SYSTEM UNDERSTANDING OF HIGH PRESSURE DIE CASTING PROCESS AND DATA WITH MACHINE LEARNING APPLICATIONS

1. 概要:

  • タイトル: SYSTEM UNDERSTANDING OF HIGH PRESSURE DIE CASTING PROCESS AND DATA WITH MACHINE LEARNING APPLICATIONS (高圧ダイカストプロセスとデータ、機械学習応用に関するシステム理解)
  • 著者: David J. Blondheim, Jr. (デイビッド J. ブロンデハイム・ジュニア)
  • 出版年: 2021年秋
  • 掲載誌/学会: コロラド州立大学 (博士論文)
  • キーワード: ダイカスト (Die casting)、機械学習 (Machine learning)、システムエンジニアリング (Systems engineering)、インダストリー4.0 (Industry 4.0)、データフレームワーク (Data framework)、非教師あり機械学習 (Unsupervised machine learning)、異常検知 (Anomaly detection)、プロセス制御 (Process control)

2. 研究背景:

  • 研究トピックの社会的/学術的背景: ダイカストは、ニアネットシェイプ鋳造品を製造するために広く使用されている非常に複雑な製造システムです。長い歴史にもかかわらず、プロセスを定義し、各サイクルで生成されるデータを活用するためのシステムエンジニアリングのアプローチは不足しています。既存の研究は、ダイカスト内の重要なパラメータの狭い範囲に焦点を当てる傾向があります。
  • 既存研究の限界: ダイカスト研究における限定的なデータパラメータへの狭い焦点は、生産現場での機械学習の成功と適用可能性を制限してきました。プロセス最適化に関する文献では、実験計画入力と範囲が不適切に選択されていることが多く、品質予測のための実際のダイカストアプリケーションの複雑さが欠けています。
  • 研究の必要性: ダイカストプロセスとデータを包括的に理解するためのシステムエンジニアリングの視点が必要です。大量の生成データを管理し、ダイカスト産業におけるプロセス制御と品質を改善するために、機械学習の有意義な応用を特定するためのデータフレームワークが必要です。

3. 研究目的と研究課題:

  • 研究目的: システムエンジニアリングの観点からダイカストプロセスを調査し、機械学習を応用して、ダイカスト産業におけるシステム理解、プロセス制御、データ活用を強化する有意義な方法を示すこと。
  • 主要な研究課題:
    • システムエンジニアリングのアプローチは、ダイカストにおける重要なプロセスとデータフレームワークをどのように定義できるか?
    • 機械学習は、プロセス制御と品質を改善するために、複雑なダイカストシステムにどのように有意義に適用できるか?
    • 非教師あり機械学習は、ダイカストにおいてデータを自動的に監視し、異常を特定することで価値を提供できるか?
  • 研究仮説: ダイカストのシステムエンジニアリングフレームワーク内で適用される非教師あり機械学習は、データを自動的に監視し、異常を特定することで価値を提供でき、これによりプロセス制御の改善とダイカストプロセスによって生成されたデータのより良い活用につながるでしょう。

4. 研究方法

  • 研究デザイン: 文献レビュー、システムエンジニアリング分析、事例研究、実験研究を含む博士論文研究。
  • データ収集方法: 装置設定、射出およびその他のシステムの時系列データ、熱画像、鋳造品質データなど、生産ダイカストプロセスから収集されたデータ。
  • 分析方法: ダイカストシステムとデータフレームワークを定義するためのシステムエンジニアリングアプローチ。実験データに対する統計分析(ウィルコクソン符号順位検定)。事例研究のためのk-平均法クラスタリングやオートエンコーダなどの機械学習アルゴリズム。
  • 研究対象と範囲: 高圧ダイカストプロセス、ダイカスト作業から生成されたデータ、マーキュリー・マリンで実施された事例研究。

5. 主な研究成果:

  • 主要な研究成果:
    • ダイカストプロセスは、ネットワーク構造、適応性、自己組織化、非線形特性を備えた複雑なシステムとして定義されています。
    • ダイカスト用の包括的なデータフレームワークが開発され、データは設計パラメータデータ、入力設定データ、出力 - 離散データ、出力 - 時系列データ、サイクル時間分析データに分類されました。
    • ダイカストにおけるデータ量は、現在産業で使用されているものよりも数桁大きいです。
    • 非教師あり機械学習、特にオートエンコーダを使用した異常検知は、ダイカストプロセスを監視し、異常を特定する上で価値を提供します。
    • 事例研究は、プロセス監視、熱画像および時系列データの異常検知、およびプロセス最適化のための非教師あり機械学習の応用を示しています。
    • 多孔性形成の確率的性質が確認され、ダイカストにおける品質予測のための従来の教師あり機械学習アプローチの限界が強調されました。
  • 統計的/質的分析結果: ウィルコクソン符号順位検定では、最高サンプルと最悪サンプル間の重要な射出パラメータに統計的に有意な差は見られず、多孔性の確率的性質を示唆しています。事例研究は、異常検知とプロセス理解における非教師あり機械学習の有効性を示しました。
  • データ解釈: ダイカストの複雑さと欠陥形成の確率的性質により、品質予測のための従来の教師あり機械学習から、プロセス監視と異常検知のための非教師あり手法への焦点の移行が必要です。システムエンジニアリングのアプローチと包括的なデータ活用は、ダイカストにおける機械学習の効果的な応用に不可欠です。
  • 図のリスト:
    • 図 1: ダイカストセルレイアウトの例
    • 図 2: V8エンジンブロックダイカストの例
    • 図 3: 金属供給: ドージングファーネス (左)、2軸レードル (中央)、7軸ロボットレードル (右)
    • 図 4: ダイとチャンバーの図
    • 図 5: 射出速度が遅すぎると空気を巻き込む波
    • 図 6: 射出速度が速すぎると乱流金属波が形成される
    • 図 7: 正しい波形成により、チャンバーからすべての空気が逃げられる
    • 図 8: 射出速度と圧力グラフの例
    • 図 9: 油圧シリンダーとスライドを備えたダイ (左) および (右) 位置
    • 図 10: イジェクターピンを備えたダイの例
    • 図 11: 生産中の温水ユニット (左) とジェット冷却ユニット (右)
    • 図 12: スプレーシステム: 2軸マニホールド (左) と 6軸ロボット (右)
    • 図 13: ダイ内の機能の主要な用語
    • 図 14: 鋳造品のビスケット、ランナー、ゲート、ベントシステム
    • 図 15: 射出中のシミュレーションされた金属流体の流れ
    • 図 16: ダイ設計における複雑な熱冷却ライン
    • 図 17: 大型ダイの可動半分にある温水およびジェット冷却ラインの例
    • 図 18: ダイカストの複雑さ
    • 図 19: [60] に基づくシステムエンジニアリング「V」ダイアグラム
    • 図 20: 階層システムの分解
    • 図 21: ダイカストコンテキストダイアグラム
    • 図 22: ツーリング管理システムダイアグラム
    • 図 23: 一般的なクローズドループフィードバックシステム
    • 図 24: ショットプロファイル用にプログラムされた設定点の例
    • 図 25: ショットプロファイル出力の例
    • 図 26: 生産ダイカスト環境における熱画像カメラ
    • 図 27: 固定半分 (左) と可動半分 (右) の熱画像例
    • 図 28: 複数のロボットとダイカスト後処理を備えた抽出セル例
    • 図 29: X線用鋸引きサンプル鋳造品
    • 図 30: X線等級 1~3 の例
    • 図 31: 9 つの最良サンプル (グレード 1)
    • 図 32: 9 つの最悪サンプル (グレード 3)
    • 図 33: 予測された多孔質ゾーンのシミュレーション結果
    • 図 34: MAGMA によって予測されたサンプル領域の液体体積
    • 図 35: データ空間の重複の例
    • 図 36: HPDC 多孔質の例
    • 図 37: 多孔質のサンプル X 線画像
    • 図 38: バイナリ許容仕様による分類問題の例
    • 図 39: シミュレーションされた予測多孔質ゾーンの例
    • 図 40: 確率的多孔質形成を示す連続鋳造品
    • 図 41: 確率的欠陥形成の例による分類問題
    • 図 42: 二次プロセス変動の例による分類問題
    • 図 43: 要素の組み合わせの例
    • 図 44: バイアス-バリアンストレードオフグラフ
    • 図 45: カウントに基づく従来の混同行列
    • 図 46: パーセンテージに基づく正規化された混同行列
    • 図 47: 従来の混同行列と正規化された混同行列の計算例
    • 図 48: さまざまな精度計算の例
    • 図 49: 臨界誤差閾値を使用したバイアス-バリアンストレードオフグラフ
    • 図 50: 固有誤差の増加
    • 図 51: バイアスの増加
    • 図 52: 人工知能、機械学習、深層学習の階層
    • 図 53: 2 クラス混同行列の例
    • 図 54: ダイカストにおける機械学習の 6 つの課題
    • 図 55: ダイカストの 2D レーザーバーコードの例
    • 図 56: 視覚的に描かれたヒューズ現象
    • 図 57: 機械学習実装のための一般的な IT アーキテクチャ
    • 図 58: スクラップ率の削減は、精度向上と低い CET 目標の必要性を促進します
    • 図 59: 機械加工後に発見された多孔質欠陥
    • 図 60: ゲートブレークイン欠陥
    • 図 61: ダイカストマシンに設置された熱画像システム
    • 図 62: データ変換を伴う熱画像例
    • 図 63: 2D バーコードとシリアル番号の例
    • 図 64: 実験実行中の増圧データ
    • 図 65: 線形回帰モデルの例
    • 図 66: 過剰適合モデルの例
    • 図 67: ニューラルネットワーク構造の例
    • 図 68: 2 次元における SVM 分類の例
    • 図 69: クラスタ数を決定するためのエルボー法
    • 図 70: 7 つのクラスタによるクラスタ割り当て
    • 図 71: 平均低速ショット速度と増圧の箱ひげ図と個々のプロット
    • 図 72: クラスタ別の主要パラメータの行列散布図
    • 図 73: 結果別の主要パラメータの行列散布図 (良対不良)
    • 図 74: 強度圧力対平均低速ショット速度の散布図
    • 図 75: 履歴スクラップデータとクラスタを比較した平均低速ショット速度と増圧の箱ひげ図と個々のプロット
    • 図 76: 異常検出のための 3 段階アルゴリズム
    • 図 77: 平均および標準偏差行列を使用した定常状態イメージスタックの視覚化
    • 図 78: 色レイヤーごとのさまざまな異常識別のための数式コード
    • 図 79: ダイカストマシンに設置された熱画像カメラシステム [45]
    • 図 80: 熱画像温度行列とグレースケール画像
    • 図 81: プレクロップ対ポストクロップ熱画像 (固定半分)
    • 図 82: スケールされたピクセル熱画像の比較 (可動半分)
    • 図 83: クラスタサイズごとの F スコア
    • 図 84: クラスタ割り当てのシーケンス
    • 図 85: 時間ベースのクラスタ割り当てのシーケンス
    • 図 86: クラスタ #1 の平均および標準偏差画像
    • 図 87: クラスタ #1 対 クラスタ #3 の平均画像のヒストグラム
    • 図 88: ウォームアップショットの異常検出
    • 図 89: 水がオフになったダイの異常検出
    • 図 90: 2 つのプロセス設定の平均および標準偏差画像
    • 図 91: 低速および高速ショット速度の一般的な範囲点設定
    • 図 92: 平均が同じ 4 つの例のプロファイル
    • 図 93: 標準コサイン類似度を使用した異常検出
    • 図 94: 修正コサイン類似度を使用した異常検出
    • 図 95: コサイン類似度計算値の分布
    • 図 96: 複数のマシンが実行されている Azure Web ページのホーム画面
    • 図 97: 異常ショットが検出された詳細ショット画面
    • 図 98: ショットプロファイルの設定点
    • 図 99: ランプ状の低速ショット速度プロファイルで設定点を変更する
    • 図 100: 同一の低速ショット速度平均を持つさまざまなプロファイルの例
    • 図 101: 単純なニューラルネットワーク
    • 図 102: 深層学習の例
    • 図 103: オートエンコーダコンポーネント
    • 図 104: MNIST 手書き数字の例
    • 図 105: プロットラスターの例
    • 図 106: データ準備
    • 図 107: 例ごとの数字予測
    • 図 108: トレーニングデータセットからの 5 秒の例
    • 図 109: 5 秒のみでトレーニングされたオートエンコーダに基づく平均絶対誤差 (MAE)
    • 図 110: テストデータの視覚的およびエラーの例
    • 図 111: オートエンコーダによって異常として識別された 5 秒
    • 図 112: スプレー流量プロファイル例
    • 図 113: 生 SQL データストレージの例
    • 図 114: トレーニングデータクラスタ
    • 図 115: 元の入力と再作成されたプロファイル
    • 図 116: テストサンプル
Figure 2: Example V8 engine block die casting (photo permission from Mercury Marine)
Figure 2: Example V8 engine block die casting (photo permission from Mercury Marine)
Figure 14: Biscuity, runner, gating, and venting system on casting (photo permission from Mercury Marine)
Figure 14: Biscuity, runner, gating, and venting system on casting (photo permission from Mercury Marine)

References:

  • [1] B. Andresen, Die Casting Engineering: A Hydraulic, Thermal, and Mechanical Process. New York: Marcel Dekker, 2005.
  • [2] D. Blondheim, Jr., “Artificial Intelligence, Machine Learning, and Data Analytics: Understanding the Concepts to Find Value in Die Casting Data,” presented at the NADCA Executive Conference, Clearwater, Florida, Feb. 25, 2020.
  • [3] J. Folk, “U.S. Aluminum Casting Industry - 2019,” Die Casting Engineer, vol. July 2019, pp. 16– 19, 2019.
  • [Online]. Available: https://www.diecasting.org/archive/dce/71916.pdf
  • [4] S. Midson, “Report on the 2014 Die Casting Benchmarking Survey Part 2 of 3: Operations,” in Report on the 2014 Die Casting Benchmarking Survey, North American Die Casting Association, 2014.
  • [5] T. Wuest, D. Weimer, C. Irgens, and K.-D. Thoben, “Machine learning in manufacturing: advantages, challenges, and applications,” Production & Manufacturing Research, vol. 4, no. 1, pp. 23–45, Jan. 2016, doi: 10.1080/21693277.2016.1192517.
  • [6] L. Baier, F. Johren, and S. Seebacher, “CHALLENGES IN THE DEPLOYMENT AND OPERATION OF MACHINE LEARNING IN PRACTICE,” in In Proceedings of the 27th European Conference on Information Systems (ECIS), Stockholm & Uppsala, Sweden, Jun. 2019, p. 16.
  • [Online]. Available: https://aisel.aisnet.org/ecis2019_rp/163
  • [7] N. Sun, A. Kopper, R. Karkare, R. C. Paffenroth, and D. Apelian, “Machine Learning Pathway for Harnessing Knowledge and Data in Material Processing,” Inter Metalcast, Sep. 2020, doi: 10.1007/s40962-020-00506-2.
  • [8] J. Landry, J. Maltais, J.-M. Deschênes, M. Petro, X. Godmaire, and A. Fraser, “Inline Integration of Shotblast Resistant Laser Marking in a Die Cast Cell,” Indianapolis, IN, 2018, vol. T18-123.
  • [Online]. Available: https://www.diecasting.org/archive/transactions/T18-123.pdf
  • [9] D. Blondheim, Jr., “Unsupervised Machine Learning and Statistical Anomaly Detection Applied to Thermal Images,” Indianapolis, IN, Oct. 2018, vol. T18-071.
  • [Online]. Available: http://www.diecasting.org/archive/transactions/T18-071.pdf
  • [10] “2018: Die Casting Award Winners,” Die Casting Engineer, p. 61, Sep. 2018.
  • [Online]. Available: https://www.diecasting.org/docs/dce/issues/2018DCESep.pdf
  • [11] S. Alvarez, “Tesla Model Y single-piece rear casts spotted in Fremont factory,” Sep. 10, 2020. https://www.teslarati.com/tesla-model-y-unibody-casts-sighting-video/ (accessed Sep. 28, 2020).
  • [12] Product Design for Die Casting E-606, Sixth Edition., vol. E-606. North American Die Casting Association, 2009.
  • [13] H. H. Doehler, Die Casting. New York: McGraw-Hill Book Company, 1951.
  • [14] NADCA Product Specification Standards for Die Casting, 10th Edition. Arlington Heights, IL: North American Die Casting Association, 2018.
  • [15] E. A. Herman and J. S. Kirkman, Designing Die Casting Dies Series - E-506. Arlington Heights, IL: North American Die Casting Association, 2011.
  • [16] “Aluminum Alloys 101,” Oct. 13, 2020. https://www.mercalloy.com/aluminum-alloys-101/ (accessed Oct. 13, 2020).
  • [17] K. Ch. Apparao and A. K. Birru, “Optimization of Die casting process based on Taguchi approach,” Materials Today: Proceedings, vol. 4, no. 2, pp. 1852–1859, 2017, doi: 10.1016/j.matpr.2017.02.029.
  • [18] Q.-C. Hsu and A. T. Do, “Minimum Porosity Formation in Pressure Die Casting by Taguchi Method,” Mathematical Problems in Engineering, vol. 2013, pp. 1–9, 2013, doi: 10.1155/2013/920865.
  • [19] S. Balasubramaniam, S. Kannan, and R. Shivpuri, “Improving the Quality in Die Casting Production Using Statistical Analysis Procedures,” presented at the 1999 NADCA World of Die Casting, Cleveland, OH, 1999.
  • [Online]. Available: http://www.diecasting.org/archive/transactions/T99-071.pdf
  • [20] Q. Han, D. McClure, D. Wood, and D. Yang, “Statistical Analysis of the Effect of Operational Parameters on the Scrap Rates of Crossmember Casting,” Die Casting Engineer, no. November 2017, pp. 38–43, 2017.
  • [Online]. Available: http://www.diecasting.org/archive/dce/111738.pdf
  • [21] V. D. Tsoukalas, “Optimization of porosity formation in AlSi9Cu3 pressure die castings using genetic algorithm analysis,” Materials & Design, vol. 29, no. 10, pp. 2027–2033, Dec. 2008, doi: 10.1016/j.matdes.2008.04.016.
  • [22] J. Zheng, Q. Wang, P. Zhao, and C. Wu, “Optimization of high-pressure die-casting process parameters using artificial neural network,” Int J Adv Manuf Technol, vol. 44, no. 7–8, pp. 667–674, Oct. 2009, doi: 10.1007/s00170-008-1886-6.
  • [23] E. A. Herman, Die Casting Process Control E-410. North American Die Casting Association, 2012.
  • [24] I. Vuksanović Herceg, V. Kuč, V. M. Mijušković, and T. Herceg, “Challenges and Driving Forces for Industry 4.0 Implementation,” Sustainability, vol. 12, no. 10, p. 4208, May 2020, doi: 10.3390/su12104208.
  • [25] A. Raj, G. Dwivedi, A. Sharma, A. B. Lopes de Sousa Jabbour, and S. Rajak, “Barriers to the adoption of industry 4.0 technologies in the manufacturing sector: An inter-country comparative perspective,” International Journal of Production Economics, vol. 224, p. 107546, Jun. 2020, doi: 10.1016/j.ijpe.2019.107546.
  • [26] L. S. Dalenogare, G. B. Benitez, N. F. Ayala, and A. G. Frank, “The expected contribution of Industry 4.0 technologies for industrial performance,” International Journal of Production Economics, vol. 204, pp. 383–394, Oct. 2018, doi: 10.1016/j.ijpe.2018.08.019.
  • [27] A. Mayr et al., “Machine Learning in Production – Potentials, Challenges and Exemplary Applications,” Procedia CIRP, vol. 86, pp. 49–54, 2019, doi: 10.1016/j.procir.2020.01.035.
  • [28] M. Bertolini, D. Mezzogori, M. Neroni, and F. Zammori, “Machine Learning for industrial applications: A comprehensive literature review,” Expert Systems with Applications, vol. 175, p. 114820, Aug. 2021, doi: 10.1016/j.eswa.2021.114820.
  • [29] R. Kenett, I. Yahav, and A. Zonnenshain, “Chapter 13: Analytics as an Enabler of Advanced Manufacturing,” in Systems Engineering in the Fourth Industrial Revolution: Big Data, Novel Technologies, and Modern Systems Engineering, First., John Wiley & Sons Inc, 2020, pp. 321–344.
  • [30] C. Hoyer, I. Gunawan, and C. H. Reaiche, “The Implementation of Industry 4.0 - A Systematic Literature Review of the Key Factors,” Syst Res Behav Sci, vol. 37, no. 4, pp. 557–578, Jul. 2020, doi: 10.1002/sres.2701.
  • [31] S. Pfeiffer, “The Vision of ‘Industrie 4.0’ in the Making—a Case of Future Told, Tamed, and Traded,” Nanoethics, vol. 11, no. 1, pp. 107–121, Apr. 2017, doi: 10.1007/s11569-016-0280-3.
  • [32] S. Wang, J. Wan, D. Zhang, D. Li, and C. Zhang, “Towards smart factory for industry 4.0: a selforganized multi-agent system with big data based feedback and coordination,” Computer Networks, vol. 101, pp. 158–168, Jun. 2016, doi: 10.1016/j.comnet.2015.12.017.
  • [33] V. Roblek, M. Meško, and A. Krapež, “A Complex View of Industry 4.0,” SAGE Open, vol. 6, no. 2, p. 215824401665398, Apr. 2016, doi: 10.1177/2158244016653987.
  • [34] “Industry 4.0 after the initial hype. Where manufacturers are finding value and how they can best capture it.” McKinsey Digital, 2016.
  • [Online]. Available: https://www.mckinsey.com/~/media/mckinsey/business%20functions/mckinsey%20digital/our%20i nsights/getting%20the%20most%20out%20of%20industry%204%200/mckinsey_industry_40_2016 .ashx
  • [35] “German Industry 4.0 Index 2018.” Staufen AG, 2018. Accessed: Aug. 21, 2021.
  • [Online]. Available: https://www.staufen.ag/fileadmin/HQ/02-Company/05-Media/2-Studies/STAUFEN.- Study-Industry-4.0-Index-2018-Web-DE-en.pdf
  • [36] “German Industry 4.0 Index 2019.” Staufen AG, 2019. Accessed: Aug. 21, 2021.
  • [Online]. Available: https://www.staufen.ag/fileadmin/HQ/02-Company/05-Media/2-Studies/STAUFEN.- Study-Industry-4-0-index-2019-en_.pdf
  • [37] L. Bonekamp and M. Sure, “Consequences of Industry 4.0 on Human Labour and Work Organisation,” Journal of Business and Media Psychology, vol. 6, no. 1, pp. 33–40, 2015.
  • [38] A. G. Frank, L. S. Dalenogare, and N. F. Ayala, “Industry 4.0 technologies: Implementation patterns in manufacturing companies,” International Journal of Production Economics, vol. 210, pp. 15–26, Apr. 2019, doi: 10.1016/j.ijpe.2019.01.004.
  • [39] S. B. Gershwin, “The future of manufacturing systems engineering,” International Journal of Production Research, vol. 56, no. 1–2, pp. 224–237, Jan. 2018, doi: 10.1080/00207543.2017.1395491.
  • [40] R. A. Miller, “Gate Speed, Fraction Solid, and the Effect on Mechanical Properties,” Indianapolis, IN, Oct. 2018, vol. T18-042.
  • [Online]. Available: https://www.diecasting.org/archive/transactions/T18-042.pdf
  • [41] H. Bramann, L. Leineweber, and J. C. Sturm, “Innovative Product Design and Robust Process Layout in Die Casting with Autonomous Engineering,” Indianapolis, IN, Oct. 2018, vol. T18-093.
  • [Online]. Available: https://www.diecasting.org/archive/transactions/T18-093.pdf
  • [42] M. Hartlieb and C. Raone, “Optimization of the Die Thermal Monitoring and Die Lubrication Process,” Indianapolis, IN, Oct. 2018, vol. T18-023.
  • [Online]. Available: https://www.diecasting.org/archive/transactions/T18-023.pdf
  • [43] M. Ognianov, “Influence of the Cooling Rate on the Microstructure and Mechanical Properties in 5wt.% Cr Martensitic Steels,” Indianapolis, IN, Oct. 2018, vol. T18-013.
  • [Online]. Available: https://www.diecasting.org/archive/transactions/T18-013.pdf
  • [44] R. A. Miller, “Multi-time Scale Systems and Quasi Equilibrium,” 2016, vol. T16-082.
  • [Online]. Available: https://www.diecasting.org/archive/transactions/T16-082.pdf
  • [45] D. Blondheim, Jr., “Initial Development of Machine Learning Algorithms to Predict Casting Defects in High-Pressure Die Casting,” Atlanta, GA, Sep. 2017, vol. T17-073.
  • [Online]. Available: http://www.diecasting.org/archive/transactions/T17-073.pdf
  • [46] E. Herman, “The Net Shape Paradox (Why Die Casting Sometimes Seems Mysterious),” Die Casting Engineer, vol. November 2018, pp. 20–22, Nov. 2018.
  • [Online]. Available: https://www.diecasting.org/archive/dce/111820.pdf
  • [47] M. Mitchell, Complexity: a guided tour, 1. iss. as an paperback. New York, NY: Oxford University Press, 2011.
  • [48] N. F. Johnson, Simply complexity: a clear guide to complexity theory. Oneworld Publications, 2009. Accessed: Aug. 22, 2021.
  • [Online]. Available: http://public.ebookcentral.proquest.com/choice/publicfullrecord.aspx?p=1792154
  • [49] H. G. Sillitto, “On Systems Architects and Systems Architecting: some thoughts on explaining and improving the art and science of systems architecting,” INCOSE International Symposium, vol. 19, no. 1, pp. 970–985, Jul. 2009, doi: 10.1002/j.2334-5837.2009.tb00995.x.
  • [50] V. R. Vemuri, Modeling of complex systems: an introduction. New York: Academic Press, 1978.
  • [51] K. Warren, “Chaos Theory and Complexity Theory,” in Encyclopedia of Social Work, NASW Press and Oxford University Press, 2013. doi: 10.1093/acrefore/9780199975839.013.45.
  • [52] F. Heylighen, “Complexity and Self-organization,” in Encyclopedia of Library and Informatoin Sciences, Bates&Maack., Taylor & Francis, 2018.
  • [53] L. M. Jiji, Heat Conduction. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. doi: 10.1007/978-3-642-01267-9.
  • [54] A. Kossiakoff, Ed., Systems engineering: principles and practice, 2nd ed. Hoboken, N.J: WileyInterscience, 2011.
  • [55] C. S. Wasson, System engineering analysis, design, and development: concepts, principles, and practices, Second edition. Hoboken, New Jersey: John Wiley & Sons Inc, 2016.
  • [56] D. D. Walden, G. J. Roedler, K. Forsberg, R. D. Hamelin, T. M. Shortell, and International Council on Systems Engineering, Eds., Systems engineering handbook: a guide for system life cycle processes and activities, 4th edition. Hoboken, New Jersey: Wiley, 2015.
  • [57] USA, Ed., Systems engineering handbook. Washington, D.C: National Aeronautics and Space Administration, 2007.
  • [58] A. Schneider, C. Wickert, and E. Marti, “Reducing Complexity by Creating Complexity: A Systems Theory Perspective on How Organizations Respond to Their Environments: Reducing Complexity by Creating Complexity,” Jour. of Manage. Stud., vol. 54, no. 2, pp. 182–208, Mar. 2017, doi: 10.1111/joms.12206.
  • [59] “Systems Engineering Definition,” Default. https://www.incose.org/about-systemsengineering/system-and-se-definition/systems-engineering-definition (accessed Aug. 29, 2021).
  • [60] National ITS Architecture Team, “Systems Engineering for Intelligent Transportation Systems: An Introduction for Transportation Professionals,” Department of Transportation, Office of Operations, FHWA-HOP-07-069, Jan. 2007. Accessed: Aug. 30, 2021.
  • [Online]. Available: https://ops.fhwa.dot.gov/publications/seitsguide/
  • [61] M. Mennenga, F. Cerdas, S. Thiede, and C. Herrmann, “Exploring the Opportunities of System of Systems Engineering to Complement Sustainable Manufacturing and Life Cycle Engineering,” Procedia CIRP, vol. 80, pp. 637–642, 2019, doi: 10.1016/j.procir.2019.01.026.
  • [62] R. Sturdivant, “Application of Systems Engineering to Complex Systems and System of Systems,” Colorado State University, 2017.
  • [63] K. E. Boulding, “General Systems Theory - The Skeleton of Science,” Management Science, vol. 2, no. 3, pp. 197–208, Apr. 1956.
  • [64] R. L. Ackoff, “Towards a System of Systems Concepts,” Management Science, vol. 17, no. 11, pp. 661–671, Jul. 1971, doi: 10.1287/mnsc.17.11.661.
  • [65] Control of complex systems: theory and applications, 1st edition. Cambridge, MA: Elsevier, 2016.
  • [66] K. Åström, P. Albertos, M. Blanke, A. Isidori, W. Schaufelberger, and R. Sanz, Eds., Control of Complex Systems. London: Springer London, 2001. doi: 10.1007/978-1-4471-0349-3.
  • [67] “Mercury Marine’s new high-pressure die casting machine is now the largest in North America,” Mercury Marine. http://www.mercurymarine.com/en/us/news/mercury-marines-new-high-pressuredie-casting-machine-is-now-the-largest-in-north-america/ (accessed Aug. 31, 2021).
  • [68] “Tesla Giga Press Die Casting Machine - World’s Largest Die Cast Machine,” Sunrise Metal - Aluminium Die Casting Expert. https://www.sunrise-metal.com/tesla-giga-press-die-castingmachine/ (accessed Aug. 31, 2021).
  • [69] Idra Group, IDRA GROUP | Flash News - Giga Press (Riccardo Ferrario), (Mar. 18, 2021). Accessed: Aug. 31, 2021.
  • [Online Video]. Available: https://www.youtube.com/watch?v=o2Mi84wCRg8
  • [70] M. L. Cox, R. R. Fish, and J. P. Wronowicz, PQ2 - Machine Power and Die Compatibility. Arlington Heights, IL: North American Die Casting Association.
  • [71] J. Scott. Kirkman, Thermal Design & Control of DIe Casting Dies, Publication #415. Arlington Heights, IL: North American Die Casting Association, 2010.
  • [72] D. J. Armentrout, J. Brevick, and T. Altan, “Investigation and Reduction of Air Entrapment in the Shot Sleeve of a Cold Chamber Die Casting Machine (A Progress Report),” The Ohio State University, NSF Engineering Research Center for Net Shape Manufacturing, ERC/NSM-C-92-61, Oct. 1992.
  • [Online]. Available: https://www.diecasting.org/archive/erc/ERC-92-61.pdf
  • [73] D. J. Armentrout, J. Brevick, and T. Altan, “Investigation of the Slow Shot Phase to Minimize Entrapped Air in Cold Chamber Die Casting,” The Ohio State University, NSF Engineering Research Center for Net Shape Manufacturing, ERC/NSM-C-93-19, Jun. 1993.
  • [Online]. Available: https://www.diecasting.org/archive/erc/ERC-93-19.pdf
  • [74] M. C. Thome and J. Brevick, “Optimal Slow Shot Profiles in Cold Chamber Die Casting,” The Ohio State University, NSF Engineering Research Center for Net Shape Manufacturing, ERC/NSM-C95-14, Dec. 1993.
  • [Online]. Available: https://www.diecasting.org/archive/erc/ERC-95-14.pdf
  • [75] M. C. Thome, J. Brevick, and Y.-L. Chu, “Modeling the Effect of Shot Plunger Acceleration on Wave Formation and Air Entrapment in Cold Chamber DIe Casting (A Progress Report),” The Ohio State University, NSF Engineering Research Center for Net Shape Manufacturing, ERC/NSM-C94-04, Dec. 1993.
  • [Online]. Available: https://www.diecasting.org/archive/erc/ERC-94-04.pdf
  • [76] M. Thome and J. R. Brevick, “Optimal Slow Shot Velocity Profiles For Cold Chamber Die Casting,” Indianapolis, IN, Oct. 1995, pp. 53–59.
  • [Online]. Available: http://www.diecasting.org/archive/transactions/T95-024.pdf
  • [77] A. V. Deshpande, “Evaluation of Slow Shot Acceleration on Gas Porosity in Medium Sized Diecast Components,” Master of Science, The Ohio State University, 1999.
  • [Online]. Available: https://www.diecasting.org/archive/erc/ERC-99-01.pdf
  • [78] G. V. Sheffer, “Direct Recording In The Die Casting Industry,” North American Die Casting Association Archive, 64–040d, 1964.
  • [Online]. Available: http://www.diecasting.org/archive/reports/64-040d.pdf
  • [79] L. A. Bartling, “Recording instrumentation a valuable die casting tool,” North American Die Casting Association Archive, 66–201, 1966.
  • [Online]. Available: https://www.diecasting.org/archive/reports/66-201.pdf
  • [80] R. Moore, “Monitoring the Die-Casting Process,” North American Die Casting Association Archive, 69–011, 1969.
  • [Online]. Available: https://www.diecasting.org/archive/reports/69-011.pdf
  • [81] J. R. Vann, “A Building Block Approach to Shot End Monitoring and Control,” Die Casting Engineer, no. September-October 1981, pp. 15–26, 1981.
  • [Online]. Available: https://www.diecasting.org/archive/dce/98116.pdf
  • [82] J. R. Vann, “Automatic Shot Control with Computer Monitoring and Programming for Increased Productivity in Die Casting,” Die Casting Engineer, no. March/April 1985, pp. 28–40, 1985.
  • [Online]. Available: https://www.diecasting.org/archive/dce/38528.pdf
  • [83] L. X. Kong, F. H. She, W. M. Gao, S. Nahavandi, and P. D. Hodgson, “Integrated optimization system for high pressure die casting processes,” Journal of Materials Processing Technology, vol. 201, no. 1–3, pp. 629–634, May 2008, doi: 10.1016/j.jmatprotec.2007.11.250.
  • [84] I. Pastor-Lopez, I. Santos, A. Santamaria-Ibirika, M. Salazar, J. de-la-Pena-Sordo, and P. G. Bringas, “Machine-learning-based surface defect detection and categorisation in high-precision foundry,” in 2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA), Singapore, Singapore, Jul. 2012, pp. 1359–1364. doi: 10.1109/ICIEA.2012.6360934.
  • [85] A. E. Kopper and D. Apelian, “Predicting Quality of Castings via Supervised Learning Method,” Inter Metalcast, Apr. 2021, doi: 10.1007/s40962-021-00606-7.
  • [86] N. Gramegna and F. Bonollo, Smart Control and Cognitive System applied to the HPDC Foundry 4.0. MUSIC Consortium, 2016.
  • [87] K. J. Rogers, G. Savage, and B. Cooper, “Experiments With a New Generation Shot Monitoring System in High-Pressure Die Casting,” Die Casting Engineer, no. January/February 2000, pp. 54– 62, 2000.
  • [Online]. Available: https://www.diecasting.org/archive/dce/10054.pdf
  • [88] G. Savage, M. Gershenzon, and K. J. Rogers, “The Role of Pressure in High Pressure Die Casting,” in NADCA Congress, Cincinnati, OH, Oct. 2001, vol. T01-053, pp. 151–156.
  • [Online]. Available: https://www.diecasting.org/archive/transactions/T01-053.pdf
  • [89] W. R. McAlister, “Continuous Process Monitoring Leads to Reduced Scrap and Shorter Cycle Times,” Die Casting Engineer, vol. July/August 1998, pp. 14–20, 1998.
  • [Online]. Available: https://www.diecasting.org/archive/dce/79814.pdf
  • [90] R. A. Miller and A. K. Monroe, “Benefits and Limitations of Time-varying Fast Shot Profiles,” Atlanta, GA, Sep. 2017, vol. T17-092.
  • [Online]. Available: https://www.diecasting.org/archive/transactions/T17-092.pdf
  • [91] M. Winkler, L. Kallien, and T. Feyertag, “Correlation between Process Parameters and Quality Characteristics in Aluminum High Pressure Die Casting,” vol. T15-022.
  • [Online]. Available: http://www.diecasting.org/archive/transactions/T15-022.pdf
  • [92] A. E. Kopper, “Knowledge Creation via Data Analytics in a High Pressure Die Casting Operation,” Worcester Polytechnic Institute, 2020.
  • [Online]. Available: https://digital.wpi.edu/concern/etds/3484zk755
  • [93] D. Blondheim, Jr. and A. Monroe, “Macro Porosity Formation - A Study in High Pressure Die Casting,” International Journal of Metalcasting, 2021, doi: https://doi.org/10.1007/s40962-021- 00602-x.
  • [94] J. Brevick, Die Casting Porosity Guidebook. North American Die Casting Association, 2008.
  • [95] W. G. Walkington, Die Casting Defects: Causes and Solutions. Rosemont, IL: North American Die Casting Association, 1997.
  • [96] D. Twarog, “State of the Industry 2012.” North American Die Casting Association, Feb. 2012.
  • [Online]. Available: https://www.diecasting.org/archive/dce/212online2.pdf
  • [97] S. Viswanathan et al., Eds., “Shrinkage Porosity and Gas Porosity,” in Casting, ASM International, 2008, pp. 370–374. doi: 10.31399/asm.hb.v15.a0005222.
  • [98] P. D. Lee, A. Chirazi, and D. See, “Modeling microporosity in aluminum–silicon alloys: a review,” Journal of Light Metals, vol. 1, no. 1, pp. 15–30, Feb. 2001, doi: 10.1016/S1471-5317(00)00003-1.
  • [99] J. Campbell, Castings, 2. ed. Oxford: Butterworth-Heinemann, 2003.
  • [100] E. Fiorese, F. Bonollo, G. Timelli, L. Arnberg, and E. Gariboldi, “New Classification of Defects and Imperfections for Aluminum Alloy Castings,” Inter Metalcast, vol. 9, no. 1, pp. 55–66, Jan. 2015, doi: 10.1007/BF03355602.
  • [101] R. Atwood, “A Combined Cellular Automata and Diffusion Model for the Prediction of Porosity Formation During Solidification,” University of London, 2001.
  • [102] I. Brill, B. Kappes, and S. Midson, “An Initial Evaluation of CT Scanning for Measuring and Characterizing Porosity in Aluminum Die Castings,” Indianapolis, IN, Oct. 2018, vol. T18-083.
  • [Online]. Available: http://www.diecasting.org/archive/transactions/T18-083.pdf
  • [103] M. Weidt, R. A. Hardin, C. Garb, J. Rosc, R. Brunner, and C. Beckermann, “Prediction of porosity characteristics of aluminium castings based on X-ray CT measurements,” International Journal of Cast Metals Research, pp. 1–19, May 2018, doi: 10.1080/13640461.2018.1467105.
  • [104] C. Gu, Y. Lu, and A. A. Luo, “Three-dimensional visualization and quantification of microporosity in aluminum castings by X-ray micro-computed tomography,” Journal of Materials Science & Technology, vol. 65, pp. 99–107, Feb. 2021, doi: 10.1016/j.jmst.2020.03.088.
  • [105] H. Cao, M. Hao, C. Shen, and P. Liang, “The influence of different vacuum degree on the porosity and mechanical properties of aluminum die casting,” Vacuum, vol. 146, pp. 278–281, Dec. 2017, doi: 10.1016/j.vacuum.2017.09.048.
  • [106] X. P. Niu, B. H. Hu, I. Pinwill, and H. Li, “Vacuum assisted high pressure die casting of aluminium alloys,” Journal of Materials Processing Technology, vol. 105, no. 1–2, pp. 119–127, Sep. 2000, doi: 10.1016/S0924-0136(00)00545-8.
  • [107] Y. Zhang, E. Lordan, K. Dou, S. Wang, and Z. Fan, “Influence of porosity characteristics on the variability in mechanical properties of high pressure die casting (HPDC) AlSi7MgMn alloys,” Journal of Manufacturing Processes, vol. 56, pp. 500–509, Aug. 2020, doi: 10.1016/j.jmapro.2020.04.071.
  • [108] J. A. Dantzig and M. Rappaz, Solidification, 1 st. EPFL Press, 2009.
  • [109] J. Huang and J. G. Conley, “Modeling of Microporosity Evolution During Solidification Processes,” in Review of Progress in Quantitative Nondestructive Evaluation, D. O. Thompson and D. E. Chimenti, Eds. Boston, MA: Springer US, 1998, pp. 1839–1846. doi: 10.1007/978-1-4615-5339- 7_238.
  • [110] T. Liang, C. Mobley, and N. Tsumagari, “The Effects of Shot Delay Time on the Microstructures and Mechanical Properties of a Die Cast Aluminum Alloy,” presented at the Die Casting Toward The Future, Rosemont, IL, Oct. 2002.
  • [Online]. Available: https://www.diecasting.org/archive/transactions/T02-053.pdf
  • [111] B. Zhang, S. L. Cockcroft, D. M. Maijer, J. D. Zhu, and A. B. Phillion, “Casting defects in lowpressure die-cast aluminum alloy wheels,” JOM, vol. 57, no. 11, pp. 36–43, Nov. 2005, doi: 10.1007/s11837-005-0025-1.
  • [112] K. D. Carlson and C. Beckermann, “Prediction of Shrinkage Pore Volume Fraction Using a Dimensionless Niyama Criterion,” Metall and Mat Trans A, vol. 40, no. 1, pp. 163–175, Jan. 2009, doi: 10.1007/s11661-008-9715-y.
  • [113] G. K. Sigworth, “Shrinkage, Feeding and Riser Design,” AFS Transactoins 2014, vol. 14–002, pp. 25–36, 2014.
  • [114] M. Shabani and A. Mazahery, “Prediction of Mechanical Properties of Cast A356 Alloy as a Function of Microstructure and Cooling Rate,” Archives of Metallurgy and Materials, vol. 56, no. 3, Jan. 2011, doi: 10.2478/v10172-011-0073-1.
  • [115] M. Easton, C. Davidson, and D. St John, “Effect of Alloy Composition on the Dendrite Arm Spacing of Multicomponent Aluminum Alloys,” Metall and Mat Trans A, vol. 41, no. 6, pp. 1528– 1538, Jun. 2010, doi: 10.1007/s11661-010-0183-9.
  • [116] J. Cho and C. Kim, “THE RELATIONSHIP BETWEEN DENDRITE ARM SPACING AND COOLING RATE OF Al-Si CASTING ALLOYS IN HIGH PRESSURE DIE CASTING,” InternationalJournal ofMetalcasting, vol. 8, no. 1, pp. 49–55, 2014, doi: https://doi.org/10.1007/BF03355571.
  • [117] “SRE MAX,” Bosello High Technology , a ZEISS company. https://bosello.eu/products/sre-max/ (accessed Dec. 29, 2020).
  • [118] “Phoenix Vtomex C | 3D CT Scanner (Mini Focus),” Waygate Technologies. https://www.bakerhughesds.com/industrial-x-ray-ct-scanners/phoenix-vtomex-c-ct (accessed Dec. 29, 2020).
  • [119] “Xradia 610 & 620 Versa.” https://www.zeiss.com/microscopy/us/products/x-ray-microscopy/zeissxradia-610-and-620-versa.html (accessed Dec. 29, 2020).
  • [120] T. J. Schorn, Improving the Effectiveness of Visual Inspection. Schaumburg, IL USA: American Foundry Society, 2018.
  • [121] J. F. Koretz and G. H. Handelman, “How the Human Eye Focuses,” Sci Am, vol. 259, no. 1, pp. 92– 99, Jul. 1988, doi: 10.1038/scientificamerican0788-92.
  • [122] J. Schindelin et al., “Fiji: an open-source platform for biological-image analysis,” Nat Methods, vol. 9, no. 7, pp. 676–682, Jul. 2012, doi: 10.1038/nmeth.2019.
  • [123] S. Preibisch, S. Saalfeld, J. Schindelin, and P. Tomancak, “Software for bead-based registration of selective plane illumination microscopy data,” Nat Methods, vol. 7, no. 6, pp. 418–419, Jun. 2010, doi: 10.1038/nmeth0610-418.
  • [124] “Standard Reference Radiographs for Inspection of Aluminum and Magnesium Die Castings E505- 15.” ASTM International, 2015. doi: 10.1520/E0505-15.
  • [125] S. S. Shapiro and M. B. Wilk, “An Analysis of Variance Test for Normality (Complete Samples),” Biometrika, vol. Vol. 52, pp. 591–611, Dec. 1965,
  • [Online]. Available: https://www.jstor.org/stable/2333709
  • [126] F. Wilcoxon, “Individual Comparisons by Ranking Methods,” Biometrics Bulletin, vol. 1, no. No. 6, pp. 80–83, Dec. 1945.
  • [127] MAGMAsoft. Kackerstrasse 11, 52072 Aachen, Germany: MAGMA Gmbh, 2019.
  • [128] M. R. Brand, “An examination of certain Bayesian methods used in reliability analysis,” Reliability Engineering, vol. 1, no. 2, pp. 115–125, Oct. 1980, doi: 10.1016/0143-8174(80)90003-7.
  • [129] S. G. Lee and A. M. Gokhale, “Formation of gas induced shrinkage porosity in Mg-alloy highpressure die-castings,” Scripta Materialia, vol. 55, no. 4, pp. 387–390, Aug. 2006, doi: 10.1016/j.scriptamat.2006.04.040.
  • [130] F. Bonollo, N. Gramegna, and G. Timelli, “High-Pressure Die-Casting: Contradictions and Challenges,” JOM, vol. 67, no. 5, pp. 901–908, May 2015, doi: 10.1007/s11837-015-1333-8.
  • [131] C. H. Cáceres and B. I. Selling, “Casting defects and the tensile properties of an AlSiMg alloy,” Materials Science and Engineering: A, vol. 220, no. 1–2, pp. 109–116, Dec. 1996, doi: 10.1016/S0921-5093(96)10433-0.
  • [132] R. Lumley, N. Deeva, and M. Gershenzon, “An Evaluation of Quality Parameters for High Pressure Die Castings,” Inter Metalcast, vol. 5, no. 3, pp. 37–56, Jul. 2011, doi: 10.1007/BF03355517.
  • [133] D. Blondheim, Jr., “Improving Manufacturing Applications of Machine Learning by Understanding Defect Classification and the Critical Error Threshold,” Inter Metalcast, Jun. 2021, doi: 10.1007/s40962-021-00637-0.
  • [134] Y. LeCun et al., “Handwritten Digit Recognition with a Back-Propagation Network,” 1990, pp. 396–404.
  • [135] S. Lalmuanawma, J. Hussain, and L. Chhakchhuak, “Applications of machine learning and artificial intelligence for Covid-19 (SARS-CoV-2) pandemic: A review,” Chaos, Solitons & Fractals, vol. 139, p. 110059, Oct. 2020, doi: 10.1016/j.chaos.2020.110059.
  • [136] “The transformative potential of AI in the manufacturing industry - Microsoft Industry Blogs.” https://cloudblogs.microsoft.com/industry-blog/manufacturing/2017/09/25/the-transformativepotential-of-ai-in-the-manufacturing-industry/ (accessed Nov. 27, 2020).
  • [137] “Bringing Intelligence to Industrial Manufacturing Through AWS IoT and Machine Learning | AWS Partner Network (APN) Blog.” https://aws.amazon.com/blogs/apn/bringing-intelligence-toindustrial-manufacturing-through-aws-iot-and-machine-learning/ (accessed Nov. 27, 2020).
  • [138] P. K. Tseng, “Smart Manufacturing Becomes Key to Enterprise Survival in Post-Pandemic Era with Forecasted Revenue of US$400 Billion in 2024, Says TrendForce,” Aug. 17, 2020. https://www.trendforce.com/presscenter/news/20200817-10437.html (accessed Nov. 27, 2020).
  • [139] “Thriving in an AI World.” KPMG, Apr. 15, 2021.
  • [Online]. Available: https://info.kpmg.us/content/dam/info/en/newsperspectives/pdf/2021/Updated%204.15.21%20-%20Thriving%20in%20an%20AI%20world.pdf
  • [140] G. Rebala, A. Ravi, and S. Churiwala, An Introduction to Machine Learning. Cham: Springer International Publishing, 2019. doi: 10.1007/978-3-030-15729-6.
  • [141] R. Fernandes de Mello and M. Antonelli Ponti, Machine Learning: A Practical Approach on the Statistical Learning Theory. Cham: Springer International Publishing, 2018. doi: 10.1007/978-3- 319-94989-5.
  • [142] J. M. Juran, Ed., Juran’s quality handbook, 5. ed. New York, NY: McGraw-Hill, 1999.
  • [143] J. J. Sheehan and C. G. Drury, “The analysis of industrial inspection,” Applied Ergonomics, vol. 2, no. 2, pp. 74–78, Jun. 1971, doi: 10.1016/0003-6870(71)90073-1.
  • [144] C. G. Drury, “The effect of speed of working on industrial inspection accuracy,” Applied Ergonomics, vol. 4, no. 1, pp. 2–7, Mar. 1973, doi: 10.1016/0003-6870(73)90002-1.
  • [145] C. G. Drury and M.-J. Wang, “Are Research Results in Inspection Task Specific?,” Proceedings of the Human Factors Society Annual Meeting, vol. 30, no. 5, pp. 476–480, Sep. 1986, doi: 10.1177/154193128603000515.
  • [146] C.-F. Chi, “The human as an optimizer in inspection,” State University of New York, Buffalo, NY, 1990.
  • [147] A. Fernández, S. García, and F. Herrera, “Addressing the Classification with Imbalanced Data: Open Problems and New Challenges on Class Distribution,” in Hybrid Artificial Intelligent Systems, vol. 6678, E. Corchado, M. Kurzyński, and M. Woźniak, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 1–10. doi: 10.1007/978-3-642-21219-2_1.
  • [148] S. Viswanathan et al., Eds., “High-Pressure Die Casting,” in Casting, ASM International, 2008, pp. 715–718. doi: 10.31399/asm.hb.v15.a0005266.
  • [149] J. Folk, “The U.S. Aluminum Casting Industry,” Die Casting Engineer, vol. May 2015, pp. 24–33, May 2015.
  • [Online]. Available: https://www.diecasting.org/archive/dce/51524.pdf
  • [150] V. Khalajzadeh, K. D. Carlson, D. G. Backman, and C. Beckermann, “A Pore-Centric Model for Combined Shrinkage and Gas Porosity in Alloy Solidification,” Metall and Mat Trans A, vol. 48, no. 4, pp. 1797–1816, Apr. 2017, doi: 10.1007/s11661-016-3940-6.
  • [151] P. F. Ostwald and J. Huang, “A Method for Optimal Tolerance Selection,” Journal of Engineering for Industry, vol. 99, no. 3, pp. 558–565, Aug. 1977, doi: 10.1115/1.3439279.
  • [152] C. Zhang, H. P. Wang, and J. K. Li, “Simultaneous Optimization of Design and Manufacturing — Tolerances with Process (Machine) Selection,” CIRP Annals, vol. 41, no. 1, pp. 569–572, 1992, doi: 10.1016/S0007-8506(07)61270-0.
  • [153] A. Jeang, “Tolerance chart optimization for quality and cost,” International Journal of Production Research, vol. 36, no. 11, pp. 2969–2983, Nov. 1998, doi: 10.1080/002075498192238.
  • [154] M. D. Al-Ansary and I. M. Deiab, “Concurrent optimization of design and machining tolerances using the genetic algorithms method,” International Journal of Machine Tools and Manufacture, vol. 37, no. 12, pp. 1721–1731, Dec. 1997, doi: 10.1016/S0890-6955(97)00033-3.
  • [155] S. A. Irani, R. O. Mittal, and E. A. Lehtihet, “Tolerance chart optimization,” International Journal of Production Research, vol. 27, no. 9, pp. 1531–1552, Sep. 1989, doi: 10.1080/00207548908942638.
  • [156] A. N. Haq, K. Sivakumar, R. Saravanan, and V. Muthiah, “Tolerance design optimization of machine elements using genetic algorithm,” Int J Adv Manuf Technol, vol. 25, no. 3–4, pp. 385– 391, Feb. 2005, doi: 10.1007/s00170-003-1855-z.
  • [157] American Society of Mechanical Engineers and American National Standards Institute, Dimensioning and tolerancing: engineering drawing and related documentation practices. New York: American Society of Mechanical Engineers, 2019.
  • [158] J. D. Meadows, Geometric Dimensioning and Tolerancing: Applications, Analysis & Measurement
  • [per ASME Y14.5-2009]. James D. Meadows & Associated, Inc., 2009.
  • [159] D. Steiner and R. Katz, “Measurement Techniques for the Inspection of Porosity Flaws on Machined Surfaces,” Journal of Computing and Information Science in Engineering, vol. 7, no. 1, pp. 85–94, Mar. 2007, doi: 10.1115/1.2424244.
  • [160] S. J. Świłło and M. Perzyk, “Automatic inspection of surface defects in die castings after machining,” Archives of Foundry Engineering, vol. Volume 11, no. Special Issue 3/2011, pp. 231– 236, 2011.
  • [161] F. Peters, R. Stone, K. Watts, P. Zhon, and A. Clemons, “Visual Inspection of Casting Surfaces,” Transactions of the American Foundry Society, pp. 45–52, 2013.
  • [162] D. H. Harris and F. B. Chaney, Human Factors in Quality Assurance. New York: John Wiley & Sons Inc, 1969.
  • [163] S. B. Kotsiantis, “Supervised Machine Learning: A Review of Classification Techniques,” Informatica, vol. 31, no. 3, pp. 249–269, Oct. 2007.
  • [164] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning. New York, NY: Springer New York, 2009. doi: 10.1007/978-0-387-84858-7.
  • [165] Y. Wang, D. Zou, J. Yi, J. Bailey, X. Ma, and Q. Gu, “IMPROVING ADVERSARIAL ROBUSTNESS REQUIRES REVISITING MISCLASSIFIED EXAMPLES,” Virtual Conference, 2020, p. 14. Accessed: Mar. 01, 2021.
  • [Online]. Available: https://openreview.net/forum?id=rklOg6EFwS
  • [166] M. R. Smith and T. Martinez, “Improving classification accuracy by identifying and removing instances that should be misclassified,” in The 2011 International Joint Conference on Neural Networks, San Jose, CA, USA, Jul. 2011, pp. 2690–2697. doi: 10.1109/IJCNN.2011.6033571.
  • [167] D. Chicco and G. Jurman, “The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation,” BMC Genomics, vol. 21, no. 1, p. 6, Dec. 2020, doi: 10.1186/s12864-019-6413-7.
  • [168] D. Powers, “Evaluation: From Precision, Recall and F-Factor to ROC, Informedness, Markedness & Correlation,” Mach. Learn. Technol., vol. 2, p. 25, 2008,
  • [Online]. Available: https://arxiv.org/abs/1504.00854
  • [169] D. Blondheim, Jr. and S. Bhowmik, “Time-Series Analysis and Anomaly Detection of HighPressure Die Casting Shot Profiles,” Die Casting Engineer, pp. 14–18, Nov. 2019.
  • [Online]. Available: http://www.diecasting.org/archive/dce/111914.pdf
  • [170] P. Patel, M. I. Ali, and A. Sheth, “From Raw Data to Smart Manufacturing: AI and Semantic Web of Things for Industry 4.0,” IEEE Intell. Syst., vol. 33, no. 4, pp. 79–86, Jul. 2018, doi: 10.1109/MIS.2018.043741325.
  • [171] R. S. Peres, X. Jia, J. Lee, K. Sun, A. W. Colombo, and J. Barata, “Industrial Artificial Intelligence in Industry 4.0 - Systematic Review, Challenges and Outlook,” IEEE Access, vol. 8, pp. 220121– 220139, 2020, doi: 10.1109/ACCESS.2020.3042874.
  • [172] A. Bécue, I. Praça, and J. Gama, “Artificial intelligence, cyber-threats and Industry 4.0: challenges and opportunities,” Artif Intell Rev, vol. 54, no. 5, pp. 3849–3886, Jun. 2021, doi: 10.1007/s10462- 020-09942-2.
  • [173] A. B. Simmons and S. G. Chappell, “Artificial intelligence-definition and practice,” IEEE J. Oceanic Eng., vol. 13, no. 2, pp. 14–42, Apr. 1988, doi: 10.1109/48.551.
  • [174] S. J. Russell, P. Norvig, and E. Davis, Artificial intelligence: a modern approach, 3rd ed. Upper Saddle River: Prentice Hall, 2010.
  • [175] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. Cambridge, Massachusetts: The MIT Press, 2016.
  • [176] T. Sasakawa, J. Hu, and K. Hirasawa, “A brainlike learning system with supervised, unsupervised, and reinforcement learning,” Elect. Eng. Jpn., vol. 162, no. 1, pp. 32–39, Jan. 2008, doi: 10.1002/eej.20600.
  • [177] H. Oliff, Y. Liu, M. Kumar, M. Williams, and M. Ryan, “Reinforcement learning for facilitating human-robot-interaction in manufacturing,” Journal of Manufacturing Systems, vol. 56, pp. 326– 340, Jul. 2020, doi: 10.1016/j.jmsy.2020.06.018.
  • [178] L. Wang et al., “Dynamic job-shop scheduling in smart manufacturing using deep reinforcement learning,” Computer Networks, vol. 190, p. 107969, May 2021, doi: 10.1016/j.comnet.2021.107969.
  • [179] D. Blondheim, Jr., “Utilizing Machine Learning Autoencoders to Detect Anomalies in Time-Series Data,” presented at the 2021 NADCA Congress and Exposition, Indianapolis, IN, Oct. 2021.
  • [180] S. Žapčević and P. Butala, “Adaptive process control based on a self-learning mechanism in autonomous manufacturing systems,” Int J Adv Manuf Technol, vol. 66, no. 9–12, pp. 1725–1743, Jun. 2013, doi: 10.1007/s00170-012-4453-0.
  • [181] S. Profanter, A. Tekat, K. Dorofeev, M. Rickert, and A. Knoll, “OPC UA versus ROS, DDS, and MQTT: Performance Evaluation of Industry 4.0 Protocols,” in 2019 IEEE International Conference on Industrial Technology (ICIT), Melbourne, Australia, Feb. 2019, pp. 955–962. doi: 10.1109/ICIT.2019.8755050.
  • [182] M. Silveira Rocha, G. Serpa Sestito, A. Luis Dias, A. Celso Turcato, and D. Brandao, “Performance Comparison Between OPC UA and MQTT for Data Exchange,” in 2018 Workshop on Metrology for Industry 4.0 and IoT, Brescia, Apr. 2018, pp. 175–179. doi: 10.1109/METROI4.2018.8428342.
  • [183] G. Büchi, M. Cugno, and R. Castagnoli, “Smart factory performance and Industry 4.0,” Technological Forecasting and Social Change, vol. 150, p. 119790, Jan. 2020, doi: 10.1016/j.techfore.2019.119790.
  • [184] Y.-H. Choi and S.-H. Choi, “A Study of Crossing the Chasm in applying Smart Factory System for SMEs,” International Journal of Pure and Applied Mathematics, vol. 118, no. No 19, pp. 469–487, Jan. 2018,
  • [Online]. Available: http://www.ijpam.eu
  • [185] M. Khan, X. Wu, X. Xu, and W. Dou, “Big data challenges and opportunities in the hype of Industry 4.0,” in 2017 IEEE International Conference on Communications (ICC), Paris, France, May 2017, pp. 1–6. doi: 10.1109/ICC.2017.7996801.
  • [186] A. Khan and K. Turowski, “A Survey of Current Challenges in Manufacturing Industry and Preparation for Industry 4.0,” in Proceedings of the First International Scientific Conference “Intelligent Information Technologies for Industry” (IITI’16), vol. 450, A. Abraham, S. Kovalev, V. Tarassov, and V. Snášel, Eds. Cham: Springer International Publishing, 2016, pp. 15–26. doi: 10.1007/978-3-319-33609-1_2.
  • [187] T. Wuest, C. Irgens, and K.-D. Thoben, “An approach to monitoring quality in manufacturing using supervised machine learning on product state data,” J Intell Manuf, vol. 25, pp. 1167–1180, 2014, doi: 10.1007/s10845-013-0761-y.
  • [188] S. Sun, X. Zheng, J. Villalba-Díez, and J. Ordieres-Meré, “Data Handling in Industry 4.0: Interoperability Based on Distributed Ledger Technology,” Sensors, vol. 20, no. 11, p. 3046, May 2020, doi: 10.3390/s20113046.
  • [189] R. Sahal, J. G. Breslin, and M. I. Ali, “Big data and stream processing platforms for Industry 4.0 requirements mapping for a predictive maintenance use case,” Journal of Manufacturing Systems, vol. 54, pp. 138–151, Jan. 2020, doi: 10.1016/j.jmsy.2019.11.004.
  • [190] K. Villalobos, V. J. Ramírez-Durán, B. Diez, J. M. Blanco, A. Goñi, and A. Illarramendi, “A three level hierarchical architecture for an efficient storage of industry 4.0 data,” Computers in Industry, vol. 121, p. 103257, Oct. 2020, doi: 10.1016/j.compind.2020.103257.
  • [191] F. Y. Kuo and I. H. Sloan, “Lifting the Curse of Dimensionality,” Notices of the AMS, vol. 52, no. 11, pp. 1320–1329, 2005.
  • [192] G. Hughes, “On the mean accuracy of statistical pattern recognizers,” IEEE Trans. Inform. Theory, vol. 14, no. 1, pp. 55–63, Jan. 1968, doi: 10.1109/TIT.1968.1054102.
  • [193] P. Domingos, “A few useful things to know about machine learning,” Commun. ACM, vol. 55, no. 10, pp. 78–87, Oct. 2012, doi: 10.1145/2347736.2347755.
  • [194] F. Provost, “Machine Learning from Imbalanced Data Sets 101,” in AAAI Technical Report WS-00- 05, 2000, p. 3.
  • [Online]. Available: https://www.aaai.org/Papers/Workshops/2000/WS-00- 05/WS00-05-001.pdf
  • [195] M. Kuhn and K. Johnson, Applied Predictive Modeling. New York, NY: Springer New York, 2013. doi: 10.1007/978-1-4614-6849-3.
  • [196] A. Paleyes, R.-G. Urma, and N. D. Lawrence, “Challenges in Deploying Machine Learning: a Survey of Case Studies,” arXiv:2011.09926
  • [cs], Jan. 2021, Accessed: Feb. 07, 2021.
  • [Online]. Available: http://arxiv.org/abs/2011.09926
  • [197] L. Breiman, “Random Forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, 2001, doi: 10.1023/A:1010933404324.
  • [198] S. Kuutti, R. Bowden, Y. Jin, P. Barber, and S. Fallah, “A Survey of Deep Learning Applications to Autonomous Vehicle Control,” IEEE Trans. Intell. Transport. Syst., vol. 22, no. 2, pp. 712–733, Feb. 2021, doi: 10.1109/TITS.2019.2962338.
  • [199] A. Kuusk and J. Gao, “Factors for successfully integrating operational and information technologies,” in 2015 Portland International Conference on Management of Engineering and Technology (PICMET), Portland, OR, USA, Aug. 2015, pp. 1513–1523. doi: 10.1109/PICMET.2015.7273136.
  • [200] E. J. M. Colbert and A. Kott, Eds., Cyber-security of SCADA and Other Industrial Control Systems, vol. 66. Cham: Springer International Publishing, 2016. doi: 10.1007/978-3-319-32125-7.
  • [201] L. Thames and D. Schaefer, Eds., Cybersecurity for Industry 4.0: Analysis for Design and Manufacturing. Cham: Springer International Publishing, 2017. doi: 10.1007/978-3-319-50660-9.
  • [202] G. Culot, F. Fattori, M. Podrecca, and M. Sartor, “Addressing Industry 4.0 Cybersecurity Challenges,” IEEE Eng. Manag. Rev., vol. 47, no. 3, pp. 79–86, Sep. 2019, doi: 10.1109/EMR.2019.2927559.
  • [203] M. Lezzi, M. Lazoi, and A. Corallo, “Cybersecurity for Industry 4.0 in the current literature: A reference framework,” Computers in Industry, vol. 103, pp. 97–110, Dec. 2018, doi: 10.1016/j.compind.2018.09.004.
  • [204] P. O’Donovan, K. Leahy, K. Bruton, and D. T. J. O’Sullivan, “Big data in manufacturing: a systematic mapping study,” Journal of Big Data, vol. 2, no. 1, p. 20, Dec. 2015, doi: 10.1186/s40537-015-0028-x.
  • [205] M. Fahmideh and G. Beydoun, “Big data analytics architecture design—An application in manufacturing systems,” Computers & Industrial Engineering, vol. 128, pp. 948–963, Feb. 2019, doi: 10.1016/j.cie.2018.08.004.
  • [206] I. Nunes and D. Jannach, “A systematic review and taxonomy of explanations in decision support and recommender systems,” User Model User-Adap Inter, vol. 27, no. 3–5, pp. 393–444, Dec. 2017, doi: 10.1007/s11257-017-9195-0.
  • [207] C. Rudin and K. L. Wagstaff, “Machine learning for science and society,” Mach Learn, vol. 95, no. 1, pp. 1–9, Apr. 2014, doi: 10.1007/s10994-013-5425-9.
  • [208] N. Werts and M. Adya, “Data Mining in Healthcare: Issues and a Research Agenda,” in AMCIS 2000 Proceedings, 2000, pp. 94–97.
  • [209] R. Boutaba et al., “A comprehensive survey on machine learning for networking: evolution, applications and research opportunities,” J Internet Serv Appl, vol. 9, no. 1, p. 16, Dec. 2018, doi: 10.1186/s13174-018-0087-2.
  • [210] “NADCA - Schedule of Events.” https://www.diecasting.org/wcm/Meetings/Congress_and_Exposition/Schedule_of_Events/wcm/Me etings/Schedule_of_Events.aspx?hkey=03f18550-584d-4f4f-9e69-df3668429226 (accessed Sep. 22, 2021).
  • [211] “AIM 2022: Home.” https://www.tms.org/portal/MEETINGS___EVENTS/TMS_Meetings___Events/Upcoming_TMS_ Meetings/AIM2022/portal/Meetings___Events/2022/AIM2022/default.aspx?hkey=7050d00c-58bb4f5c-854b-84486f96c37b (accessed Sep. 22, 2021).
  • [212] “AI Course: Home.” https://www.tms.org/portal/Meetings___Events/2021/AIcourse/default.aspx (accessed Sep. 22, 2021).
  • [213] F. von Hayek, “Friedrich von Hayek Prize Lecture,” NobelPrize.org, Dec. 11, 1974. https://www.nobelprize.org/prizes/economic-sciences/1974/hayek/lecture/ (accessed Aug. 22, 2021).
  • [214] B. Marr, “A Short History of Machine Learning -- Every Manager Should Read,” Forbes, Feb. 19, 2016. https://www.forbes.com/sites/bernardmarr/2016/02/19/a-short-history-of-machine-learningevery-manager-should-read/
  • [215] R Core Team, R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing, 2016.
  • [Online]. Available: https://www.R-project.org
  • [216] B. Lantz, Machine Learning with R, 2nd edition. Packt Publishing Ltd., 2015.
  • [217] E. Siegel, Predictive Analytic: the power to predict who will click, buy, lie or die. John Wiley & Sons Inc, 2013.
  • [218] M. Kuhn, caret: Classification and Regression Training. 2017.
  • [Online]. Available: https://CRAN.R-project.org/package=caret
  • [219] W. N. Venables and B. D. Ripley, Modern Applied Statistics with S. New York, NY: Springer New York, 2002. doi: 10.1007/978-0-387-21706-2.
  • [220] S. Fritsch and F. Guenther, neuralnet: Training of Neural Networks. 2017.
  • [Online]. Available: https://CRAN.R-project.org/package=neuralnet
  • [221] D. Meyer, E. Dimitriadou, K. Hornik, A. Weingessel, and F. Leisch, e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien. 2017.
  • [Online]. Available: https://CRAN.R-project.org/package=e1071
  • [222] J. Macqueen, “SOME METHODS FOR CLASSIFICATION AND ANALYSIS OF MULTIVARIATE OBSERVATIONS,” in Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, 1967, pp. 281–297.
  • [223] P. Catterina and C. Raone, “Towards the ‘Total’ certification in diecasting process Thermographic monitoring and traceability with TOTAL THERMAL VISION (TTV),” 2013, vol. T13-041.
  • [Online]. Available: https://www.diecasting.org/archive/transactions/T13-041.pdf
  • [224] L. X. Kong, F. H. She, S. Nahavandi, and L. H. Wang, “Thermal control with image processing and fuzzy controllers,” in Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569), Vancouver, BC, Canada, 2001, vol. 3, pp. 1443–1449. doi: 10.1109/NAFIPS.2001.943761.
  • [225] S. Simske, Meta-Algorithmics: Patterns for Robust, Low Cost, High Quality Systems. Wiley-IEEE Press, 2013.
  • [226] W. A. Shewhart, Economic Control of Quality of Manufactured Products. New York, NY: D. Van Nostrand Company, Inc., 1931.
  • [227] D. L. Simon and J. C. Lafeber, “Optimization of Die Casting Processes Using Infrared Thermography,” 2011, vol. T11-071.
  • [Online]. Available: https://www.diecasting.org/archive/transactions/T11-071.pdf
  • [228] A. Reikher, H. Gerber, and A. Starobin, “Multi-Stage Plunger Deceleration System,” Atlanta, GA, May 2008, vol. T08-011.
  • [Online]. Available: https://www.diecasting.org/archive/transactions/T08- 011.pdf
  • [229] J. Liang and S. Parthasarathy, “Robust Contextual Outlier Detection: Where Context Meets Sparsity,” in Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, Indianapolis Indiana USA, Oct. 2016, pp. 2167–2172. doi: 10.1145/2983323.2983660.
  • [230] S. Tartaglia and J. Vandertouw, “Benchmarking Study Comparison of North American and Japanese Companies,” Die Casting Engineer, no. March/April 2000, pp. 104–109, 2000.
  • [Online]. Available: https://www.diecasting.org/archive/dce/200104.pdf
  • [231] K.-D. Thoben, S. Wiesner, and T. Wuest, “‘Industrie 4.0’ and Smart Manufacturing – A Review of Research Issues and Application Examples,” Int. J. Automation Technol., vol. 11, no. 1, pp. 4–16, Jan. 2017, doi: 10.20965/ijat.2017.p0004.
  • [232] S. P. Udvardy, “2019 State of the Die Casting Industry,” Die Casting Engineer, no. January 2020, pp. 10–15, 2020.
  • [Online]. Available: https://www.diecasting.org/archive/dce/12010.pdf
  • [233] S. P. Udvardy, “2020 State of the Die Casting Industry,” Die Casting Engineer, vol. January 2021, pp. 8–13, 2021.
  • [Online]. Available: https://www.diecasting.org/docs/information/stateoftheindustry-dcejan2021.pdf
  • [234] A. Heidarian and M. J. Dinneen, “A Hybrid Geometric Approach for Measuring Similarity Level Among Documents and Document Clustering,” in 2016 IEEE Second International Conference on Big Data Computing Service and Applications (BigDataService), Oxford, United Kingdom, Mar. 2016, pp. 142–151. doi: 10.1109/BigDataService.2016.14.
  • [235] S. Samarasinghe, Neural networks for applied sciences and engineering: from fundamentals to complex pattern recognition. Auerbach Publications, 2007.
  • [236] D. Forsyth, Applied Machine Learning. Cham: Springer International Publishing, 2019. doi: 10.1007/978-3-030-18114-7.
  • [237] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi, “A survey of deep neural network architectures and their applications,” Neurocomputing, vol. 234, pp. 11–26, Apr. 2017, doi: 10.1016/j.neucom.2016.12.038.
  • [238] G. E. Hinton, “Reducing the Dimensionality of Data with Neural Networks,” Science, vol. 313, no. 5786, pp. 504–507, Jul. 2006, doi: 10.1126/science.1127647.
  • [239] Y. LeCun, C. Cortes, and C. J. C. Burges, “The MNIST Database of handwritten digits.” http://yann.lecun.com/exdb/mnist/ (accessed Jun. 25, 2021).
  • [240] “2.1 Million Manufacturing Jobs Could Go Unfilled by 2030,” NAM, May 04, 2021. https://www.nam.org/2-1-million-manufacturing-jobs-could-go-unfilled-by-2030-13743/ (accessed Sep. 04, 2021).
  • [241] P. Wellener, V. Reyes, H. Ashton, and C. Moutray, “Creating pathways for tomorrow’s workforce today,” Deloitte Insights. https://www2.deloitte.com/us/en/insights/industry/manufacturing/manufacturing-industrydiversity.html (accessed Sep. 04, 2021).

List of Abbreviations

  • AFS – American Foundry Society
  • AI – Artificial Intelligence
  • BoB – Best of Best
  • CET – Critical Error Threshold
  • CT Scanning – Computed Tomography Scanning
  • HPDC – High Pressure Die Casting
  • IIoT – Industrial Internet of Things
  • IT – Information Technology
  • INCOSE – International Council on Systems Engineering
  • ML – Machine Learning
  • MQTT – Message Queuing Telemetry Transport
  • NADCA – North American Die Casting Association
  • NN – Neural Network
  • OPC UA – Open Platform Communications Unified Architecture
  • OT – Operational Technology
  • PLC – Programmable Logic Controller
  • PSI – Pounds per Square Inch
  • RPM – Revolutions per Minute
  • SE – Systems Engineering
  • SoS – Systems-of-Systems
  • SVM – Support Vector Machine
  • WoW – Worst of worst

Copyright:

  • This material is David J. Blondheim, Jr.'s paper: Based on SYSTEM UNDERSTANDING OF HIGH PRESSURE DIE CASTING PROCESS AND DATA WITH MACHINE LEARNING APPLICATIONS.
  • 본 자료는 위 논문을 바탕으로 요약되었으며, 상업적 목적으로 무단 사용하는 것을 금지합니다.
  • Copyright © 2025 CASTMAN. All rights reserved.