されているにもかかわらず、固有の低効率は、エネルギー節約の大きな機会を提供します。IMの効率がわずかに向上するだけでも、エネルギー消費量と温室効果ガス排出量を大幅に削減できます。 既存研究の現状: 先行研究では、IMの性能を向上させるためのさまざまな方法が検討されてきました。これらには、スリップ電力回収に基づく制御戦略、ロータケージの材料変更(例:銅およびプレミアム鋼)、ステータおよびロータスロット形状の変更、および定周波数での制御技術が含まれます。有限要素法(FEM)と遺伝的アルゴリズムおよび高磁束材料を組み合わせた方法も調査されています。さらに、可変速IMドライブおよび効率評価のための群最適化技術へのアプローチも開発されました。 研究の目的: 本研究は、7.5kW、IE3効率クラスのIMの効率を向上させ、重量を削減することを目的としています。主な目的は、モータ効率を大幅に向上させるために、ロータスロットと歯の構造を最適化することです。 中核となる研究: 本研究の中核は、Matlab環境内で逐次二次計画法アルゴリズム(SQA)およびfmincon関数を適用して、ロータスロットと歯の構造を最適化することです。この最適化プロセスは、モータ効率を最大化することを目的としています。IMの計算プロセスを図2に示します。図2は、設計モジュール、制御モジュール、およびパラメータ最適化のためのデータベースの相互作用を示しています。 5. 研究方法

Read More

Figure 2. Model of Initial Design (1-Stator, 2-Winding, 3- Rotor, 4- SquirrelCage): a) 2D, b) 3D

AlおよびCu導体を考慮した回転子バーおよびケージ数がハイブリッド電気自動車の非同期牽引モーターの性能に及ぼす影響

この紹介資料の内容は、[ICEMG 2023]が発行した論文「”Effects of Rotor Bar and Cage Numbers Considering Al and Cu Conductors on The Performance of Asynchronous Traction Motors in Hybrid Electric Vehicles”」に基づいています。 1. 概要: 2. 概要: 電気自動車は、そのトルクプロファイルのおかげで比類のない体験を提供します。電気自動車は、都市内走行サイクル(頻繁な始動-停止)を考慮する場合、効率/性能の関係に敏感に対処することで最適化する必要があります。非同期モーターは、電気自動車で一般的に使用されています。固定子/回転子の形状、スロット数、使用材料などのパラメータは、効率/性能の関係において非常に重要です。本研究では、主に都市部で使用される電気自動車で使用される非同期モーターを設計することにより、モーター性能に対する固定子/回転子スロット数の変化の影響に焦点を当てました。その後、単層および二重層かご形構造で、銅またはアルミニウムのかご形材料がモーター性能に及ぼす影響を取得しました。最初に設計されたモーターは、初期トルク値が96.26 Nmであるのに対し、最適化されたモーターは、効率値と熱制限が変更なしに19.82%向上し、115.34 Nmの値を持っています。分析結果によると、二重層、34/46構造、およびアルミニウム材料を使用したかご形非同期モーターが、初期トルクで最高の性能を示しました。 3. 導入: 技術の発展により、人間の生活をより快適にする高効率で環境に優しい製品を設計および使用することが可能になりました。電気自転車や電気自動車は日々使用が増加しており、最高の例の1つです[1, 2]。自動車産業の発展と並行して、クリーンエネルギー源とエネルギー効率に関する研究により、電気自動車(EV)技術が加速しました。石油資源はほぼ枯渇状態にあり、車両用の代替推進システムに関する研究が強化されています。この研究の結果、車両への電気モーターの使用が問題になっています[3-6]。電気モーターは、駆動システムの最も重要な要素として定義できます。今日、電気自動車にはさまざまな種類の駆動モーターが使用されています。EVでは、主に非同期モーター(AM)および同期モーター(SM)(永久磁石型と突極型)、場合によってはDCモーターおよびスイッチトリラクタンスモーター(SRM)がトラクションに使用されます。磁石技術の進歩により、PMモーターの効率が向上しました。しかし、磁性材料の高価格と減磁のリスクは、依然として永久磁石モーターの欠点です。DCモーターは線形速度トルク曲線を持っていますが、整流子とブラシ構造を持っているという事実は、EVの使用を制限しています[7-9]。SRMでは、出力トルクの変動がEVでの使用を制限しています[10, 11]。メンテナンスの必要性が低く、制御が容易、高温耐性、製造が容易、低コストであるため、AMは最も好ましいモーターの1つです[12-14]。EV用電気モーターを比較する研究では、6種類の電気機械が比較されました。効率、重量、コスト、冷却、最高速度、故障許容度、安全性、耐久性の点で、AM、SRM、ブラシレスDCモーター、ブラシ付きDCモーター、SMを最も適切な電気モーターの選択のために検討しました。分析の結果、AMはSRMに次いで効率、重量、コストの点でEVで使用できる電気モーターであると判断されました[15]。GilinskyとAbu-Rubは、AMで駆動されるプロトタイプEVに関する実験を実施しました。DC電圧で駆動される三相かご形非同期モーターがシステムで使用されています。かご形非同期モーターの使用は、電気モーターよりもEVでより有利であることが判明しました[16]。MishraとSahaは、3.5kW AMを設計し、定常状態および過渡状態で磁気および電気分析を実行しました[17]。Kimらは、電気自動車用に設計した非同期モーターで、エアギャップと回転子バーの形状を最適化することにより、始動点および動作点特性を達成しました[18]。回転子スロット構造を調査した研究の最初の1つで、半閉鎖スロット構造を持つ非同期モーターのスロット上部にウェッジを追加することにより、エアギャップリラクタンスを低減しました。したがって、固定子電流と鉄損が減少します。さらに、機械の振動レベルが低下しました[19]。別の構造分析では、二重かご形および単一かご形非同期モーターの性能を調査しました。その結果、二重かご形構造は始動電流が低いことが判明しました。電流が低いため、銅損が減少し、モーターの効率が向上します[20]。回転子スロット構造が電流高調波に及ぼす影響を調べたところ、開放スロット非同期モーターでは、閉鎖回転子スロット構造よりも5次および7次高調波がはるかに高いことが判明しました[21]。異なるスロット数を調査した研究では、回転子スロット数は24、28、30、40、41、48と決定され、非同期モーターの性能を分析しました。28構造では効率が最も優れていますが、力率が低く、40構造では力率が最も高いですが、効率が低くなっています。41構造は、他の構造と比較して比較的平均的な性能を持ち、48スロット回転子は最高のトルクと電力を提供することが判明しました[22]。 4. 研究の概要: 研究テーマの背景: 効率的で環境に優しい輸送への需要の高まりが、EV技術の開発を推進しています。非同期モーターはEV駆動システムの重要なコンポーネントであり、その性能は固定子/回転子の形状、スロット数、材料の選択などの設計パラメータに大きく影響されます。特に頻繁な始動-停止動作が特徴の都市部走行サイクルでは、これらのパラメータを最適化することがEVトラクションモーターの効率と性能を向上させるために不可欠です。 以前の研究の状況: 以前の研究では、さまざまなモータータイプの比較、エアギャップと回転子バーの形状の最適化、単一および二重かご形回転子構造の分析など、EV用の非同期モーター設計のさまざまな側面を探求してきました。研究では、回転子スロット構造が電流高調波に及ぼす影響や、さまざまな回転子スロット数がモーター性能に及ぼす影響も調査しています。ただし、固定子/回転子スロット数組み合わせ、回転子ケージ構造(単一対二重)、回転子導体材料(アルミニウム対銅)の複合効果を同時に考慮した包括的な分析が文献に不足しています。 研究の目的: 本研究の主な目的は、特に都市部電気自動車用に設計された非同期モーターの始動トルクと公称動作効率を最適化することです。本研究では、さまざまな固定子-回転子スロット数組み合わせを調査し、単一および二重ケージ回転子構造を比較します。さらに、アルミニウムと銅を回転子導体材料として使用することが、モーター全体の性能に及ぼす影響を調べます。本研究は、これらの変数を組み合わせて考慮することにより、EVアプリケーションの非同期モーターに最適な回転子構造を特定することを目的としています。 コアスタディ: 本研究の核心は、さまざまな固定子/回転子スロット数組み合わせ(36/26、36/28、36/30、36/34、36/44、36/46)と単一および二重かご形回転子構造を使用して非同期モーターを設計および分析することです。分析は、ケージ材料としてアルミニウムと銅の両方を使用して実施されます。評価される性能指標には、効率、定格トルク、始動トルクが含まれます。本研究では、有限要素解析(FEA)を活用して、さまざまなモーター構成の電磁性能をシミュレーションおよび比較します。初期設計はNEMAクラスBモーターの特性に基づいており、最適化は始動トルクを最大化し、高い効率を維持することに重点を置いています。 5. 研究方法 研究デザイン: 本研究では、比較シミュレーションベースの設計研究を採用しています。初期モーター設計パラメータは、解析的手法を使用して確立しました。回転子スロット数とケージ構造(単層および二重層)を変更することにより、さまざまな非同期モーター構成を設計しました。かご形ケージには、アルミニウムと銅の2つの材料を検討しました。固定子スロット数は36で一定に保ちました。調査した回転子スロット数は、26、28、30、34、44、46です。単一および二重ケージ回転子設計の両方を、各スロット数組み合わせおよび材料について分析しました。 データ収集と分析方法: 性能データは、有限要素解析(FEA)シミュレーションを通じて収集しました。シミュレーションのために、モーターの2Dおよび3Dモデルを作成しました。シミュレーションから抽出された主要な性能指標には、効率、定格トルク、始動トルク、回転子抵抗損失が含まれます。トルク-速度特性と相電流波形も分析しました。次に、結果をさまざまな回転子スロット数、ケージ構造、および導体材料にわたって比較して、最適な構成を決定しました。 研究テーマと範囲: 本研究は、電気自動車トラクションアプリケーション用のかご形非同期モーターの電磁性能分析に焦点を当てています。範囲は次のとおりです。

Read More

Fig.2.Winding pattern of stator

電気自動車アプリケーションで使用される誘導電動機の解析と有限要素法を用いたアルミニウムローターバーと銅ローターバーの比較

この紹介論文の内容は、[電気自動車アプリケーションで使用される誘導電動機の解析と有限要素法を用いたアルミニウムローターバーと銅ローターバーの比較]論文を[Publisher]が発行した内容に基づいています。 1. 概要: 2. 抄録: 本論文では、まずTesla Model Sの誘導電動機の解析を行い、次にTesla Model Sの誘導電動機のローターバーの解析と比較のために2つの材料を使用しました。これらのローターバーの材料タイプは、アルミニウムと銅です。Tesla Model Sの誘導電動機ローターバーに対する2つの異なる材料の長所と短所を比較しました。最後に、解析と比較に基づいて評価と推論を行いました。 3. 序論: 本論文は、Tesla Model Sの誘導電動機を熱的および電磁的に解析し、有限要素法を用いてアルミニウムローターバーと銅ローターバーを比較することを目的としています。Tesla Model S誘導電動機の利用可能なすべてのデータを使用します。 今日、電気自動車に適したモーターを選択することは、電気自動車技術において非常に重要であり、モーターのすべての部品を考慮する必要があります。ローターバーの材料選択は、かご形誘導電動機の効率、温度、重量に直接影響するため、かご形誘導電動機の設計プロセスにおいて重要な部分です。Tesla Model Sのかご形誘導電動機を解析し、2つの異なる材料で作られたローターバーを持つ2つのローターを調べ、比較します。これらの比較されたロータータイプの長所と短所は、記事に記載されています。最初のモデルは銅ローターバータイプであり、2番目のモデルはかご形誘導電動機用のアルミニウムローターバータイプです。アルミニウムと銅を比較すると、銅はアルミニウムよりも39%導電性が高くなっています。一方、アルミニウムは銅よりも70%軽量です。したがって、モーターの重量が重要であり、コストが重要なアプリケーション領域では、ローターバーの材料選択においてアルミニウム材料が好ましい場合があります。焼きなまし銅の密度は8.933g/cm³で1083°Cで溶融し、鋳造アルミニウムの密度は2.95 g/cm³で660.3 °Cで溶融します。これらのデータはANSYS Motor-CADで利用できます。焼きなまし銅と鋳造アルミニウムの電気抵抗率は20°Cで1.724×10-8 Ωmと3.3×10-8 Ωmであり、これらの材料の抵抗率は材料の基準抵抗率として知られており、基準抵抗率は任意の温度で材料の抵抗を計算するための重要なパラメータです。「アルファ」(a)定数は、材料の抵抗温度係数として知られており、温度変化の度合いあたりの抵抗変化係数を象徴し、焼きなまし銅と鋳造アルミニウムの熱抵抗係数は3.93×10-3と3.75×10-3です。材料の抵抗は、式(1)によって任意の温度で計算できます。 ここで、Rは温度「T」での材料の抵抗、Rrefは20°Cでの材料の電気抵抗率、aは1/°C単位の温度抵抗係数、Tは°C単位の温度です。 4. 研究の要約: 研究テーマの背景: 電気自動車(EV)技術におけるモーター選択の重要性が高まっており、特にローターバーの材料選択がモーターの効率、温度、重量に大きな影響を与えています。 既存研究の現状: 既存の研究では、さまざまなローターバー材料の長所と短所を比較し、特定のアプリケーションに適した材料選択に関する考慮事項を提示しました。 研究目的: 本研究は、Tesla Model Sの誘導電動機を解析し、ローターバー材料としてアルミニウムと銅を使用して性能を比較することを目的としています。 コア研究: 有限要素法(Finite Element Method)を使用して、Tesla Model S誘導電動機の熱的および電磁的特性を解析し、アルミニウムローターバーと銅ローターバーの性能を比較します。 5. 研究方法論 研究デザイン: Tesla Model S誘導電動機をモデル化し、ローターバー材料をアルミニウムと銅に変更してシミュレーションを実行します。 データ収集と分析方法: ANSYS Motor-CADソフトウェアを使用して有限要素解析を実行し、効率、トルク、損失などの性能指標を比較分析します。 研究テーマと範囲: 本研究は、Tesla

Read More

Figure 2-1 - Induction Motor components [2].

実験的評価、診断、およびIE2、IE3、IE4クラス効率モーターにおける電力品質擾乱の影響の予測

この紹介論文の内容は、[UFPA/ITEC / PPGEE]によって発行された[EXPERIMENTAL EVALUATION, DIAGNOSIS, AND PREDICTION OF THE IMPACTS OF POWER QUALITY DISTURBANCES IN IE2, IE3, AND IE4 CLASS EFFICIENCY MOTORS.]の記事に基づいています。 1. 概要: 2. 抄録: 電気モーターは、世界で最も大きな電気の最終用途であり、産業部門の基本的な部分であり続けています。さらに、技術の進歩により、電気自動車、輸送、ナビゲーションなどの新しいカテゴリにアプリケーションが拡大しました。ヨーロッパはIE4効率モータークラスへのアップグレードを開始しており、他の地域もより高い効率のモータークラスへの移行に従うことが期待されています。一部の地域では、IEC 60038-2009に従って、動作電圧が公称電圧と異なる場合があります。これは、不均衡や電圧高調波などの他の障害とともに、これらの新しい技術の性能に影響を与える可能性があります。このような状況において、予測保全に多大な努力が払われ、SEPに存在するさまざまな障害が存在する状態で回転機械の健全性を診断する上で、その有効性を高めるための新しい提案で既存の技術を改善しています。本研究では、IE2、IE3、IE4クラスの低電力誘導モーターの温度と性能に対する電圧変動、電圧高調波、および過電圧不均衡のさまざまなパーセンテージの影響を評価します。この研究には、エネルギー消費、効率、力率、および温度に関連する重要な指標を得るための技術的、経済的、統計的、および熱分析が含まれています。革新的で補完的な技術を模索するために、本研究では、電気モーター電流波形の周波数領域分析に基づいて、回転機械の完全性を診断するための新しい電気モーター劣化指標(EMDI)も提示します。結果は、理想的な動作条件下では、IE4クラスの永久磁石モーターが電力消費と温度の点でより優れた性能を発揮しますが、非線形特性を持つことを示しています。次に、特定の障害が存在する場合、同じ動作条件下でかご形誘導モーターと比較して性能が低下するため、シナリオが変化します。実施された分析により、導入される新しい電気モーター技術の性能に対する電力システムに存在するさまざまな摂動の影響を特定し、定量化することができます。提案されたモーター状態診断指標に関して、提示された結果は、予測保全の実践の実施を促進する上で、提案されたアプローチの有効性を強く支持しています。本論文のもう1つの重要な貢献は、その結果がホンジュラスの電気モーターに対する最小効率要件の導入のための新しい規制の実施の基礎となることです。 キーワード: 電圧変動、電圧不均衡、高調波、温度、効率クラス、永久磁石モーター、予測保全。 3. 導入: 2015年のパリ協定は、気候変動への取り組みにおいて重要なグローバルステップとなりました。それ以来、エネルギー効率に焦点を当てた政策と規制の実施を推進し、環境目標を達成し、国際的に持続可能な慣行を促進する上で重要な役割を果たしてきました。このような状況において、誘導モーター(IM)は、世界の最終的な電気エネルギー消費量の約53%を占めるエネルギー節約のための重要なカテゴリです[1]。 ブラジルでは、鉱業エネルギー省の文書「国家エネルギー効率計画」[2]によると、産業界は総国家電力の36%を消費し、稼働中の駆動システムはこの電力の68%を消費しています。したがって、国の総電気エネルギーの約35%が電気モーターによって消費されていると報告されています。 三相かご形誘導モーターは、2002年12月11日の大統領令第4.508号の公布により、ブラジルで大統領令によって規制される最初で唯一の機器でした。これにより、ブラジルの電気モーター市場に大きな変化が起こりました。まず、規制はIR1(標準モーター)¹およびIR2(高効率モーター)クラスの最小電力定格を確立しました。IR1クラスよりも低い電力を持つモーター(法令の付録1に示されている特性を含む)は、製造、販売、または輸入できませんでした。この法令は、エネルギーの保全と合理的な使用に関する国家政策を確立する2001年10月17日の法律第10.295号によって裏付けられており、当時「ブラックアウト」として広く知られていたエネルギー危機後に制定された「エネルギー効率法」として知られています。 4. 研究の概要: 研究テーマの背景: 電気モーターは、世界で最も大きな電気の最終用途であり続けており、産業部門の基本的な部分です。技術の進歩により、電気自動車、輸送、ナビゲーションなどの新しいカテゴリにアプリケーションが拡大しました。ヨーロッパはIE4効率モータークラスへのアップグレードを開始しており、他の地域もより高い効率のモータークラスへの移行に従うことが期待されています。 以前の研究の状況: 電気モーターの効率を向上させるためのさまざまな研究が行われており、その結果、さまざまな効率クラスが導入されました。しかし、電力品質の低下が電気モーターの性能に与える影響に関する研究は、依然として不足しています。 研究の目的: 本研究の目的は、電力品質の低下がIE2、IE3、IE4クラスの電気モーターの性能に与える影響を実験的に評価し、新しいモーター状態診断指標を開発して、予測保全の実践を改善することです。 コア研究: 本研究では、電圧変動、電圧不均衡、高調波などがIE2、IE3、IE4クラスの電気モーターの温度と性能に与える影響を分析します。また、新しいモーター状態診断指標を開発して、予測保全の実践を改善します。 5. 研究方法論 研究デザイン: 本研究は、実験的研究と統計的分析を組み合わせた研究です。実験的研究では、電圧変動、電圧不均衡、高調波などの電力品質の低下がIE2、IE3、IE4クラスの電気モーターの温度と性能に与える影響を測定します。統計的分析では、実験的研究から得られたデータを分析して、新しいモーター状態診断指標を開発します。 データ収集と分析方法: 本研究では、実験的研究を通じてデータを収集します。実験的研究では、電圧変動、電圧不均衡、高調波などの電力品質の低下がIE2、IE3、IE4クラスの電気モーターの温度と性能に与える影響を測定します。また、新しいモーター状態診断指標を開発するために、電気モーター電流波形の周波数領域分析を実行します。 研究テーマと範囲: 本研究のテーマは、電力品質の低下がIE2、IE3、IE4クラスの電気モーターの性能に与える影響です。本研究の範囲は、電圧変動、電圧不均衡、高調波などの電力品質の低下とIE2、IE3、IE4クラスの電気モーターに限定されます。 6. 主な結果:

Read More

FIG. 4 - 3D CuBar Rotor Cutaway View

誘導電動機用銅およびアルミニウムローターの選択

この紹介資料は、IEEE が発行した「Selection of Copper vs. Aluminum Rotors for Induction Motors」という論文に基づいています。 1. 概要: 2. 概要: かご形誘導電動機では、低コストのダイカストまたは加工アルミニウムローターと高コストの銅バーローターのどちらを使用するかという重要な選択があります。 アプリケーションに間違ったローター構造を使用すると、不必要にコストが増加したり、致命的な故障につながる可能性があります。 この論文は、正しい選択を行うために必要な背景知識を提供します。 ローター構造の基本原理と誘導電動機の動作原理に関する基本情報を説明します。 さらに、さまざまな材料とローター構造のタイプがモーター性能に与える影響を分析します。 3. 序論: 多くの重要なプロセスは誘導電動機に依存しており、故障は非常に大きなコストにつながる可能性があります。 ローター構造 (アルミニウムダイカスト、加工アルミニウム、または銅バー) の選択は、モーターの信頼性とコストに大きな影響を与えます。 この論文は、これらのロータータイプ間のトレードオフについて説明し、銅バーローターはより信頼性が高いと認識されていますが、技術の進歩により、アルミニウムダイカストローターが以前よりも大きな馬力定格で実行可能であることを強調しています。 4. 研究概要: 研究テーマの背景: 費用対効果が高く信頼性の高い誘導電動機の需要が高まるにつれて、ローター構造の材料と方法を慎重に評価する必要があります。 以前の研究の状況: アルミニウムダイカスト技術が進歩し、より大きなモーター定格で信頼性の高いダイカストローターが可能になりました。 研究目的: 低コストのダイカストまたは加工アルミニウムローターと高コストの銅バーローターのどちらかを選択する際に、適切な選択を行うために必要な背景知識を提供することです。 主要な研究: さまざまな材料とローター構造のタイプがモーター性能に与える影響を分析します。 5. 研究方法論 研究デザイン: この論文では、説明的なアプローチを使用して、さまざまなローター構成方法 (アルミニウムダイカスト、加工アルミニウム、銅バー) とモーター性能への影響を比較対照しています。 データ収集と分析方法: この論文では、確立されたエンジニアリング原理、製造慣行、経験的データに基づいて、ローターの応力、熱挙動、性能特性を分析しています。 一部の比較データは表に示されています。 研究テーマと範囲: この論文では、次のトピックについて説明します。- ローター構成方法 (ADC、AlBar、CuBar、CuDC)。- 締まりばめローターバーの実現。- ローター応力 (回転および残留)。- 誘導電動機の動作原理。- さまざまなローター材料の性能比較。- 始動に関する考慮事項とローター設計への影響。-

Read More

Figure 1. Die-Cast Copper Rotors

銅ローターモーター:経済的な超高効率モーターへの一歩?

本紹介資料は、’ACEEE’ が発行した ‘Copper Rotor Motors: A Step toward Economical Super-Premium Efficiency Motors?’ 論文に基づいています。 1. 概要: 2. 要約: NEMA Premium® モーターは、効率向上のためにモーターの固定子に大幅な変更を加えました。銅ローターモーターは、回転子の導体損失を低減することにより、モーター効率の向上を目指しています。CDA (Copper Development Association) は、この技術の利点を促進し、特にダイカストプロセスに関連する研究開発を支援するために長年取り組んできました。Siemens Electric and Automation (Siemens) は、これらのモーターを大規模に製造し始めた最初の企業であり、現在市場で入手可能です。これらのモーターは、NEMA Premium® アルミニウムローターモーターと同等の価格で販売されており、より高い効率が期待できます。Advanced Energy は、これらのモーターをアルミニウムローターモーターの性能および構造と比較し、産業用モーター市場への潜在的な影響を評価するために、市販されている範囲の 6 つのモーターに対して、限定的な非破壊モーター構造検査分析、効率テスト (IEEE Std.112B)、および性能特性評価 (定常状態温度上昇、トルク-速度性能) を実施しました。Advanced Energy は、アルミニウムローターモーターの構造およびテスト結果に関する 16 年間の経験を有しています。この分析には、テスト結果のデータベースが使用され、アルミニウムローターモーターの追加テストは実施されていません。 3. 序論: 序論では、1977 年の最初の NEMA ガイドラインから 1992 年の EPAct、そして NEMA Premium® モーターの台頭に至るまで、モーター効率基準の進化をたどります。リベートプログラム、エネルギーコストの上昇、競争の激化により、エネルギー効率への関心が高まっていることを強調しています。中心的な問いは、「NEMA

Read More