Figure 2: Example V8 engine block die casting
(photo permission from Mercury Marine)Figure 14: Biscuity, runner, gating, and venting system on casting
(photo permission from Mercury Marine)
References:
[1] B. Andresen, Die Casting Engineering: A Hydraulic, Thermal, and Mechanical Process. New York: Marcel Dekker, 2005.
[2] D. Blondheim, Jr., “Artificial Intelligence, Machine Learning, and Data Analytics: Understanding the Concepts to Find Value in Die Casting Data,” presented at the NADCA Executive Conference, Clearwater, Florida, Feb. 25, 2020.
[3] J. Folk, “U.S. Aluminum Casting Industry - 2019,” Die Casting Engineer, vol. July 2019, pp. 16– 19, 2019.
[4] S. Midson, “Report on the 2014 Die Casting Benchmarking Survey Part 2 of 3: Operations,” in Report on the 2014 Die Casting Benchmarking Survey, North American Die Casting Association, 2014.
[5] T. Wuest, D. Weimer, C. Irgens, and K.-D. Thoben, “Machine learning in manufacturing: advantages, challenges, and applications,” Production & Manufacturing Research, vol. 4, no. 1, pp. 23–45, Jan. 2016, doi: 10.1080/21693277.2016.1192517.
[6] L. Baier, F. Johren, and S. Seebacher, “CHALLENGES IN THE DEPLOYMENT AND OPERATION OF MACHINE LEARNING IN PRACTICE,” in In Proceedings of the 27th European Conference on Information Systems (ECIS), Stockholm & Uppsala, Sweden, Jun. 2019, p. 16.
[7] N. Sun, A. Kopper, R. Karkare, R. C. Paffenroth, and D. Apelian, “Machine Learning Pathway for Harnessing Knowledge and Data in Material Processing,” Inter Metalcast, Sep. 2020, doi: 10.1007/s40962-020-00506-2.
[8] J. Landry, J. Maltais, J.-M. Deschênes, M. Petro, X. Godmaire, and A. Fraser, “Inline Integration of Shotblast Resistant Laser Marking in a Die Cast Cell,” Indianapolis, IN, 2018, vol. T18-123.
[17] K. Ch. Apparao and A. K. Birru, “Optimization of Die casting process based on Taguchi approach,” Materials Today: Proceedings, vol. 4, no. 2, pp. 1852–1859, 2017, doi: 10.1016/j.matpr.2017.02.029.
[18] Q.-C. Hsu and A. T. Do, “Minimum Porosity Formation in Pressure Die Casting by Taguchi Method,” Mathematical Problems in Engineering, vol. 2013, pp. 1–9, 2013, doi: 10.1155/2013/920865.
[19] S. Balasubramaniam, S. Kannan, and R. Shivpuri, “Improving the Quality in Die Casting Production Using Statistical Analysis Procedures,” presented at the 1999 NADCA World of Die Casting, Cleveland, OH, 1999.
[20] Q. Han, D. McClure, D. Wood, and D. Yang, “Statistical Analysis of the Effect of Operational Parameters on the Scrap Rates of Crossmember Casting,” Die Casting Engineer, no. November 2017, pp. 38–43, 2017.
[21] V. D. Tsoukalas, “Optimization of porosity formation in AlSi9Cu3 pressure die castings using genetic algorithm analysis,” Materials & Design, vol. 29, no. 10, pp. 2027–2033, Dec. 2008, doi: 10.1016/j.matdes.2008.04.016.
[22] J. Zheng, Q. Wang, P. Zhao, and C. Wu, “Optimization of high-pressure die-casting process parameters using artificial neural network,” Int J Adv Manuf Technol, vol. 44, no. 7–8, pp. 667–674, Oct. 2009, doi: 10.1007/s00170-008-1886-6.
[23] E. A. Herman, Die Casting Process Control E-410. North American Die Casting Association, 2012.
[24] I. Vuksanović Herceg, V. Kuč, V. M. Mijušković, and T. Herceg, “Challenges and Driving Forces for Industry 4.0 Implementation,” Sustainability, vol. 12, no. 10, p. 4208, May 2020, doi: 10.3390/su12104208.
[25] A. Raj, G. Dwivedi, A. Sharma, A. B. Lopes de Sousa Jabbour, and S. Rajak, “Barriers to the adoption of industry 4.0 technologies in the manufacturing sector: An inter-country comparative perspective,” International Journal of Production Economics, vol. 224, p. 107546, Jun. 2020, doi: 10.1016/j.ijpe.2019.107546.
[26] L. S. Dalenogare, G. B. Benitez, N. F. Ayala, and A. G. Frank, “The expected contribution of Industry 4.0 technologies for industrial performance,” International Journal of Production Economics, vol. 204, pp. 383–394, Oct. 2018, doi: 10.1016/j.ijpe.2018.08.019.
[27] A. Mayr et al., “Machine Learning in Production – Potentials, Challenges and Exemplary Applications,” Procedia CIRP, vol. 86, pp. 49–54, 2019, doi: 10.1016/j.procir.2020.01.035.
[28] M. Bertolini, D. Mezzogori, M. Neroni, and F. Zammori, “Machine Learning for industrial applications: A comprehensive literature review,” Expert Systems with Applications, vol. 175, p. 114820, Aug. 2021, doi: 10.1016/j.eswa.2021.114820.
[29] R. Kenett, I. Yahav, and A. Zonnenshain, “Chapter 13: Analytics as an Enabler of Advanced Manufacturing,” in Systems Engineering in the Fourth Industrial Revolution: Big Data, Novel Technologies, and Modern Systems Engineering, First., John Wiley & Sons Inc, 2020, pp. 321–344.
[30] C. Hoyer, I. Gunawan, and C. H. Reaiche, “The Implementation of Industry 4.0 - A Systematic Literature Review of the Key Factors,” Syst Res Behav Sci, vol. 37, no. 4, pp. 557–578, Jul. 2020, doi: 10.1002/sres.2701.
[31] S. Pfeiffer, “The Vision of ‘Industrie 4.0’ in the Making—a Case of Future Told, Tamed, and Traded,” Nanoethics, vol. 11, no. 1, pp. 107–121, Apr. 2017, doi: 10.1007/s11569-016-0280-3.
[32] S. Wang, J. Wan, D. Zhang, D. Li, and C. Zhang, “Towards smart factory for industry 4.0: a selforganized multi-agent system with big data based feedback and coordination,” Computer Networks, vol. 101, pp. 158–168, Jun. 2016, doi: 10.1016/j.comnet.2015.12.017.
[33] V. Roblek, M. Meško, and A. Krapež, “A Complex View of Industry 4.0,” SAGE Open, vol. 6, no. 2, p. 215824401665398, Apr. 2016, doi: 10.1177/2158244016653987.
[34] “Industry 4.0 after the initial hype. Where manufacturers are finding value and how they can best capture it.” McKinsey Digital, 2016.
[37] L. Bonekamp and M. Sure, “Consequences of Industry 4.0 on Human Labour and Work Organisation,” Journal of Business and Media Psychology, vol. 6, no. 1, pp. 33–40, 2015.
[38] A. G. Frank, L. S. Dalenogare, and N. F. Ayala, “Industry 4.0 technologies: Implementation patterns in manufacturing companies,” International Journal of Production Economics, vol. 210, pp. 15–26, Apr. 2019, doi: 10.1016/j.ijpe.2019.01.004.
[39] S. B. Gershwin, “The future of manufacturing systems engineering,” International Journal of Production Research, vol. 56, no. 1–2, pp. 224–237, Jan. 2018, doi: 10.1080/00207543.2017.1395491.
[40] R. A. Miller, “Gate Speed, Fraction Solid, and the Effect on Mechanical Properties,” Indianapolis, IN, Oct. 2018, vol. T18-042.
[41] H. Bramann, L. Leineweber, and J. C. Sturm, “Innovative Product Design and Robust Process Layout in Die Casting with Autonomous Engineering,” Indianapolis, IN, Oct. 2018, vol. T18-093.
[43] M. Ognianov, “Influence of the Cooling Rate on the Microstructure and Mechanical Properties in 5wt.% Cr Martensitic Steels,” Indianapolis, IN, Oct. 2018, vol. T18-013.
[45] D. Blondheim, Jr., “Initial Development of Machine Learning Algorithms to Predict Casting Defects in High-Pressure Die Casting,” Atlanta, GA, Sep. 2017, vol. T17-073.
[49] H. G. Sillitto, “On Systems Architects and Systems Architecting: some thoughts on explaining and improving the art and science of systems architecting,” INCOSE International Symposium, vol. 19, no. 1, pp. 970–985, Jul. 2009, doi: 10.1002/j.2334-5837.2009.tb00995.x.
[50] V. R. Vemuri, Modeling of complex systems: an introduction. New York: Academic Press, 1978.
[51] K. Warren, “Chaos Theory and Complexity Theory,” in Encyclopedia of Social Work, NASW Press and Oxford University Press, 2013. doi: 10.1093/acrefore/9780199975839.013.45.
[52] F. Heylighen, “Complexity and Self-organization,” in Encyclopedia of Library and Informatoin Sciences, Bates&Maack., Taylor & Francis, 2018.
[53] L. M. Jiji, Heat Conduction. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. doi: 10.1007/978-3-642-01267-9.
[54] A. Kossiakoff, Ed., Systems engineering: principles and practice, 2nd ed. Hoboken, N.J: WileyInterscience, 2011.
[55] C. S. Wasson, System engineering analysis, design, and development: concepts, principles, and practices, Second edition. Hoboken, New Jersey: John Wiley & Sons Inc, 2016.
[56] D. D. Walden, G. J. Roedler, K. Forsberg, R. D. Hamelin, T. M. Shortell, and International Council on Systems Engineering, Eds., Systems engineering handbook: a guide for system life cycle processes and activities, 4th edition. Hoboken, New Jersey: Wiley, 2015.
[57] USA, Ed., Systems engineering handbook. Washington, D.C: National Aeronautics and Space Administration, 2007.
[58] A. Schneider, C. Wickert, and E. Marti, “Reducing Complexity by Creating Complexity: A Systems Theory Perspective on How Organizations Respond to Their Environments: Reducing Complexity by Creating Complexity,” Jour. of Manage. Stud., vol. 54, no. 2, pp. 182–208, Mar. 2017, doi: 10.1111/joms.12206.
[59] “Systems Engineering Definition,” Default. https://www.incose.org/about-systemsengineering/system-and-se-definition/systems-engineering-definition (accessed Aug. 29, 2021).
[60] National ITS Architecture Team, “Systems Engineering for Intelligent Transportation Systems: An Introduction for Transportation Professionals,” Department of Transportation, Office of Operations, FHWA-HOP-07-069, Jan. 2007. Accessed: Aug. 30, 2021.
[61] M. Mennenga, F. Cerdas, S. Thiede, and C. Herrmann, “Exploring the Opportunities of System of Systems Engineering to Complement Sustainable Manufacturing and Life Cycle Engineering,” Procedia CIRP, vol. 80, pp. 637–642, 2019, doi: 10.1016/j.procir.2019.01.026.
[62] R. Sturdivant, “Application of Systems Engineering to Complex Systems and System of Systems,” Colorado State University, 2017.
[63] K. E. Boulding, “General Systems Theory - The Skeleton of Science,” Management Science, vol. 2, no. 3, pp. 197–208, Apr. 1956.
[64] R. L. Ackoff, “Towards a System of Systems Concepts,” Management Science, vol. 17, no. 11, pp. 661–671, Jul. 1971, doi: 10.1287/mnsc.17.11.661.
[65] Control of complex systems: theory and applications, 1st edition. Cambridge, MA: Elsevier, 2016.
[66] K. Åström, P. Albertos, M. Blanke, A. Isidori, W. Schaufelberger, and R. Sanz, Eds., Control of Complex Systems. London: Springer London, 2001. doi: 10.1007/978-1-4471-0349-3.
[67] “Mercury Marine’s new high-pressure die casting machine is now the largest in North America,” Mercury Marine. http://www.mercurymarine.com/en/us/news/mercury-marines-new-high-pressuredie-casting-machine-is-now-the-largest-in-north-america/ (accessed Aug. 31, 2021).
[68] “Tesla Giga Press Die Casting Machine - World’s Largest Die Cast Machine,” Sunrise Metal - Aluminium Die Casting Expert. https://www.sunrise-metal.com/tesla-giga-press-die-castingmachine/ (accessed Aug. 31, 2021).
[69] Idra Group, IDRA GROUP | Flash News - Giga Press (Riccardo Ferrario), (Mar. 18, 2021). Accessed: Aug. 31, 2021.
[70] M. L. Cox, R. R. Fish, and J. P. Wronowicz, PQ2 - Machine Power and Die Compatibility. Arlington Heights, IL: North American Die Casting Association.
[71] J. Scott. Kirkman, Thermal Design & Control of DIe Casting Dies, Publication #415. Arlington Heights, IL: North American Die Casting Association, 2010.
[72] D. J. Armentrout, J. Brevick, and T. Altan, “Investigation and Reduction of Air Entrapment in the Shot Sleeve of a Cold Chamber Die Casting Machine (A Progress Report),” The Ohio State University, NSF Engineering Research Center for Net Shape Manufacturing, ERC/NSM-C-92-61, Oct. 1992.
[73] D. J. Armentrout, J. Brevick, and T. Altan, “Investigation of the Slow Shot Phase to Minimize Entrapped Air in Cold Chamber Die Casting,” The Ohio State University, NSF Engineering Research Center for Net Shape Manufacturing, ERC/NSM-C-93-19, Jun. 1993.
[74] M. C. Thome and J. Brevick, “Optimal Slow Shot Profiles in Cold Chamber Die Casting,” The Ohio State University, NSF Engineering Research Center for Net Shape Manufacturing, ERC/NSM-C95-14, Dec. 1993.
[75] M. C. Thome, J. Brevick, and Y.-L. Chu, “Modeling the Effect of Shot Plunger Acceleration on Wave Formation and Air Entrapment in Cold Chamber DIe Casting (A Progress Report),” The Ohio State University, NSF Engineering Research Center for Net Shape Manufacturing, ERC/NSM-C94-04, Dec. 1993.
[77] A. V. Deshpande, “Evaluation of Slow Shot Acceleration on Gas Porosity in Medium Sized Diecast Components,” Master of Science, The Ohio State University, 1999.
[82] J. R. Vann, “Automatic Shot Control with Computer Monitoring and Programming for Increased Productivity in Die Casting,” Die Casting Engineer, no. March/April 1985, pp. 28–40, 1985.
[83] L. X. Kong, F. H. She, W. M. Gao, S. Nahavandi, and P. D. Hodgson, “Integrated optimization system for high pressure die casting processes,” Journal of Materials Processing Technology, vol. 201, no. 1–3, pp. 629–634, May 2008, doi: 10.1016/j.jmatprotec.2007.11.250.
[84] I. Pastor-Lopez, I. Santos, A. Santamaria-Ibirika, M. Salazar, J. de-la-Pena-Sordo, and P. G. Bringas, “Machine-learning-based surface defect detection and categorisation in high-precision foundry,” in 2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA), Singapore, Singapore, Jul. 2012, pp. 1359–1364. doi: 10.1109/ICIEA.2012.6360934.
[85] A. E. Kopper and D. Apelian, “Predicting Quality of Castings via Supervised Learning Method,” Inter Metalcast, Apr. 2021, doi: 10.1007/s40962-021-00606-7.
[86] N. Gramegna and F. Bonollo, Smart Control and Cognitive System applied to the HPDC Foundry 4.0. MUSIC Consortium, 2016.
[87] K. J. Rogers, G. Savage, and B. Cooper, “Experiments With a New Generation Shot Monitoring System in High-Pressure Die Casting,” Die Casting Engineer, no. January/February 2000, pp. 54– 62, 2000.
[88] G. Savage, M. Gershenzon, and K. J. Rogers, “The Role of Pressure in High Pressure Die Casting,” in NADCA Congress, Cincinnati, OH, Oct. 2001, vol. T01-053, pp. 151–156.
[89] W. R. McAlister, “Continuous Process Monitoring Leads to Reduced Scrap and Shorter Cycle Times,” Die Casting Engineer, vol. July/August 1998, pp. 14–20, 1998.
[91] M. Winkler, L. Kallien, and T. Feyertag, “Correlation between Process Parameters and Quality Characteristics in Aluminum High Pressure Die Casting,” vol. T15-022.
[93] D. Blondheim, Jr. and A. Monroe, “Macro Porosity Formation - A Study in High Pressure Die Casting,” International Journal of Metalcasting, 2021, doi: https://doi.org/10.1007/s40962-021- 00602-x.
[94] J. Brevick, Die Casting Porosity Guidebook. North American Die Casting Association, 2008.
[95] W. G. Walkington, Die Casting Defects: Causes and Solutions. Rosemont, IL: North American Die Casting Association, 1997.
[96] D. Twarog, “State of the Industry 2012.” North American Die Casting Association, Feb. 2012.
[97] S. Viswanathan et al., Eds., “Shrinkage Porosity and Gas Porosity,” in Casting, ASM International, 2008, pp. 370–374. doi: 10.31399/asm.hb.v15.a0005222.
[98] P. D. Lee, A. Chirazi, and D. See, “Modeling microporosity in aluminum–silicon alloys: a review,” Journal of Light Metals, vol. 1, no. 1, pp. 15–30, Feb. 2001, doi: 10.1016/S1471-5317(00)00003-1.
[99] J. Campbell, Castings, 2. ed. Oxford: Butterworth-Heinemann, 2003.
[100] E. Fiorese, F. Bonollo, G. Timelli, L. Arnberg, and E. Gariboldi, “New Classification of Defects and Imperfections for Aluminum Alloy Castings,” Inter Metalcast, vol. 9, no. 1, pp. 55–66, Jan. 2015, doi: 10.1007/BF03355602.
[101] R. Atwood, “A Combined Cellular Automata and Diffusion Model for the Prediction of Porosity Formation During Solidification,” University of London, 2001.
[102] I. Brill, B. Kappes, and S. Midson, “An Initial Evaluation of CT Scanning for Measuring and Characterizing Porosity in Aluminum Die Castings,” Indianapolis, IN, Oct. 2018, vol. T18-083.
[103] M. Weidt, R. A. Hardin, C. Garb, J. Rosc, R. Brunner, and C. Beckermann, “Prediction of porosity characteristics of aluminium castings based on X-ray CT measurements,” International Journal of Cast Metals Research, pp. 1–19, May 2018, doi: 10.1080/13640461.2018.1467105.
[104] C. Gu, Y. Lu, and A. A. Luo, “Three-dimensional visualization and quantification of microporosity in aluminum castings by X-ray micro-computed tomography,” Journal of Materials Science & Technology, vol. 65, pp. 99–107, Feb. 2021, doi: 10.1016/j.jmst.2020.03.088.
[105] H. Cao, M. Hao, C. Shen, and P. Liang, “The influence of different vacuum degree on the porosity and mechanical properties of aluminum die casting,” Vacuum, vol. 146, pp. 278–281, Dec. 2017, doi: 10.1016/j.vacuum.2017.09.048.
[106] X. P. Niu, B. H. Hu, I. Pinwill, and H. Li, “Vacuum assisted high pressure die casting of aluminium alloys,” Journal of Materials Processing Technology, vol. 105, no. 1–2, pp. 119–127, Sep. 2000, doi: 10.1016/S0924-0136(00)00545-8.
[107] Y. Zhang, E. Lordan, K. Dou, S. Wang, and Z. Fan, “Influence of porosity characteristics on the variability in mechanical properties of high pressure die casting (HPDC) AlSi7MgMn alloys,” Journal of Manufacturing Processes, vol. 56, pp. 500–509, Aug. 2020, doi: 10.1016/j.jmapro.2020.04.071.
[108] J. A. Dantzig and M. Rappaz, Solidification, 1 st. EPFL Press, 2009.
[109] J. Huang and J. G. Conley, “Modeling of Microporosity Evolution During Solidification Processes,” in Review of Progress in Quantitative Nondestructive Evaluation, D. O. Thompson and D. E. Chimenti, Eds. Boston, MA: Springer US, 1998, pp. 1839–1846. doi: 10.1007/978-1-4615-5339- 7_238.
[110] T. Liang, C. Mobley, and N. Tsumagari, “The Effects of Shot Delay Time on the Microstructures and Mechanical Properties of a Die Cast Aluminum Alloy,” presented at the Die Casting Toward The Future, Rosemont, IL, Oct. 2002.
[111] B. Zhang, S. L. Cockcroft, D. M. Maijer, J. D. Zhu, and A. B. Phillion, “Casting defects in lowpressure die-cast aluminum alloy wheels,” JOM, vol. 57, no. 11, pp. 36–43, Nov. 2005, doi: 10.1007/s11837-005-0025-1.
[112] K. D. Carlson and C. Beckermann, “Prediction of Shrinkage Pore Volume Fraction Using a Dimensionless Niyama Criterion,” Metall and Mat Trans A, vol. 40, no. 1, pp. 163–175, Jan. 2009, doi: 10.1007/s11661-008-9715-y.
[113] G. K. Sigworth, “Shrinkage, Feeding and Riser Design,” AFS Transactoins 2014, vol. 14–002, pp. 25–36, 2014.
[114] M. Shabani and A. Mazahery, “Prediction of Mechanical Properties of Cast A356 Alloy as a Function of Microstructure and Cooling Rate,” Archives of Metallurgy and Materials, vol. 56, no. 3, Jan. 2011, doi: 10.2478/v10172-011-0073-1.
[115] M. Easton, C. Davidson, and D. St John, “Effect of Alloy Composition on the Dendrite Arm Spacing of Multicomponent Aluminum Alloys,” Metall and Mat Trans A, vol. 41, no. 6, pp. 1528– 1538, Jun. 2010, doi: 10.1007/s11661-010-0183-9.
[116] J. Cho and C. Kim, “THE RELATIONSHIP BETWEEN DENDRITE ARM SPACING AND COOLING RATE OF Al-Si CASTING ALLOYS IN HIGH PRESSURE DIE CASTING,” InternationalJournal ofMetalcasting, vol. 8, no. 1, pp. 49–55, 2014, doi: https://doi.org/10.1007/BF03355571.
[117] “SRE MAX,” Bosello High Technology , a ZEISS company. https://bosello.eu/products/sre-max/ (accessed Dec. 29, 2020).
[118] “Phoenix Vtomex C | 3D CT Scanner (Mini Focus),” Waygate Technologies. https://www.bakerhughesds.com/industrial-x-ray-ct-scanners/phoenix-vtomex-c-ct (accessed Dec. 29, 2020).
[120] T. J. Schorn, Improving the Effectiveness of Visual Inspection. Schaumburg, IL USA: American Foundry Society, 2018.
[121] J. F. Koretz and G. H. Handelman, “How the Human Eye Focuses,” Sci Am, vol. 259, no. 1, pp. 92– 99, Jul. 1988, doi: 10.1038/scientificamerican0788-92.
[122] J. Schindelin et al., “Fiji: an open-source platform for biological-image analysis,” Nat Methods, vol. 9, no. 7, pp. 676–682, Jul. 2012, doi: 10.1038/nmeth.2019.
[123] S. Preibisch, S. Saalfeld, J. Schindelin, and P. Tomancak, “Software for bead-based registration of selective plane illumination microscopy data,” Nat Methods, vol. 7, no. 6, pp. 418–419, Jun. 2010, doi: 10.1038/nmeth0610-418.
[124] “Standard Reference Radiographs for Inspection of Aluminum and Magnesium Die Castings E505- 15.” ASTM International, 2015. doi: 10.1520/E0505-15.
[125] S. S. Shapiro and M. B. Wilk, “An Analysis of Variance Test for Normality (Complete Samples),” Biometrika, vol. Vol. 52, pp. 591–611, Dec. 1965,
[126] F. Wilcoxon, “Individual Comparisons by Ranking Methods,” Biometrics Bulletin, vol. 1, no. No. 6, pp. 80–83, Dec. 1945.
[127] MAGMAsoft. Kackerstrasse 11, 52072 Aachen, Germany: MAGMA Gmbh, 2019.
[128] M. R. Brand, “An examination of certain Bayesian methods used in reliability analysis,” Reliability Engineering, vol. 1, no. 2, pp. 115–125, Oct. 1980, doi: 10.1016/0143-8174(80)90003-7.
[129] S. G. Lee and A. M. Gokhale, “Formation of gas induced shrinkage porosity in Mg-alloy highpressure die-castings,” Scripta Materialia, vol. 55, no. 4, pp. 387–390, Aug. 2006, doi: 10.1016/j.scriptamat.2006.04.040.
[130] F. Bonollo, N. Gramegna, and G. Timelli, “High-Pressure Die-Casting: Contradictions and Challenges,” JOM, vol. 67, no. 5, pp. 901–908, May 2015, doi: 10.1007/s11837-015-1333-8.
[131] C. H. Cáceres and B. I. Selling, “Casting defects and the tensile properties of an AlSiMg alloy,” Materials Science and Engineering: A, vol. 220, no. 1–2, pp. 109–116, Dec. 1996, doi: 10.1016/S0921-5093(96)10433-0.
[132] R. Lumley, N. Deeva, and M. Gershenzon, “An Evaluation of Quality Parameters for High Pressure Die Castings,” Inter Metalcast, vol. 5, no. 3, pp. 37–56, Jul. 2011, doi: 10.1007/BF03355517.
[133] D. Blondheim, Jr., “Improving Manufacturing Applications of Machine Learning by Understanding Defect Classification and the Critical Error Threshold,” Inter Metalcast, Jun. 2021, doi: 10.1007/s40962-021-00637-0.
[134] Y. LeCun et al., “Handwritten Digit Recognition with a Back-Propagation Network,” 1990, pp. 396–404.
[135] S. Lalmuanawma, J. Hussain, and L. Chhakchhuak, “Applications of machine learning and artificial intelligence for Covid-19 (SARS-CoV-2) pandemic: A review,” Chaos, Solitons & Fractals, vol. 139, p. 110059, Oct. 2020, doi: 10.1016/j.chaos.2020.110059.
[136] “The transformative potential of AI in the manufacturing industry - Microsoft Industry Blogs.” https://cloudblogs.microsoft.com/industry-blog/manufacturing/2017/09/25/the-transformativepotential-of-ai-in-the-manufacturing-industry/ (accessed Nov. 27, 2020).
[137] “Bringing Intelligence to Industrial Manufacturing Through AWS IoT and Machine Learning | AWS Partner Network (APN) Blog.” https://aws.amazon.com/blogs/apn/bringing-intelligence-toindustrial-manufacturing-through-aws-iot-and-machine-learning/ (accessed Nov. 27, 2020).
[138] P. K. Tseng, “Smart Manufacturing Becomes Key to Enterprise Survival in Post-Pandemic Era with Forecasted Revenue of US$400 Billion in 2024, Says TrendForce,” Aug. 17, 2020. https://www.trendforce.com/presscenter/news/20200817-10437.html (accessed Nov. 27, 2020).
[139] “Thriving in an AI World.” KPMG, Apr. 15, 2021.
[140] G. Rebala, A. Ravi, and S. Churiwala, An Introduction to Machine Learning. Cham: Springer International Publishing, 2019. doi: 10.1007/978-3-030-15729-6.
[141] R. Fernandes de Mello and M. Antonelli Ponti, Machine Learning: A Practical Approach on the Statistical Learning Theory. Cham: Springer International Publishing, 2018. doi: 10.1007/978-3- 319-94989-5.
[142] J. M. Juran, Ed., Juran’s quality handbook, 5. ed. New York, NY: McGraw-Hill, 1999.
[143] J. J. Sheehan and C. G. Drury, “The analysis of industrial inspection,” Applied Ergonomics, vol. 2, no. 2, pp. 74–78, Jun. 1971, doi: 10.1016/0003-6870(71)90073-1.
[144] C. G. Drury, “The effect of speed of working on industrial inspection accuracy,” Applied Ergonomics, vol. 4, no. 1, pp. 2–7, Mar. 1973, doi: 10.1016/0003-6870(73)90002-1.
[145] C. G. Drury and M.-J. Wang, “Are Research Results in Inspection Task Specific?,” Proceedings of the Human Factors Society Annual Meeting, vol. 30, no. 5, pp. 476–480, Sep. 1986, doi: 10.1177/154193128603000515.
[146] C.-F. Chi, “The human as an optimizer in inspection,” State University of New York, Buffalo, NY, 1990.
[147] A. Fernández, S. García, and F. Herrera, “Addressing the Classification with Imbalanced Data: Open Problems and New Challenges on Class Distribution,” in Hybrid Artificial Intelligent Systems, vol. 6678, E. Corchado, M. Kurzyński, and M. Woźniak, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 1–10. doi: 10.1007/978-3-642-21219-2_1.
[148] S. Viswanathan et al., Eds., “High-Pressure Die Casting,” in Casting, ASM International, 2008, pp. 715–718. doi: 10.31399/asm.hb.v15.a0005266.
[149] J. Folk, “The U.S. Aluminum Casting Industry,” Die Casting Engineer, vol. May 2015, pp. 24–33, May 2015.
[150] V. Khalajzadeh, K. D. Carlson, D. G. Backman, and C. Beckermann, “A Pore-Centric Model for Combined Shrinkage and Gas Porosity in Alloy Solidification,” Metall and Mat Trans A, vol. 48, no. 4, pp. 1797–1816, Apr. 2017, doi: 10.1007/s11661-016-3940-6.
[151] P. F. Ostwald and J. Huang, “A Method for Optimal Tolerance Selection,” Journal of Engineering for Industry, vol. 99, no. 3, pp. 558–565, Aug. 1977, doi: 10.1115/1.3439279.
[152] C. Zhang, H. P. Wang, and J. K. Li, “Simultaneous Optimization of Design and Manufacturing — Tolerances with Process (Machine) Selection,” CIRP Annals, vol. 41, no. 1, pp. 569–572, 1992, doi: 10.1016/S0007-8506(07)61270-0.
[153] A. Jeang, “Tolerance chart optimization for quality and cost,” International Journal of Production Research, vol. 36, no. 11, pp. 2969–2983, Nov. 1998, doi: 10.1080/002075498192238.
[154] M. D. Al-Ansary and I. M. Deiab, “Concurrent optimization of design and machining tolerances using the genetic algorithms method,” International Journal of Machine Tools and Manufacture, vol. 37, no. 12, pp. 1721–1731, Dec. 1997, doi: 10.1016/S0890-6955(97)00033-3.
[155] S. A. Irani, R. O. Mittal, and E. A. Lehtihet, “Tolerance chart optimization,” International Journal of Production Research, vol. 27, no. 9, pp. 1531–1552, Sep. 1989, doi: 10.1080/00207548908942638.
[156] A. N. Haq, K. Sivakumar, R. Saravanan, and V. Muthiah, “Tolerance design optimization of machine elements using genetic algorithm,” Int J Adv Manuf Technol, vol. 25, no. 3–4, pp. 385– 391, Feb. 2005, doi: 10.1007/s00170-003-1855-z.
[157] American Society of Mechanical Engineers and American National Standards Institute, Dimensioning and tolerancing: engineering drawing and related documentation practices. New York: American Society of Mechanical Engineers, 2019.
[158] J. D. Meadows, Geometric Dimensioning and Tolerancing: Applications, Analysis & Measurement
[per ASME Y14.5-2009]. James D. Meadows & Associated, Inc., 2009.
[159] D. Steiner and R. Katz, “Measurement Techniques for the Inspection of Porosity Flaws on Machined Surfaces,” Journal of Computing and Information Science in Engineering, vol. 7, no. 1, pp. 85–94, Mar. 2007, doi: 10.1115/1.2424244.
[160] S. J. Świłło and M. Perzyk, “Automatic inspection of surface defects in die castings after machining,” Archives of Foundry Engineering, vol. Volume 11, no. Special Issue 3/2011, pp. 231– 236, 2011.
[161] F. Peters, R. Stone, K. Watts, P. Zhon, and A. Clemons, “Visual Inspection of Casting Surfaces,” Transactions of the American Foundry Society, pp. 45–52, 2013.
[162] D. H. Harris and F. B. Chaney, Human Factors in Quality Assurance. New York: John Wiley & Sons Inc, 1969.
[163] S. B. Kotsiantis, “Supervised Machine Learning: A Review of Classification Techniques,” Informatica, vol. 31, no. 3, pp. 249–269, Oct. 2007.
[164] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning. New York, NY: Springer New York, 2009. doi: 10.1007/978-0-387-84858-7.
[165] Y. Wang, D. Zou, J. Yi, J. Bailey, X. Ma, and Q. Gu, “IMPROVING ADVERSARIAL ROBUSTNESS REQUIRES REVISITING MISCLASSIFIED EXAMPLES,” Virtual Conference, 2020, p. 14. Accessed: Mar. 01, 2021.
[166] M. R. Smith and T. Martinez, “Improving classification accuracy by identifying and removing instances that should be misclassified,” in The 2011 International Joint Conference on Neural Networks, San Jose, CA, USA, Jul. 2011, pp. 2690–2697. doi: 10.1109/IJCNN.2011.6033571.
[167] D. Chicco and G. Jurman, “The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation,” BMC Genomics, vol. 21, no. 1, p. 6, Dec. 2020, doi: 10.1186/s12864-019-6413-7.
[168] D. Powers, “Evaluation: From Precision, Recall and F-Factor to ROC, Informedness, Markedness & Correlation,” Mach. Learn. Technol., vol. 2, p. 25, 2008,
[169] D. Blondheim, Jr. and S. Bhowmik, “Time-Series Analysis and Anomaly Detection of HighPressure Die Casting Shot Profiles,” Die Casting Engineer, pp. 14–18, Nov. 2019.
[170] P. Patel, M. I. Ali, and A. Sheth, “From Raw Data to Smart Manufacturing: AI and Semantic Web of Things for Industry 4.0,” IEEE Intell. Syst., vol. 33, no. 4, pp. 79–86, Jul. 2018, doi: 10.1109/MIS.2018.043741325.
[171] R. S. Peres, X. Jia, J. Lee, K. Sun, A. W. Colombo, and J. Barata, “Industrial Artificial Intelligence in Industry 4.0 - Systematic Review, Challenges and Outlook,” IEEE Access, vol. 8, pp. 220121– 220139, 2020, doi: 10.1109/ACCESS.2020.3042874.
[172] A. Bécue, I. Praça, and J. Gama, “Artificial intelligence, cyber-threats and Industry 4.0: challenges and opportunities,” Artif Intell Rev, vol. 54, no. 5, pp. 3849–3886, Jun. 2021, doi: 10.1007/s10462- 020-09942-2.
[173] A. B. Simmons and S. G. Chappell, “Artificial intelligence-definition and practice,” IEEE J. Oceanic Eng., vol. 13, no. 2, pp. 14–42, Apr. 1988, doi: 10.1109/48.551.
[174] S. J. Russell, P. Norvig, and E. Davis, Artificial intelligence: a modern approach, 3rd ed. Upper Saddle River: Prentice Hall, 2010.
[175] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. Cambridge, Massachusetts: The MIT Press, 2016.
[176] T. Sasakawa, J. Hu, and K. Hirasawa, “A brainlike learning system with supervised, unsupervised, and reinforcement learning,” Elect. Eng. Jpn., vol. 162, no. 1, pp. 32–39, Jan. 2008, doi: 10.1002/eej.20600.
[177] H. Oliff, Y. Liu, M. Kumar, M. Williams, and M. Ryan, “Reinforcement learning for facilitating human-robot-interaction in manufacturing,” Journal of Manufacturing Systems, vol. 56, pp. 326– 340, Jul. 2020, doi: 10.1016/j.jmsy.2020.06.018.
[178] L. Wang et al., “Dynamic job-shop scheduling in smart manufacturing using deep reinforcement learning,” Computer Networks, vol. 190, p. 107969, May 2021, doi: 10.1016/j.comnet.2021.107969.
[179] D. Blondheim, Jr., “Utilizing Machine Learning Autoencoders to Detect Anomalies in Time-Series Data,” presented at the 2021 NADCA Congress and Exposition, Indianapolis, IN, Oct. 2021.
[180] S. Žapčević and P. Butala, “Adaptive process control based on a self-learning mechanism in autonomous manufacturing systems,” Int J Adv Manuf Technol, vol. 66, no. 9–12, pp. 1725–1743, Jun. 2013, doi: 10.1007/s00170-012-4453-0.
[181] S. Profanter, A. Tekat, K. Dorofeev, M. Rickert, and A. Knoll, “OPC UA versus ROS, DDS, and MQTT: Performance Evaluation of Industry 4.0 Protocols,” in 2019 IEEE International Conference on Industrial Technology (ICIT), Melbourne, Australia, Feb. 2019, pp. 955–962. doi: 10.1109/ICIT.2019.8755050.
[182] M. Silveira Rocha, G. Serpa Sestito, A. Luis Dias, A. Celso Turcato, and D. Brandao, “Performance Comparison Between OPC UA and MQTT for Data Exchange,” in 2018 Workshop on Metrology for Industry 4.0 and IoT, Brescia, Apr. 2018, pp. 175–179. doi: 10.1109/METROI4.2018.8428342.
[183] G. Büchi, M. Cugno, and R. Castagnoli, “Smart factory performance and Industry 4.0,” Technological Forecasting and Social Change, vol. 150, p. 119790, Jan. 2020, doi: 10.1016/j.techfore.2019.119790.
[184] Y.-H. Choi and S.-H. Choi, “A Study of Crossing the Chasm in applying Smart Factory System for SMEs,” International Journal of Pure and Applied Mathematics, vol. 118, no. No 19, pp. 469–487, Jan. 2018,
[Online]. Available: http://www.ijpam.eu
[185] M. Khan, X. Wu, X. Xu, and W. Dou, “Big data challenges and opportunities in the hype of Industry 4.0,” in 2017 IEEE International Conference on Communications (ICC), Paris, France, May 2017, pp. 1–6. doi: 10.1109/ICC.2017.7996801.
[186] A. Khan and K. Turowski, “A Survey of Current Challenges in Manufacturing Industry and Preparation for Industry 4.0,” in Proceedings of the First International Scientific Conference “Intelligent Information Technologies for Industry” (IITI’16), vol. 450, A. Abraham, S. Kovalev, V. Tarassov, and V. Snášel, Eds. Cham: Springer International Publishing, 2016, pp. 15–26. doi: 10.1007/978-3-319-33609-1_2.
[187] T. Wuest, C. Irgens, and K.-D. Thoben, “An approach to monitoring quality in manufacturing using supervised machine learning on product state data,” J Intell Manuf, vol. 25, pp. 1167–1180, 2014, doi: 10.1007/s10845-013-0761-y.
[188] S. Sun, X. Zheng, J. Villalba-Díez, and J. Ordieres-Meré, “Data Handling in Industry 4.0: Interoperability Based on Distributed Ledger Technology,” Sensors, vol. 20, no. 11, p. 3046, May 2020, doi: 10.3390/s20113046.
[189] R. Sahal, J. G. Breslin, and M. I. Ali, “Big data and stream processing platforms for Industry 4.0 requirements mapping for a predictive maintenance use case,” Journal of Manufacturing Systems, vol. 54, pp. 138–151, Jan. 2020, doi: 10.1016/j.jmsy.2019.11.004.
[190] K. Villalobos, V. J. Ramírez-Durán, B. Diez, J. M. Blanco, A. Goñi, and A. Illarramendi, “A three level hierarchical architecture for an efficient storage of industry 4.0 data,” Computers in Industry, vol. 121, p. 103257, Oct. 2020, doi: 10.1016/j.compind.2020.103257.
[191] F. Y. Kuo and I. H. Sloan, “Lifting the Curse of Dimensionality,” Notices of the AMS, vol. 52, no. 11, pp. 1320–1329, 2005.
[192] G. Hughes, “On the mean accuracy of statistical pattern recognizers,” IEEE Trans. Inform. Theory, vol. 14, no. 1, pp. 55–63, Jan. 1968, doi: 10.1109/TIT.1968.1054102.
[193] P. Domingos, “A few useful things to know about machine learning,” Commun. ACM, vol. 55, no. 10, pp. 78–87, Oct. 2012, doi: 10.1145/2347736.2347755.
[194] F. Provost, “Machine Learning from Imbalanced Data Sets 101,” in AAAI Technical Report WS-00- 05, 2000, p. 3.
[197] L. Breiman, “Random Forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, 2001, doi: 10.1023/A:1010933404324.
[198] S. Kuutti, R. Bowden, Y. Jin, P. Barber, and S. Fallah, “A Survey of Deep Learning Applications to Autonomous Vehicle Control,” IEEE Trans. Intell. Transport. Syst., vol. 22, no. 2, pp. 712–733, Feb. 2021, doi: 10.1109/TITS.2019.2962338.
[199] A. Kuusk and J. Gao, “Factors for successfully integrating operational and information technologies,” in 2015 Portland International Conference on Management of Engineering and Technology (PICMET), Portland, OR, USA, Aug. 2015, pp. 1513–1523. doi: 10.1109/PICMET.2015.7273136.
[200] E. J. M. Colbert and A. Kott, Eds., Cyber-security of SCADA and Other Industrial Control Systems, vol. 66. Cham: Springer International Publishing, 2016. doi: 10.1007/978-3-319-32125-7.
[201] L. Thames and D. Schaefer, Eds., Cybersecurity for Industry 4.0: Analysis for Design and Manufacturing. Cham: Springer International Publishing, 2017. doi: 10.1007/978-3-319-50660-9.
[202] G. Culot, F. Fattori, M. Podrecca, and M. Sartor, “Addressing Industry 4.0 Cybersecurity Challenges,” IEEE Eng. Manag. Rev., vol. 47, no. 3, pp. 79–86, Sep. 2019, doi: 10.1109/EMR.2019.2927559.
[203] M. Lezzi, M. Lazoi, and A. Corallo, “Cybersecurity for Industry 4.0 in the current literature: A reference framework,” Computers in Industry, vol. 103, pp. 97–110, Dec. 2018, doi: 10.1016/j.compind.2018.09.004.
[204] P. O’Donovan, K. Leahy, K. Bruton, and D. T. J. O’Sullivan, “Big data in manufacturing: a systematic mapping study,” Journal of Big Data, vol. 2, no. 1, p. 20, Dec. 2015, doi: 10.1186/s40537-015-0028-x.
[205] M. Fahmideh and G. Beydoun, “Big data analytics architecture design—An application in manufacturing systems,” Computers & Industrial Engineering, vol. 128, pp. 948–963, Feb. 2019, doi: 10.1016/j.cie.2018.08.004.
[206] I. Nunes and D. Jannach, “A systematic review and taxonomy of explanations in decision support and recommender systems,” User Model User-Adap Inter, vol. 27, no. 3–5, pp. 393–444, Dec. 2017, doi: 10.1007/s11257-017-9195-0.
[207] C. Rudin and K. L. Wagstaff, “Machine learning for science and society,” Mach Learn, vol. 95, no. 1, pp. 1–9, Apr. 2014, doi: 10.1007/s10994-013-5425-9.
[208] N. Werts and M. Adya, “Data Mining in Healthcare: Issues and a Research Agenda,” in AMCIS 2000 Proceedings, 2000, pp. 94–97.
[209] R. Boutaba et al., “A comprehensive survey on machine learning for networking: evolution, applications and research opportunities,” J Internet Serv Appl, vol. 9, no. 1, p. 16, Dec. 2018, doi: 10.1186/s13174-018-0087-2.
[213] F. von Hayek, “Friedrich von Hayek Prize Lecture,” NobelPrize.org, Dec. 11, 1974. https://www.nobelprize.org/prizes/economic-sciences/1974/hayek/lecture/ (accessed Aug. 22, 2021).
[214] B. Marr, “A Short History of Machine Learning -- Every Manager Should Read,” Forbes, Feb. 19, 2016. https://www.forbes.com/sites/bernardmarr/2016/02/19/a-short-history-of-machine-learningevery-manager-should-read/
[215] R Core Team, R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing, 2016.
[Online]. Available: https://www.R-project.org
[216] B. Lantz, Machine Learning with R, 2nd edition. Packt Publishing Ltd., 2015.
[217] E. Siegel, Predictive Analytic: the power to predict who will click, buy, lie or die. John Wiley & Sons Inc, 2013.
[218] M. Kuhn, caret: Classification and Regression Training. 2017.
[221] D. Meyer, E. Dimitriadou, K. Hornik, A. Weingessel, and F. Leisch, e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien. 2017.
[222] J. Macqueen, “SOME METHODS FOR CLASSIFICATION AND ANALYSIS OF MULTIVARIATE OBSERVATIONS,” in Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, 1967, pp. 281–297.
[223] P. Catterina and C. Raone, “Towards the ‘Total’ certification in diecasting process Thermographic monitoring and traceability with TOTAL THERMAL VISION (TTV),” 2013, vol. T13-041.
[224] L. X. Kong, F. H. She, S. Nahavandi, and L. H. Wang, “Thermal control with image processing and fuzzy controllers,” in Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569), Vancouver, BC, Canada, 2001, vol. 3, pp. 1443–1449. doi: 10.1109/NAFIPS.2001.943761.
[225] S. Simske, Meta-Algorithmics: Patterns for Robust, Low Cost, High Quality Systems. Wiley-IEEE Press, 2013.
[226] W. A. Shewhart, Economic Control of Quality of Manufactured Products. New York, NY: D. Van Nostrand Company, Inc., 1931.
[227] D. L. Simon and J. C. Lafeber, “Optimization of Die Casting Processes Using Infrared Thermography,” 2011, vol. T11-071.
[229] J. Liang and S. Parthasarathy, “Robust Contextual Outlier Detection: Where Context Meets Sparsity,” in Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, Indianapolis Indiana USA, Oct. 2016, pp. 2167–2172. doi: 10.1145/2983323.2983660.
[230] S. Tartaglia and J. Vandertouw, “Benchmarking Study Comparison of North American and Japanese Companies,” Die Casting Engineer, no. March/April 2000, pp. 104–109, 2000.
[231] K.-D. Thoben, S. Wiesner, and T. Wuest, “‘Industrie 4.0’ and Smart Manufacturing – A Review of Research Issues and Application Examples,” Int. J. Automation Technol., vol. 11, no. 1, pp. 4–16, Jan. 2017, doi: 10.20965/ijat.2017.p0004.
[232] S. P. Udvardy, “2019 State of the Die Casting Industry,” Die Casting Engineer, no. January 2020, pp. 10–15, 2020.
[234] A. Heidarian and M. J. Dinneen, “A Hybrid Geometric Approach for Measuring Similarity Level Among Documents and Document Clustering,” in 2016 IEEE Second International Conference on Big Data Computing Service and Applications (BigDataService), Oxford, United Kingdom, Mar. 2016, pp. 142–151. doi: 10.1109/BigDataService.2016.14.
[235] S. Samarasinghe, Neural networks for applied sciences and engineering: from fundamentals to complex pattern recognition. Auerbach Publications, 2007.
[236] D. Forsyth, Applied Machine Learning. Cham: Springer International Publishing, 2019. doi: 10.1007/978-3-030-18114-7.
[237] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi, “A survey of deep neural network architectures and their applications,” Neurocomputing, vol. 234, pp. 11–26, Apr. 2017, doi: 10.1016/j.neucom.2016.12.038.
[238] G. E. Hinton, “Reducing the Dimensionality of Data with Neural Networks,” Science, vol. 313, no. 5786, pp. 504–507, Jul. 2006, doi: 10.1126/science.1127647.
[239] Y. LeCun, C. Cortes, and C. J. C. Burges, “The MNIST Database of handwritten digits.” http://yann.lecun.com/exdb/mnist/ (accessed Jun. 25, 2021).
[240] “2.1 Million Manufacturing Jobs Could Go Unfilled by 2030,” NAM, May 04, 2021. https://www.nam.org/2-1-million-manufacturing-jobs-could-go-unfilled-by-2030-13743/ (accessed Sep. 04, 2021).
[241] P. Wellener, V. Reyes, H. Ashton, and C. Moutray, “Creating pathways for tomorrow’s workforce today,” Deloitte Insights. https://www2.deloitte.com/us/en/insights/industry/manufacturing/manufacturing-industrydiversity.html (accessed Sep. 04, 2021).
List of Abbreviations
AFS – American Foundry Society
AI – Artificial Intelligence
BoB – Best of Best
CET – Critical Error Threshold
CT Scanning – Computed Tomography Scanning
HPDC – High Pressure Die Casting
IIoT – Industrial Internet of Things
IT – Information Technology
INCOSE – International Council on Systems Engineering
ML – Machine Learning
MQTT – Message Queuing Telemetry Transport
NADCA – North American Die Casting Association
NN – Neural Network
OPC UA – Open Platform Communications Unified Architecture
OT – Operational Technology
PLC – Programmable Logic Controller
PSI – Pounds per Square Inch
RPM – Revolutions per Minute
SE – Systems Engineering
SoS – Systems-of-Systems
SVM – Support Vector Machine
WoW – Worst of worst
Copyright:
This material is David J. Blondheim, Jr.'s paper: Based on SYSTEM UNDERSTANDING OF HIGH PRESSURE DIE CASTING PROCESS AND DATA WITH MACHINE LEARNING APPLICATIONS.
본 자료는 위 논문을 바탕으로 요약되었으며, 상업적 목적으로 무단 사용하는 것을 금지합니다.