1. 概要:
- タイトル: 高効率誘導電動機ドライブにおける最近の動向に関するレビュー (A Review of Recent Trends in High Efficiency Induction Motor Drives)
- 著者: Mohamed Ahmed Azab
- 発行年: 2025年
- 発行誌/学会: Preprints.org
- キーワード: 電動ドライブ、ED、ACドライブ、IM、誘導電動機、電気自動車、EV、効率、省エネルギー、エネルギー効率、電力エレクトロニクス、ワイドバンドギャップ半導体、電動モーター、界磁磁束向き制御、直接トルク制御、モデル予測制御、産業オートメーション、回生ブレーキ、SDG、持続可能な開発目標、国連
2. 研究背景:
誘導電動機(IM)ドライブは、現代産業において重要な技術であり、材料ハンドリング、食品・飲料加工、電気自動車(EV)や電気トラックなどの様々な産業用途やアプリケーションで使用されています。近年、エネルギー消費と燃料消費を削減するための高効率IMドライブシステムへの関心が急速に高まっています。本論文は、2017年から2024年にかけての高効率IMドライブにおける最近の動向と進歩についてレビューしています。既存の研究は、高効率モーターの開発、インバーター・トポロジーにおける効率的なワイドバンドギャップ(WBG)半導体デバイスの利用、高性能ドライブを実現するための一般的に使用されている制御戦略などに焦点を当てています。しかし、既存の研究には限界があり、様々なメーカーのIMドライブ製品に採用されている制御手法の包括的な比較分析が不足していること、エネルギー効率の向上に貢献する最新の回生ブレーキ技術と省エネルギーアルゴリズムに関する詳細な議論が不十分であることが挙げられます。本研究はこれらの既存研究の限界を克服し、高効率IMドライブに関するより包括的な理解を提供することを目指しています。
3. 研究目的と研究課題:
- 研究目的: 2017年から2024年にかけての高効率誘導電動機ドライブの最近の動向と進歩を包括的にレビューし分析することです。高効率電動機の開発、効率的なWBG半導体デバイスを活用したインバーター・トポロジー、高性能ドライブを実現するための制御戦略などを含みます。また、主要な産業用IMドライブメーカーとその製品に採用されている制御技術を分析し、エネルギー効率の向上に貢献する回生ブレーキ技術と省エネルギーアルゴリズムを検討します。
- 主要な研究課題:
- 高効率誘導電動機の設計と製造における最近の動向は何か?
- 高効率電力電子変換器におけるWBG半導体デバイスの利用はどのように進展しているか?
- 高性能IMドライブを実現するために使用されている最新の制御戦略は何か?各戦略の長所と短所は何か?
- 主要な産業用IMドライブメーカーはどこであり、製品に採用されている制御技術は何か?
- エネルギー効率を向上させる回生ブレーキ方法と省エネルギーアルゴリズムの最新の動向は何か?
- 研究仮説: 高効率誘導電動機、WBG半導体デバイス、高度な制御戦略、回生ブレーキ技術の統合的な活用は、IMドライブシステム全体のエネルギー効率を大幅に向上させるだろう。
4. 研究方法:
- 研究デザイン: 本研究は、2017年から2024年にかけての高効率IMドライブに関する文献レビューに基づいています。体系的な文献調査と分析を行い、高効率IMドライブの最新動向を把握します。
- データ収集方法: 論文、学会発表資料、技術レポート、特許など、様々な情報源からの文献を網羅的に調査し、データを収集します。検索キーワードとしては、「高効率誘導電動機」、「ワイドバンドギャップ半導体」、「電力エレクトロニクス」、「制御技術」、「回生ブレーキ」、「省エネルギー」などを使用します。
- 分析方法: 収集したデータは、定量的分析と定性的分析の両方を使用して分析されます。定量的分析では、高効率IMドライブに関する研究の出版傾向、主要技術の出現時期、技術開発速度などを分析します。定性的分析では、各研究の主要な内容、方法論、結果を分析し、高効率IMドライブの最新技術動向を把握し、各技術の長所と短所、将来の発展方向を導き出します。様々な制御手法(FOC、DTC、MPC)の性能と特徴を比較分析します。
- 研究対象と範囲: 研究対象は、2017年から2024年までに発表された高効率IMドライブに関する文献です。研究範囲は、高効率IMドライブの設計、WBG電力半導体の利用、高度な制御技術、回生ブレーキ技術、省エネルギーアルゴリズムなどを含みます。
5. 主要な研究結果:
高効率IMドライブの進歩は、高効率モーター設計、WBG半導体デバイスの利用、そして高度な制御技術の発展によって推進されています。高効率IMは、より長いコア長、より薄いコア積層、高品質コア材料、最適化された形状のより広いステータ・スロット、より厚いステータ巻線、より低いローターバー抵抗などの特徴を備えています。WBGデバイス(SiC、GaN)は、従来のシリコンベースの半導体デバイスよりも広いバンドギャップを持つため、より高い電圧に耐えることができ、より高いスイッチング周波数と低い電力損失を提供します。主要な制御技術としては、FOC、DTC、MPCがあり、各技術の長所と短所、特徴を比較分析しています。回生ブレーキと省エネルギーアルゴリズムは、エネルギー効率の向上に貢献しています。
- 主要な発見: 高効率IM、WBG電力半導体、高度な制御技術(FOC、DTC、MPC)、そして回生ブレーキ技術の組み合わせが、IMドライブシステム全体の効率を大幅に向上させることがわかりました。
- 統計的/定性的分析結果: 多数の研究論文の分析を通じて、WBG電力半導体と高度な制御技術の採用がIMドライブシステムの効率向上に大きく貢献していることを確認しました。様々な制御技術の性能比較を通じて、各技術の長所と短所を明確に把握しました。
- データ解釈: 文献分析を通じて、高効率IMドライブの技術開発動向を把握し、将来の技術開発方向に関する示唆を与えました。
- 図表リスト:
- Figure 1. The Estimated Global Market Size of Electrical Drives,
- Figure 2. The Estimated Global Market Size of AC Drives,
- Figure 3. Block Diagram of a Typical Electric Drive System,
- Figure 4. Cross Section of Stator of 3-F Induction Motor,
- Figure 5. Rotor of a Squirrel Cage 3-F Induction Motor,
- Figure 6. Simplified Energy Diagram and Band Gap Energy of Si, WBG, and Insulators,
- Figure 7. Phasor diagram of stator current components with FOC,
- Figure 8. Block Diagram of the Basic Scheme of FOC of IM Drives,
- Figure 9. Block Diagram of Conventional DTC System of IM Drive,
- Figure 10. Stator Flux Vector Lies in Sector 1,
- Figure 11. Control of Motor Stator Flux and Torque In Sector 1,
- Figure 12. Effects of Inverter Discrete Voltage Vectors On Stator Flux & Torque In Sector 1,
- Figure 13. Trajectory of stator flux vector under DTC with conventional two-level VSI,
- Figure 14. Block Diagram of FCS-MPC System of IM Drive


6. 結論と考察:
本研究は、高効率IMドライブの最近の動向と技術開発を包括的に分析しました。高効率IM、WBG電力半導体、そして高度な制御技術(FOC、DTC、MPC)の発展は、IMドライブシステムのエネルギー効率の大幅な向上に貢献しています。回生ブレーキ技術もエネルギー効率の向上に重要な役割を果たしています。本研究の結果は、産業において高効率IMドライブを設計・製造する上で重要な示唆を与えます。特に、WBG電力半導体技術の導入と高度な制御アルゴリズムの適用は、高効率IMドライブの開発と商業化を加速させるでしょう。
- 主要な結果の要約: 高効率IM、WBG半導体、高度な制御技術(FOC、DTC、MPC)の統合がIMドライブシステムの効率向上に重要な役割を果たしていることを確認しました。回生ブレーキ技術もエネルギー節約に大きく貢献しています。
- 研究の学術的意義: 高効率IMドライブ分野における最新の技術動向を体系的に整理・分析し、将来の研究方向を示唆することで、学術の発展に貢献します。
- 実務的な示唆: 産業界は、高効率IM、WBG半導体デバイス、高度な制御技術を採用してIMドライブシステムのエネルギー効率を向上させる戦略を策定する必要があります。回生ブレーキ技術の積極的な活用も重要です。
- 研究の限界: 本研究は既存の文献分析に基づいたレビュー研究であるため、実際のIMドライブシステムの性能評価や実験的検証は含まれていません。また、WBG電力半導体の製造コストや信頼性に関する詳細な分析も不足しています。
7. 今後の研究:
- 今後の研究方向: 本研究で示された限界を克服するために、様々な運転条件下における実際のIMドライブシステムの性能を実験的に検証する今後の研究が必要です。WBG電力半導体の製造コストと信頼性に関する詳細な分析も必要です。さらに、様々なアプリケーションに特化した高効率IMドライブの開発と性能評価研究が必要です。
- 更なる探求が必要な分野: 様々な環境条件(温度、湿度、振動など)下における高効率IMドライブシステムの性能評価、様々な制御アルゴリズムの比較分析と最適化研究、WBG電力半導体デバイスの長期信頼性評価などが求められます。
8. 参考文献概要:
本論文は291件の参考文献を引用しています。各参考文献は、高効率IMドライブの様々な側面(高効率IM設計、WBG電力半導体、高度な制御技術、回生ブレーキ、省エネルギーアルゴリズムなど)を扱っています。
- Electric Drives Market Analysis Report: https://www.mordorintelligence.com/industry reports/electric‐drives‐market.
- Global AC Drives Industry Research Report, Growth Trends and Competitive Analysis 2022‐2028.
https://www.360researchreports.com/global‐ac‐drives‐industry‐21727719, September 2022. - UN‐SDGs report 2024: https://unstats.un.org/sdgs/files/report/2024/SG‐SDG‐Progress‐Report‐2024‐
advanced‐unedited‐version.pdf - UN‐SDGs report 2023: https://unstats.un.org/sdgs/report/2023/The‐Sustainable‐Development‐Goals‐Report‐2023.pdf.
Zhao, J.; Xi, X.; Na, Q.; Wang, S.; Kadry, S.N.; Kumar, P.M. The technological innovation of hybrid and
plug‐in electric vehicles for environment carbon pollution control. Environ. Impact Assess. Rev. 2021, 86, 106506. - Fuinhas, J.A.; Koengkan, M.; Leitão, N.C.; Nwani, C.; Uzuner, G.; Dehdar, F.; Relva, S.; Peyerl, D. Effect of
Battery Electric Vehicles on Greenhouse Gas Emissions in 29 European Union Countries. Sustainability 2021, 13, 13611. https://doi.org/10.3390/su132413611. - Azab, M. Low‐Cost DTC Drive Using Four‐Switch Inverter for Low Power Ranges. Vehicles 2024, 6, 895‐ https://doi.org/10.3390/vehicles6020043.
- Parv, A.L.; Daicu, R.; Dragoi, M.V.; Rusu, M.; Oancea, G. , “ A Method to Design Assembling Lines for
Super Premium Efficiency Motors. Processes 2023, 11, 215. https://doi.org/10.3390/pr11010215 - M. Dems and K. Komeza, “Designing an Energy‐Saving Induction Motor Operating in a Wide Frequency Range,” in IEEE Transactions on Industrial Electronics, vol. 69, no. 5, pp. 4387‐4397, May 2022, doi:10.1109/TIE.2021.3082057.
- Zibo Chen, Alex Q. Huang, “Extreme high efficiency enabled by silicon carbide (SiC) power devices,”
Materials Science in Semiconductor Processing, Volume 172, 2024, 108052,
https://doi.org/10.1016/j.mssp.2023.108052. - Y. Xu et al., “Impact of High Switching Speed and High Switching Frequency of Wide‐Bandgap Motor
Drives on Electric Machines,” in IEEE Access, vol. 9, pp. 82866‐82880, 2021, doi:
10.1109/ACCESS.2021.3086680. - Takahashi, I., Noguchi, T.: “A new quick‐response and high‐efficiency control strategy of an induction
motor”, IEEE Trans. Indus. App., 1986, 22, (5), pp. 820–827. - G. Mirzaeva and Y. Mo, “Model Predictive Control for Industrial Drive Applications,” in IEEE Transactions on Industry Applications, vol. 59, no. 6, pp. 7897‐7907, Nov.‐Dec. 2023, doi: 10.1109/TIA.2023.3299887.
- I. Karatzaferis, E. C. Tatakis and N. Papanikolaou, “Investigation of Energy Savings on Industrial Motor
Drives Using Bidirectional Converters,” in IEEE Access, vol. 5, pp. 17952‐17961, 2017, doi:
10.1109/ACCESS.2017.2748621. - Fethi Farhani, Abderrahmen Zaafouri, Abdelkader Chaari, Real time induction motor efficiency
optimization, Journal of the Franklin Institute, Volume 354, Issue 8, 2017, Pages 3289‐3304,
https://doi.org/10.1016/j.jfranklin.2017.02.012. - https://www.ti.com/lit/pdf/sprabq0.
- https://www.typhoon‐hil.com/solutions/power‐electronics/electric‐motor‐drives/
- [18]Wu, Z., Xie, B., Li, Z., Mitsuoka, M., Inoue, E., Okayasu, T., & Hirai, Y. (2019). DSPACE based Hardware in the loop Testing Platform for Powertrain Management Unit of Electric Tractor. Journal of the Faculty of Agriculture, Kyushu University, 64(2), 309‐317. https://doi.org/10.5109/2340993
- H. ‐J. Kim and C. ‐S. Lee, “Shape Parameters Design forImproving Energy Efficiency of IPM Traction Motor for EV,” in IEEE Transactions on Vehicular Technology, vol. 70, no. 7, pp. 6662‐6673, July 2021, doi:10.1109/TVT.2021.3089576.
- Shyi‐Min Lu, “A review of high‐efficiency motors: Specification, policy, and technology,” Renewable and Sustainable Energy Reviews, Vol.59, Pages 1‐12, 2016, https://doi.org/10.1016/j.rser.2015.12.360.
- M. D. Nardo, A. Marfoli, M. Degano and C. Gerada, “Rotor Slot Design of Squirrel Cage Induction Motors With Improved Rated Efficiency and Starting Capability,” in IEEE Transactions on Industry Applications, vol.58, no. 3, pp. 3383‐3393, May‐June 2022, doi: 10.1109/TIA.2022.3147156.
- A. Marfoli, M. D. Nardo, M. Degano, C. Gerada and W. Chen, “Rotor Design Optimization of Squirrel Cage Induction Motor—Part I: Problem Statement,” in IEEE Transactions on Energy Conversion, vol. 36, no. 2, pp. 1271‐1279, June 2021, doi: 10.1109/TEC.2020.3019934.
- J. Zhang et al., “Optimization and Experimental Validation of Amorphous Alloy High‐Speed
Asynchronous Motor for Simultaneous Reduction on Core and Copper Losses,” in IEEE Access, vol. 11, pp. 101112‐101122, 2023, doi: 10.1109/ACCESS.2023.3312992. - M. Popescu, L. Di Leonardo, G. Fabri, G. Volpe, N. Riviere and M. Villani, “Design of Induction Motors
With Flat Wires and Copper Rotor for E‐Vehicles Traction System,” in IEEE Transactions on Industry
Applications, vol. 59, no. 3, pp. 3889‐3900, May‐June 2023, doi: 10.1109/TIA.2023.3256391.
J. Mei, C. H. T. Lee and J. L. Kirtley, “Design of Axial Flux Induction Motor With Reduced Back Iron for
Electric Vehicles,” in IEEE Transactions on Vehicular Technology, vol. 69, no. 1, pp. 293‐301, Jan. 2020, doi:10.1109/TVT.2019.2954084. - T. ‐V. Tran, E. Nègre, K. Mikati, P. Pellerey and B. Assaad, “Optimal Design of TEFC Induction Machine
and Experimental Prototype Testing for City Battery Electric Vehicle,” in IEEE Transactions on Industry
Applications, vol. 56, no. 1, pp. 635‐643, Jan.‐Feb. 2020, doi: 10.1109/TIA.2019.2943447. - C. P. Ion and I. Peter, “Manufacturing of induction motors with Super Premium Efficiency,” 2022
International Conference and Exposition on Electrical And Power Engineering (EPE), Iasi, Romania, 2022, pp. 047‐050, doi: 10.1109/EPE56121.2022.9959834. - M. ‐S. Kim, J. ‐H. Park, K. ‐S. Lee, S. ‐H. Lee and J. ‐Y. Choi, “Performance Characteristics of the Rotor
Conductor of an IE4 Class Induction Motor With Varying Al‐Cu Ratio,” in IEEE Transactions on Magnetics, vol. 58, no. 8, pp. 1‐6, Aug. 2022, Art no. 8203406, doi: 10.1109/TMAG.2022.3153335. - T. Gundogdu and S. Suli, “Role of End‐Ring Configuration in Shaping IE4 Induction Motor Performance,” in CES Transactions on Electrical Machines and Systems, vol. 8, no. 3, pp. 245‐254, September 2024, doi:10.30941/CESTEMS.2024.00014.
- M. Aishwarya, R.M. Brisilla, Design of Energy‐Efficient Induction motor using ANSYS software, Results in Engineering, Volume 16, 2022, https://doi.org/10.1016/j.rineng.2022.100616.
- L. Alberti and D. Troncon, “Design of Electric Motors and Power Drive Systems According to Efficiency
Standards,” in IEEE Transactions on Industrial Electronics, vol. 68, no. 10, pp. 9287‐9296, Oct. 2021, doi:10.1109/TIE.2020.3020028. - Marfoli, A.; DiNardo, M.; Degano, M.; Gerada, C.; Jara, W. Squirrel Cage Induction Motor: A Design‐Based Comparison between Aluminium and Copper Cages. IEEE Open J. Ind. Appl. 2021, 2, 110–120.
- A. Cavagnino, S. Vaschetto, L. Ferraris, Z. Gmyrek, E. B. Agamloh and G. Bramerdorfer, “Striving for the
Highest Efficiency Class With Minimal Impact for Induction Motor Manufacturers,” in IEEE Transactions on Industry Applications, vol. 56, no. 1, pp. 194‐204, Jan.‐Feb. 2020, doi: 10.1109/TIA.2019.2949262. - Usha, S.; Subramani, C.; Raman, A.; Bhaduri, M.; Doss, M.A.N.; Puri, R. Efficiency Improvement of
Induction Motor Through Altered Design. Int. J. Recent Technol. Eng. 2019, 8, 3429–3435. - K. Khan, S. Shukla and B. Sing, “Design and Development of High Efficiency Induction Motor for PV Array Fed Water Pumping,” 2018 IEEE International Conference on Power Electronics, Drives and Energy Systems
(PEDES), Chennai, India, 2018, pp. 1‐6, doi: 10.1109/PEDES.2018.8707578. - I. Tig, M. Imeryuz, M. Akcomak and A. Polat, “Design of High Efficient 1.1 kW 8 Pole Induction Motor for Industrial Application,” 2023 14th International Conference on Electrical and Electronics Engineering (ELECO),
Bursa, Turkiye, 2023, pp. 1‐5, doi: 10.1109/ELECO60389.2023.10416050 - Asgharpour‐Alamdari, Hossein, Yousef Alinejad‐Beromi, and Hamid Yaghobi. “Improvement of induction motor operation using a new winding scheme for reduction of the magnetomotive force distortion.” IET Electric Power Applications 12.3 (2018): 323‐331.
- H. M. Kim, K. W. Lee, D. G. Kim, J. H. Park and G. S. Park, “Design of Cryogenic Induction Motor
Submerged in Liquefied Natural Gas,” in IEEE Transactions on Magnetics, vol. 54, no. 3, pp. 1‐4, March 2018, Art no. 8201204, doi: 10.1109/TMAG.2017.2751099. - C. Verucchi et al., “Efficiency optimization in small induction motors using magnetic slot wedges”, Electric Power Systems Research, vol. 152, pp. 1‐8, 2017.
- L. Shao, A. E. H. Karci, D. Tavernini, A. Sorniotti and M. Cheng, “Design Approaches and Control Strategies for Energy‐Efficient Electric Machines for Electric Vehicles—A Review,” in IEEE Access, vol. 8, pp. 116900‐116913, 2020, doi: 10.1109/ACCESS.2020.2993235.
- Dems, M.; Komeza, K.; Szulakowski, J.; Kubiak, W. Increase the Efficiency of an Induction Motor Feed from Inverter for Low Frequencies by Combining Design and Control Improvements. Energies 2022, 15, 530. https://doi.org/10.3390/en15020530
- U. Sharma and B. Singh, “Design and Development of Energy Efficient Single Phase Induction Motor For Ceiling Fan Using Taguchi’s Orthogonal Arrays,” in IEEE Transactions on Industry Applications, vol. 57, no. 4, pp. 3562‐3572, July‐Aug. 2021, doi: 10.1109/TIA.2021.3072020.
N. Zhao and N. Schofield, “An Induction Machine Design With Parameter Optimization for a 120‐kW
Electric Vehicle,” in IEEE Transactions on Transportation Electrification, vol. 6, no. 2, pp. 592‐601, June 2020,
doi: 10.1109/TTE.2020.2993456. - A. M. Silva, F. J. T. E. Ferreira, M. V. Cistelecan and C. H. Antunes, “Multiobjective Design Optimization of Generalized Multilayer Multiphase AC Winding,” in IEEE Transactions on Energy Conversion, vol. 34, no. 4, pp. 2158‐2167, Dec. 2019, doi: 10.1109/TEC.2019.2935009.
- M. Aishwarya and R. M. Brisilla, “Design and Fault Diagnosis of Induction Motor Using ML‐Based
Algorithms for EV Application,” in IEEE Access, vol. 11, pp. 34186‐34197, 2023, doi:
10.1109/ACCESS.2023.3263588. - W. Xu, X. Xiao, G. Du, D. Hu and J. Zou, “Comprehensive Efficiency Optimization of Linear Induction
Motors for Urban Transit,” in IEEE Transactions on Vehicular Technology, vol. 69, no. 1, pp. 131‐139, Jan. 2020,
doi: 10.1109/TVT.2019.2953956. - Farshid Mahmouditabar, Nick J. Baker, Design Optimization of Induction Motors with Different Stator Slot Rotor Bar Combinations Considering Drive Cycle, Energies, 10.3390/en17010154, 17, 1, (154), (2023).
- A. Lei, C.‐X. Song, Y.‐L. Lei and Y. Fu, “Design optimization of vehicle asynchronous motors based on
fractional harmonic response analysis”, Mech. Sci., vol. 12, no. 1, pp. 689‐700, Jul. 2021. - Bortoni, Edson C., et al. “Evaluation of manufacturers strategies to obtain high‐efficient induction motors.” Sustainable Energy Technologies and Assessments 31 (2019): 221‐227
- M. A. Kabir, M. Z. M. Jaffar, Z. Wan and I. Husain, “Design, Optimization, and Experimental Evaluation of Multilayer AC Winding for Induction Machine,” in IEEE Transactions on Industry Applications, vol. 55, no. 4, pp. 3630‐3639, July‐Aug. 2019, doi: 10.1109/TIA.2019.2910775.
- Bianchini, C.; Vogni, M.; Torreggiani, A.; Nuzzo, S.; Barater, D.; Franceschini, G. Slot Design Optimization for Copper Losses Reduction in Electric Machines for High Speed Applications. Appl. Sci. 2020, 10, 7425.
https://doi.org/10.3390/app10217425. - M.J. Akhtar, R.K. Behera, “Optimal design of stator and rotor slot of induction motor for electric vehicle applications.” IET Electr. Syst. Transp. 2019;9 pp.35‐43.
- S. Mallik et al., “Efficiency and Cost Optimized Design of an Induction Motor Using Genetic Algorithm,” in IEEE Transactions on Industrial Electronics, vol. 64, no. 12, pp. 9854‐9863, Dec. 2017, doi:10.1109/TIE.2017.2703687.
- Min‐Seok Kim, Chang‐Eob Kim, “Multi‐Objective Optimum Design of Premium High Efficiency Induction Motor Using Parameter Learning,”The Transactions of the Korean Institute of Electrical Engineers KIEE Vol. 70, No. 7, p.991‐998, June 2021.http://doi.org/10.5370/KIEE.2021.70.7.991.
- I. Laouar and A. Boukadoum, “Design Optimization of a Three‐Phase Squirrel‐Cage Induction Motor by Algorithm Harmony Search,” 2022 IEEE International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM), Tunis, Tunisia, 2022, pp. 1‐6, doi: 10.1109/CISTEM55808.2022.10044025.
- R. Srimathi, P. Ponmurugan, A. Iqbal, K. K. V, M. Lakshmanan and E. S. Nadin, “A More Efficient Induction Machine based on Hill Climbing Local Search Optimization,” 2022 International Virtual Conference on Power Engineering Computing and Control: Developments in Electric Vehicles and Energy Sector for Sustainable Future (PECCON), Chennai, India, 2022, pp. 1‐6, doi: 10.1109/PECCON55017.2022.9851011.
- Bian, Y., Yang, Z., Sun, X. et al. Speed Sensorless Control of a Bearingless Induction Motor Based on
Modified Robust Kalman Filter. J. Electr. Eng. Technol. 19, 1179–1190 (2024). https://doi.org/10.1007/s42835‐023‐01649‐y. - Su, Y., Yang, Z., Sun, X., & Shen, Z. (2024). Direct torque control of bearingless induction motor based on super‐twisting sliding mode control. Journal of Control and Decision, 1–11.
https://doi.org/10.1080/23307706.2024.2403487. - X. Ye, X. Tang, K. Xing, H. Wang, J. Yao and T. Zhang, “Repetitive Control for Vibration Suppression of
Bearingless Induction Motor,” in IEEE Access, vol. 12, pp. 60532‐60540, 2024, doi:
10.1109/ACCESS.2024.3391292. - Su, Y., Yang, Z., Sun, X. et al. Backstepping control of a bearingless induction motor based on a linear
extended state observer. Electr Eng 105, 4569–4579 (2023). https://doi.org/10.1007/s00202‐023‐01958‐5.
Z. Yang, J. Jia, X. Sun and T. Xu, “A Fuzzy‐ELADRC Method for a Bearingless Induction Motor,” in IEEE
Transactions on Power Electronics, vol. 37, no. 10, pp. 11803‐11813, Oct. 2022, doi: 10.1109/TPEL.2022.3177204. - J. Chen, Y. Fujii, M. W. Johnson, A. Farhan and E. L. Severson, “Optimal Design of the Bearingless Induction Motor,” in IEEE Transactions on Industry Applications, vol. 57, no. 2, pp. 1375‐1388, March‐April 2021, doi:
10.1109/TIA.2020.3044970. - J. Chen and E. L. Severson, “Design and Modeling of the Bearingless Induction Motor,” 2019 IEEE
International Electric Machines & Drives Conference (IEMDC), San Diego, CA, USA, 2019, pp. 343‐350, doi:10.1109/IEMDC.2019.8785270. - A. Sinervo and A. Arkkio, “Rotor Radial Position Control and its Effect on the Total Efficiency of a
Bearingless Induction Motor With a Cage Rotor,” in IEEE Transactions on Magnetics, vol. 50, no. 4, pp. 1‐9, April 2014, Art no. 8200909, doi: 10.1109/TMAG.2013.2291224. - J. Chen, J. Zhu and E. L. Severson, “Review of Bearingless Motor Technology for Significant Power
Applications,” in IEEE Transactions on Industry Applications, vol. 56, no. 2, pp. 1377‐1388, March‐April 2020, doi: 10.1109/TIA.2019.2963381. - E. L. Severson, R. Nilssen, T. Undeland and N. Mohan, “Design of Dual Purpose No‐Voltage Combined Windings for Bearingless Motors,” in IEEE Transactions on Industry Applications, vol. 53, no. 5, pp. 4368‐4379, Sept.‐Oct. 2017, doi: 10.1109/TIA.2017.2706653.
- J. Chen, M. W. Johnson, A. Farhan, Z. Wang, Y. Fujii and E. L. Severson, “Reduced Axial Length Pole‐
Specific Rotor for Bearingless Induction Machines,” in IEEE Transactions on Energy Conversion, vol. 37, no. 4, pp. 2285‐2297, Dec. 2022, doi: 10.1109/TEC.2022.3172017. - Z. Yang, Q. Ding, X. Sun and C. Lu, “Design and Analysis of a Three‐Speed Wound Bearingless Induction Motor,” in IEEE Transactions on Industrial Electronics, vol. 69, no. 12, pp. 12529‐12539, Dec. 2022, doi:10.1109/TIE.2021.3128900.
- Fang, W., Yang, Z., Sun, X. et al. Speed Sensorless Control of Bearingless Induction Motors Based on
Adaptive Flux Observer. J. Electr. Eng. Technol. 17, 1803–1813 (2022). https://doi.org/10.1007/s42835‐022‐01012‐7. - Carvalho Souza, F.E.; Silva, W.; Ortiz Salazar, A.; Paiva, J.; Moura, D.; Villarreal, E.R.L. A Novel Driving
Scheme for Three‐Phase Bearingless Induction Machine with Split Winding. Energies 2021, 14, 4930.
https://doi.org/10.3390/en14164930. - Ye, X., & Yang, Z. (2019). Development of bearingless induction motors and key technologies. IEEE Access, 121055–121066. https://doi.org/10.1109/ACCESS.2019.2937118.
- J. Lu, Z. Yang, X. Sun, C. Bao and X. Chen, “Direct Levitation Force Control for a Bearingless Induction
Motor Based on Model Prediction,” in IEEE Access, vol. 7, pp. 65368‐65378, 2019, doi:
10.1109/ACCESS.2019.2917331. - J. Chen and E. L. Severson, “Optimal Design of the Bearingless Induction Motor for Industrial
Applications,” 2019 IEEE Energy Conversion Congress and Exposition (ECCE), Baltimore, MD, USA, 2019, pp. 5265‐5272, doi: 10.1109/ECCE.2019.8912543. - Nunes, E.A.D.F.; Salazar, A.O.; Villarreal, E.R.L.; Souza, F.E.C.; Dos Santos Júnior, L.P.; Lopes, J.S.B.; Luque, J.C.C. Proposal of a fuzzy controller for radial position in a bearingless induction motor. IEEE Access 2019, 7, 114808–114816.
- Asama, J.; Oi, T.; Oiwa, T.; Chiba, A. Simple Driving Method for a 2‐DOF Controlled Bearingless Motor
Using One Three‐Phase Inverter. IEEE Trans. Ind. Appl. 2018, 54, 4365–4376. - Yang, Zebin, Chen, Lin, Sun, Xiaodong, Sun, Weiming, Zhang, Dan, A Bearingless Induction Motor Direct Torque Control and Suspension Force Control Based on Sliding Mode Variable Structure, Mathematical Problems in Engineering, 2017, 2409179, 11 pages, 2017. https://doi.org/10.1155/2017/2409179
- P. ‐W. Han, U. ‐J. Seo, S. Paul and J. Chang, “Computationally Efficient Stator AC Winding Loss Analysis Model for Traction Motors Used in High‐Speed Railway Electric Multiple Unit,” in IEEE Access, vol. 10, pp. 28725‐28738, 2022, doi: 10.1109/ACCESS.2022.3158647.
- J. M. Tabora et al., “Assessing Energy Efficiency and Power Quality Impacts Due to High‐Efficiency Motors Operating Under Nonideal Energy Supply,” in IEEE Access, vol. 9, pp. 121871‐121882, 2021, doi:10.1109/ACCESS.2021.3109622.
Julio R. Gómez, et. Al., “Assessment criteria of the feasibility of replacement standard efficiency electric motors with high‐efficiency motors,” Energy, Volume 239, Part A, 121877, 2022,
https://doi.org/10.1016/j.energy.2021.121877. - Yang, Z., Sun, C., Sun, X., & Sun, Y. , An improved dynamic model for bearingless induction motor
considering rotor eccentricity and load change. IEEE Transactions on Industrial Electronics, 69, 3439–3448.
https://doi.org/10.1109/TIE.2021.3071712. - J. Mei, Y. Zuo, C. H. T. Lee and J. L. Kirtley, “Modeling and Optimizing Method for Axial Flux Induction
Motor of Electric Vehicles,” in IEEE Transactions on Vehicular Technology, vol. 69, no. 11, pp. 12822‐12831, Nov. 2020, doi: 10.1109/TVT.2020.3030280. - M. Z. Ali, M. N. S. K. Shabbir, X. Liang, Y. Zhang and T. Hu, “Machine learning‐based fault diagnosis for single‐ and multi‐faults in induction motors using measured stator currents and vibration signals”, IEEE Trans. Ind. Appl., vol. 55, no. 3, pp. 2378‐2391, May 2019.
- Wang, K.; Huai, R.; Yu, Z.; Zhang, X.; Li, F.; Zhang, L. Comparison Study of Induction Motor Models
Considering Iron Loss for Electric Drives. Energies 2019, 12, 503. https://doi.org/10.3390/en12030503. - Liu, Y.; Bazzi, A.M. A General Analytical Three‐Phase Induction Machine Core Loss Model in the Arbitrary Reference Frame. IEEE Trans. Ind. Appl. 2017, 53, 4210–4220.
- Konda, Y.R.; Ponnaganti, V.K.; Reddy, P.V.S.; Singh, R.R.; Mercorelli, P.; Gundabattini, E.; Solomon, D.G.
Thermal Analysis and Cooling Strategies of High‐Efficiency Three‐Phase Squirrel‐Cage Induction
Motors—A Review. Computation 2024, 12, 6. https://doi.org/10.3390/computation12010006. - Madhavan, S.; P B, R.D.; Gundabattini, E.; Mystkowski, A. Thermal Analysis and Heat Management
Strategies for an Induction Motor, a Review. Energies 2022, 15, 8127. https://doi.org/10.3390/en15218127. - B. Assaad, K. Mikati, T. V. Tran and E. Negre, “Experimental Study of Oil Cooled Induction Motor for
Hybrid and Electric Vehicles,” 2018 XIII International Conference on Electrical Machines (ICEM),
Alexandroupoli, Greece, 2018, pp. 1195‐1200, doi: 10.1109/ICELMACH.2018.8507058. - Gundabattini, E.; Kuppan, R.; Solomon, D.G.; Kalam, A.; Kothari, D.; Abu Bakar, R. A review on methods
of finding losses and cooling methods to increase the efficiency of electric machines. Ain Shams Eng. J. 2021, 12, 497–505. - Cabral, P.; Adouni, A. Induction Motor Thermal Analysis Based on Lumped Parameter Thermal Network.
KnE Eng. 2020, 5, 451–464. - S. Zhong, C. Tschida and D. Bednarowski, “Thermal Analysis of Water‐Cooled Totally Enclosed Non‐
Ventilated Induction Motor,” SoutheastCon 2024, Atlanta, GA, USA, 2024, pp. 793‐798, doi:
10.1109/SoutheastCon52093.2024.10500195. - Madhavan, S., Devdatta P B, R., Konda, Y.R. et al. Thermal management analyses of induction motor
through the combination of air‐cooling and an integrated water‐cooling system. Sci Rep 13, 10125 (2023).
https://doi.org/10.1038/s41598‐023‐36989‐2. - L. F. D. Bucho, J. F. P. Fernandes, M. Biasion, S. Vaschetto and A. Cavagnino, “Experimental Assessment of Cryogenic Cooling Impact on Induction Motors,” in IEEE Transactions on Energy Conversion, vol. 37, no.
4, pp. 2629‐2636, Dec. 2022, doi: 10.1109/TEC.2022.3183939. - Deriszadeh, A.; de Monte, F. On heat transfer performance of cooling systems using nanofluid for electric motor applications. Entropy 2020, 22, 99.
- Abdullah, A.T.; Ali, A.M. Thermal analysis of a three‐phase induction motor based on motor‐CAD, flux2D, and Matlab. Indones. J. Electr. Eng. Comput. Sci. 2019, 15, 48–55.
- Adouni, A.; Marques Cardoso, A.J. Thermal analysis of low‐power three‐phase induction motors operating under voltage unbalance and inter‐turn short circuit faults. Machines 2020, 9, 2.
- M. Appadurai, E. Fantin Irudaya Raj, K. Venkadeshwaran, Finite element design and thermal analysis of an induction motor used for a hydraulic pumping system, Materials Today: Proceedings, Vol.45, Part 7, 2021, Pages 7100‐7106, https://doi.org/10.1016/j.matpr.2021.01.944.
- Putra, N.; Ariantara, B. Electric motor thermal management system using L‐shaped flat heat pipes. Appl. Therm. Eng. 2017, 126, 1156–1163.
- Ahmed, F.; Kar, N.C. Analysis of End‐Winding Thermal Effects in an Enclosed Fan‐Cooled Induction Motor with a Die‐Cast Copper Rotor. IEEE Trans. Ind. Appl. 2017, 53, 3098–3109.
M. Towhidi, F. Ahmed, A. Mollaeian and N. C. Kar, “Thermal Modelling of an Induction Motor with Liquid Cooling Optimization for Different EV Drive Cycles,” 2020 10th International Electric Drives Production Conference (EDPC), Ludwigsburg, Germany, 2020, pp. 1‐6, doi: 10.1109/EDPC51184.2020.9718577. - M. ‐S. Kim, J. ‐H. Park, K. ‐S. Lee, S. ‐H. Lee and J. ‐Y. Choi, “Optimum Design of Cooling Fan considering Experimental Method for Three‐Phase Induction Motor,” 2020 23rd International Conference on Electrical Machines and Systems (ICEMS), Hamamatsu, Japan, 2020, pp. 1220‐1224, doi:10.23919/ICEMS50442.2020.9290852.
- Boglietti, A., Nategh, S., Carpaneto, E., Boscaglia, L., & Scema, C. An optimization method for cooling
system design of traction motors. In 2019 IEEE International Electric Machines and Drives Conference (IEMDC) 1210–1215, 2019. - Satrústegui, M. et al. Design criteria for water cooled systems of induction machines. Appl. Therm. Eng. 5(114), 1018–1028, 2017.
- https://library.e.abb.com/public/e35d57ce4df3160285257d6d00720f51/9AKK106369_SuperE_101_web.pdf
- https://www.lafertaust.com.au/wp‐content/uploads/2019/02/Lafert‐Catalogue‐AC‐motors‐2018.pdf
- https://static.weg.net/medias/downloadcenter/hae/hdc/US100‐Standard‐Catalog‐Super‐Premium‐and‐Explosion‐Proof‐Sections.pdf
- https://www.leadgomotor.com/ye3%EF%BC%88ie3%EF%BC%89series‐premium‐efficiency‐three‐phase‐asynchronous‐motor/
- https://apsrewinds.com.au/wpcontent/uploads/specs_attach/Catalogue%20Toshiba%20LVM%20Premium% 20Efficiency%20A4%201209.pdf
- P. Ning, X. Hui, D. Li, Y. Kang, J. Yang and C. Liu, “Review of Thermal Design of SiC Power Module for
Motor Drive in Electrical Vehicle Application,” in CES Transactions on Electrical Machines and Systems, vol.
8, no. 3, pp. 332‐346, September 2024, doi: 10.30941/CESTEMS.2024.00041. - C. Liu et al., “Hybrid SiC‐Si DC–AC Topology: SHEPWM Si‐IGBT Master Unit Handling High Power
Integrated With Partial‐Power SiC‐MOSFET Slave Unit Improving Performance,” in IEEE Transactions on Power Electronics, vol. 37, no. 3, pp. 3085‐3098, March 2022, doi: 10.1109/TPEL.2021.3114322. - S. Baek, Y. Cho, B. ‐G. Cho and C. Hong, “Performance Comparison Between Two‐Level and Three‐Level SiC‐Based VFD Applications With Output Filters,” in IEEE Transactions on Industry Applications, vol. 55, no. 5, pp. 4770‐4779, Sept.‐Oct. 2019, doi: 10.1109/TIA.2019.2920360.
- A. K. Morya et al., “Wide Bandgap Devices in AC Electric Drives: Opportunities and Challenges,” in IEEE Transactions on Transportation Electrification, vol. 5, no. 1, pp. 3‐20, March 2019, doi:
10.1109/TTE.2019.2892807. - A. Schroedermeier and D. C. Ludois, “Integration of Inductors, Capacitors, and Damping Into Bus Bars for Silicon Carbide Inverter dv/dt Filters,” in IEEE Transactions on Industry Applications, vol. 55, no. 5, pp. 5045‐5054, Sept.‐Oct. 2019, doi: 10.1109/TIA.2019.2920596.
- Loncarski, J.; Monopoli, V.G.; Leuzzi, R.; Ristic, L.; Cupertino, F. Analytical and Simulation Fair
Comparison of Three Level Si IGBT Based NPC Topologies and Two Level SiC MOSFET Based Topology for High Speed Drives. Energies 2019, 12, 4571. https://doi.org/10.3390/en12234571 - Haruki Taniguchi, et. Al., Analysis of Energy‐Saving Effect for Applying a SiC Switching Device to
Inverters for Railway Vehicles Drives, IEEJ Journal of Industry Applications, 2024, Volume 13, Issue 1,
Pages 105‐112, https://doi.org/10.1541/ieejjia.22008551. - D. Cittanti, E. Vico and I. R. Bojoi, “New FOM‐Based Performance Evaluation of 600/650 V SiC and GaN Semiconductors for Next‐Generation EV Drives,” in IEEE Access, vol. 10, pp. 51693‐51707, 2022, doi:10.1109/ACCESS.2022.3174777.
- M. T. Fard, M. Abarzadeh, K. A. Noghani, J. He and K. Al‐Haddad, “Si/SiC hybrid 5‐level active NPC
inverter for electric aircraft propulsion drive applications,” in Chinese Journal of Electrical Engineering, vol.
6, no. 4, pp. 63‐76, Dec. 2020, doi: 10.23919/CJEE.2020.000031. - Naoto Fujishima, Technical Trends of SiC Power Semiconductor Devices and Their Applications in Power Electronics, IEEJ Journal of Industry Applications, 2024, vol. 13, no. 4, p. 372‐378.
https://doi.org/10.1541/ieejjia.23005497.
Yao, W.; Lu, J.; Taghizadeh, F.; Bai, F.; Seagar, A. Integration of SiC Devices and High‐Frequency
Transformer for High‐Power Renewable Energy Applications. Energies 2023, 16, 1538.
https://doi.org/10.3390/en16031538. - Q. Li, X. Zhang, C. Yuan, J. Ma and D. Jiang, “Variable Switching Frequency DPWM for ZVS in AC Motor Drive Fed by Two Paralleled SiC Inverters With Coupled Inductors,” in IEEE Transactions on Power Electronics, vol. 39, no. 1, pp. 1308‐1318, Jan. 2024, doi: 10.1109/TPEL.2023.3324194.
- Kelsey Horowitz, Samantha Reese, and Timothy Remo, “Research Highlight In “Manufacturing: SiC Power Electronics for Variable Frequency Motor Drives”, Research Highlight in Manufaturing Analysis, National Renewable Energy Laboratory, NREL/BR‐6A20‐68103, 2017. https://www.nrel.gov/docs/fy17osti/68103.pdf
- W. Zhou, M. Diab, X. Yuan and C. Wei, “Mitigation of Motor Overvoltage in SiC‐Based Drives Using Soft‐Switching Voltage Slew‐Rate (dv/dt) Profiling,” in IEEE Transactions on Power Electronics, vol. 37, no. 8, pp. 9612‐9628, Aug. 2022, doi: 10.1109/TPEL.2022.3157395.
- S. Sundeep, J. Wang, A. Griffo and F. Alvarez‐Gonzalez, “Antiresonance Phenomenon and Peak Voltage Stress Within PWM Inverter Fed Stator Winding,” in IEEE Transactions on Industrial Electronics, vol. 68, no. 12, pp. 11826‐11836, Dec. 2021, doi: 10.1109/TIE.2020.3048286.
- Y. Li et al., “500 kW Forced Air‐Cooled Silicon Carbide (SiC) Three‐Phase DC/AC Converter With a Power Density of 1.246 MW/m3 and Efficiency >98.5%,” in IEEE Transactions on Industry Applications, vol. 57, no.
5, pp. 5013‐5027, Sept.‐Oct. 2021, doi: 10.1109/TIA.2021.3087546. - Atsuo Kawamura, Yukinori Tsuruta, Hidemine Obara, Over 99.7% Efficiency at 100kW DC‐DC Power
Conversion using a 3.3kV SiC Device and Discussion on Device dv/dt Estimation, IEEJ Journal of Industry Applications, 2024, Volume 13, Issue 4, Pages 426‐436, https://doi.org/10.1541/ieejjia.23013265. - D. Woldegiorgis, M. M. Hossain, Z. Saadatizadeh, Y. Wei and H. A. Mantooth, “Hybrid Si/SiC Switches:
A Review of Control Objectives, Gate Driving Approaches and Packaging Solutions,” in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 11, no. 2, pp. 1737‐1753, April 2023, doi:
10.1109/JESTPE.2022.3219377. - B. J. Baliga, “Silicon Carbide Power Devices: Progress and Future Outlook,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 11, no. 3, pp. 2400–2411, Jun. 2023.
- B. Y. Zhang, S. Wang, and Y. W. Lai et al., “Modeling and Prediction of Low‐frequency Radiated EMI for a SiC Motor Drive System,” IEEE Transactions on Industrial Electronics, vol. 71, no. 9, pp. 10210–10220, Sept. 2023.
- B. T. DeBoi, A. N. Lemmon, B. McPherson and B. Passmore, “Improved Methodology for Parasitic Analysis of High‐Performance Silicon Carbide Power Modules,” in IEEE Transactions on Power Electronics, vol. 37, no. 10, pp. 12415‐12425, Oct. 2022, doi: 10.1109/TPEL.2022.3176981.
- Zhang, L.; Yuan, X.;Wu, X.; Shi, C.; Zhang, J.; Zhang, Y. Performance Evaluation of High‐Power SiC
MOSFET Modules in Comparison to Si IGBT Modules. IEEE Trans. Power Electron. 2019, 34, 1181–1196. - X. Li et al., “A SiC Power MOSFET Loss Model Suitable for High‐Frequency Applications,” in IEEE
Transactions on Industrial Electronics, vol. 64, no. 10, pp. 8268‐8276, Oct. 2017. - Stefanik, J.; Zygmanowski, M. Power Loss Analysis of Advanced‐Neutral‐Point‐Clamped Converter with SiC MOSFETs and Si IGBTs. In Proceedings of the 2021 IEEE 19th International Power Electronics and Motion Control Conference (PEMC), Gliwice, Poland, 25–29 April 2021; pp. 161–166.
- A. Abdelrahman, Z. Erdem, Y. Attia and M. Youssef, “Performance of Wide Band Gap Devices in Electric Vehicles Converters: A Case Study Evaluation”, 2018 20th European Conference on Power Electronics and Applications (EPE’18 ECCE Europe), pp. 1‐9, 2018.
- S. Yu, J. Wang, X. Zhang, Y. Liu, N. Jiang and W. Wang, “The potential impact of using traction inverters with SiC MOSFETs for electric buses”, IEEE Access, vol. 9, pp. 51561‐51572, 2021.
- Nisch, A.; Heller, M.; Wondrak, W.; Bucher, A.; Hasenohr, C.; Kefer, K.; Lunz, B.; Pawellek, A.; Smit, A.;
Gärtner, M.; et al. Simulation and Measurement‐Based Analysis of Efficiency Improvement of SiC
MOSFETs in a Series‐Production Ready 300 KW / 400 V Automotive Traction Inverter. In Proceedings of the 2020 22nd European Conference on Power Electronics and Applications (EPE’20 ECCE Europe), Lyon, France, 7–11 September 2020; pp. 1–10.
Ding, X.; Du, M.; Duan, C.; Guo, H.; Xiong, R.; Xu, J.; Cheng, J.; Luk, P.C.K. Analytical and Experimental
Evaluation of SiC‐Inverter Nonlinearities for Traction Drives Used in Electric Vehicles. IEEE Trans. Veh.
Technol. 2018, 67, 146–159. - S. Halder, K. Bhuvir, S. Bhattacharjee, J. Nakka, A. Panda and M. Ghosh, “Performance Analysis of WBG Inverter Fed Electric Traction Drive System for EV Application,” 2023 IEEE IAS Global Conference on Renewable Energy and Hydrogen Technologies (GlobConHT), Male, Maldives, 2023, pp. 1‐6, doi:
10.1109/GlobConHT56829.2023.10087485. - S. Amirpour, T. Thiringer and D. Hagstedt, “Energy Loss Analysis in a SiC/IGBT Propulsion Inverter over Drive Cycles Considering Blanking time MOSFET’s Reverse Conduction and the Effect of Thermal Feedback”, 2020 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 1505‐1511, 2020.
- L. Li et al., “Overview of Finite‐Element Analysis in Simulation of SiC Power Device Packaging,” 2021 18th China International Forum on Solid State Lighting & 2021 7th International Forum on Wide Bandgap Semiconductors (SSLChina: IFWS), Shenzhen, China, 2021, pp. 53‐57, doi:
10.1109/SSLChinaIFWS54608.2021.9675174. - L. Li, P. Ning, X. Wen, Y. Bian and D. Zhang, “Gate Drive Design for a Hybrid Si IGBT/SiC MOSFET
Module,” 2018 1st Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia), Xi’an,
China, 2018, pp. 34‐41, doi: 10.1109/WiPDAAsia.2018.8734665. - M. S. Diab and X. Yuan, “A Quasi‐Three‐Level PWM Scheme to Combat Motor Overvoltage in SiC‐Based Single‐Phase Drives,” in IEEE Transactions on Power Electronics, vol. 35, no. 12, pp. 12639‐12645, Dec. 2020,
doi: 10.1109/TPEL.2020.2994289. - Z. Chen and A. Q. Huang, “High Performance SiC Power Module Based on Repackaging of Discrete SiC Devices,” in IEEE Transactions on Power Electronics, vol. 38, no. 8, pp. 9306‐9310, Aug. 2023.
- Y. Zhang, C. Chen,Y. Xie, T. Liu,Y. Kang, and H. Peng, ``A high efficiency dynamic inverter dead‐time
adjustment method based on an improved GaN HEMTs switching model,’’ IEEE Trans. Power Electron., vol. 37, no. 3, pp. 2667_2683, Mar. 2022. - H. V. Nguyen, et. Al., “A novel SiC‐based multifunctional onboard battery charger for plug‐in electric
vehicles”, IEEE Trans. Power Electron., vol. 36, no. 5, pp. 5635‐5646, May 2021. - R. Ruffo, P. Guglielmi, and E. Armando, “Inverter Side RL Filter Precise Design for Motor Overvoltage
Mitigation in SiC‐Based Drives,” IEEE Trans. Ind. Electron., vol. 67, no. 2, pp. 863–873, Feb. 2020. - C. M. DiMarino, et. Al., “10‐kV SiC MOSFET Power Module With Reduced Common‐Mode Noise and
Electric Field,” in IEEE Transactions on Power Electronics, vol. 35, no. 6, pp. 6050‐6060, June 2020. - X. Li et al., “Achieving Zero Switching Loss in Silicon Carbide MOSFET,” in IEEE Transactions on Power
Electronics, vol. 34, no. 12, pp. 12193‐12199, Dec. 2019. - I. Laird, X. B. Yuan, and J. Scoltock et al., “A Design Optimization Tool for Maximizing the Power Density of 3‐phase DC–AC Converters Using Silicon Carbide (SiC) Devices,” IEEE Transactions on PowerElectronics,
vol. 33, no. 4, pp. 2913–2932, Apr. 2018. - Castellazzi, A.; Gurpinar, E.; Wang, Z.; Suliman Hussein, A.; Garcia Fernandez, P. Impact of Wide‐
Bandgap Technology on Renewable Energy and Smart‐Grid Power Conversion Applications Including
Storage. Energies 2019, 12, 4462. https://doi.org/10.3390/en12234462. - Zaman, H.; et. Al., Suppression of Switching Crosstalk and Voltage Oscillations in a SiC MOSFET Based Half‐Bridge Converter. Energies 2018, 11, 3111.
- Z. Chen, C. Chen, Q. Huang and A. Q. Huang, “Design of High Power Converter with Single Low Ron
Discrete SiC Device,” 2022 IEEE 9th Workshop on Wide Bandgap Power Devices & Applications (WiPDA),
Redondo Beach, CA, USA, 2022, pp. 209‐214. - Kumar, A.; et. Al., Current Source Gate Driver for SiC MOSFETs in Power Electronics Applications. In
Proceedings of the 2022 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Sorrento, Italy, 22–24 June 2022; pp. 523–527. - E. Velander et al., “An Ultra Low Loss Inductorless dv/dt Filter Concept for Medium‐Power Voltage Source Motor Drive Converters With SiC Devices,” IEEE Trans. Power Electron., vol. 33, no. 7, pp. 6072–6081, Jul. 2018. J. He et al., “Multi‐Domain Design Optimization of dv/dt Filter for SiC‐Based Three‐Phase Inverters in High‐Frequency Motor‐Drive Applications,” IEEE Trans. Ind. Appl., vol. 55, no. 5, pp. 5214‐5222, Sept.‐Oct. 2019.
- J. W. Kolar, et. Al., “Application ofWBGpower devices in future 3‐F variable speed drive inverter systems how to handle a double‐edged sword,’’ in IEDM Tech. Dig., Dec. 2020, pp. 27.7.1_27.7.4.
- Z. Liu, B. Li, F. C. Lee and Q. Li, “High‐Efficiency High‐Density Critical Mode Rectifier/Inverter for WBG‐Device‐Based On‐Board Charger”, IEEE Transactions on Industrial Electronics, vol. 64, no. 11, pp. 9114‐9123, Nov. 2017.
- M. Sun, Y. Zhang, X. Gao and T. Palacios, “High‐Performance GaN Vertical Fin Power Transistors on Bulk GaN Substrates”, IEEE Electron Device Letters, vol. 38, pp. 509‐512, 2017.
- Hussein, A.; Castellazzi, A. Variable Frequency Control and Filter Design for Optimum Energy Extraction from a SiC Wind Inverter. In Proceedings of the International Power Electronics Conference (IPEC‐Niigata 2018–ECCE Asia), Niigata, Japan, 20–24 May 2018.
- H. Kogure, K. Ishikawa, Y. Kohno, T. Sakai and T. Ishigaki, “Development of low loss inverter system
adopted lower harmonic losses technology and ultra compact inverters adopted high power density sic module”, Proc. 20th Eur. Conf. Power Electron. Appl., pp. P.1‐P.7, 2018. - R. Amorim Torres, H. Dai, W. Lee, B. Sarlioglu and T. Jahns, “Current‐Source Inverter Integrated Motor
Drives Using Dual‐Gate Four‐Quadrant Wide‐Bandgap Power Switches,” in IEEE Transactions on Industry Applications, vol. 57, no. 5, pp. 5183‐5198, Sept.‐Oct. 2021, doi: 10.1109/TIA.2021.3096179. - F. Stella, S. Savio, E. Vico, R. Bojoi and E. Armando, “Cost Effective 3D Printed Heatsink for Fast
Prototyping of WBG Power Converters,” 2024 IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 2024, pp. 2562‐2567, doi: 10.1109/APEC48139.2024.10509035 - A. Osman, G. Moreno, and S. Myers et al., “Automotive Silicon Carbide Power Module Cooling with a
Novel Modular Manifold and Embedded Heat Sink,” Journal of Electronic Packaging, vol. 146, no. 2, pp. 021007, Jun. 2024 - J. Zachariae, M. Tiesler, and R. Singh et al., “Silicon Carbide Based Traction Inverter Cooling in Electric
Vehicle Using Heat Pipes,” Thermal Science and Engineering Progress, vol. 46, no. 1, pp. 102155 Dec. 2023. - R. A. Torres, H. Dai, W. Lee, K. Saviers, T. M. Jahns and B. Sarlioglu, “Investigation of Cooling Techniques and Enclosure Types for Integrated Motor Drives,” 2022 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 2022, pp. 01‐08, doi: 10.1109/ECCE50734.2022.9947618.
- R. A. Torres, H. Dai, T. M. Jahns, B. Sarlioglu and W. Lee, “Thermal Analysis of Housing‐Cooled Integrated Motor Drives,” 2021 IEEE Transportation Electrification Conference & Expo (ITEC), Chicago, IL, USA, 2021,
pp. 1‐6, doi: 10.1109/ITEC51675.2021.9490174 - Mademlis, G.; Orbay, R.; Liu, Y.; Sharma, N.; Arvidsson, R.; Thiringer, T. Multidisciplinary Cooling Design Tool for Electric Vehicle SiC Inverters Utilizing Transient 3D‐CFD Computations. eTransportation 2021, 7, 100092.
- Abramushkina, E.; Zhaksylyk, A.; Geury, T.; El Baghdadi, M.; Hegazy, O. A Thorough Review of Cooling
Concepts and Thermal Management Techniques for Automotive WBG Inverters: Topology, Technology and Integration Level. Energies 2021, 14, 4981. https://doi.org/10.3390/en14164981. - Zeng, Z.; Zhang, X.; Blaabjerg, F.; Chen, H.; Sun, T. Stepwise Design Methodology and Heterogeneous
Integration Routine of Air‐Cooled SiC Inverter for Electric Vehicle. IEEE Trans. Power Electron. 2020, 35, 3973–3988. - M. Alizadeh, R. Rodriguez, and J. Bauman et al., “Optimal Design of Integrated Heat Pipe Air‐cooled
System Using TLBO algorithm for SiC MOSFET Converters,” IEEE Open Journal of Power Electronics, vol. 1, pp. 103–112, Apr. 2020. - T. Wu, Z. Q. Wang, and B. Ozpineci et al., “Automated Heatsink Optimization for Air‐cooled Power
Semiconductor Modules,” IEEE Tran. on Power Electronics, vol. 34, no. 6, pp. 5027–5031, Jun. 2019. - A. Michalak, M. S. Zaman, and O. Tayyara et al., “A Thermal Management Design Methodology for
Advanced Power Electronics Utilizing Genetic Optimization and Additive Manufacturing Techniques,” in Proc. of 2020 19th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Orlando, FL, USA, Jul. 2020, pp. 547–557.
E. Gurpinar, R. Sahu and B. Ozpineci, “Heat Sink Design for WBG Power Modules Based on Fourier Series and Evolutionary Multi‐Objective Multi‐Physics Optimization,” in IEEE Open Journal of Power Electronics, vol. 2, pp. 559‐569, 2021, doi: 10.1109/OJPEL.2021.3119518. - R. Yao et al., “A Double‐Sided Cooling Approach of Discrete SiC MOSFET Device Based on Press‐Pack
Package,” in IEEE Open Journal of Power Electronics, vol. 5, pp. 1629‐1640, 2024, doi:
10.1109/OJPEL.2024.3479293. - R. Chen and F. F. Wang, “SiC and GaN Devices With Cryogenic Cooling,” in IEEE Open Journal of Power Electronics, vol. 2, pp. 315‐326, 2021, doi: 10.1109/OJPEL.2021.3075061.
- D. G. Pahinkar, L. Boteler, and D. Ibitayo et al., “Liquid‐cooled Aluminum Silicon Carbide Heat Sinks for Reliable Power Electronics Packages,” Journal of Electronic Packaging, vol. 141, no. 4, pp. 041001, Dec. 2019.
- Tang, G.; Wai, L.C.; Boon Lim, S.; Lau, B.L.; Kazunori, Y.; Zhang, X.W. Thermal Analysis, Characterization
and Material Selection for SiC Device Based Intelligent Power Module (IPM). In Proceedings of the 2020 IEEE 70th Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 3–30 June 2020; pp. 2078–2085. - Mademlis, G.; Orbay, R.; Liu, Y.; Sharma, N. Designing Thermally Uniform Heatsink with Rectangular Pins for High‐Power Automotive SiC Inverters. In Proceedings of the IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society, Singapore, 18–21 October 2020; pp. 1317–1322.
- Becker, N.; Bulovic, S.; Bittner, R.; Herzer, R. Thermal Simulation for Power Density Optimization of SiC‐MOSFET Automotive Inverter. In Proceedings of the CIPS 2020; 11th International Conference on
Integrated Power Electronics Systems, Berlin, Germany, 24–26 March 2020; pp. 1–6. - Catalano, A.P.; Scognamillo, C.; Castellazzi, A.; d’Alessandro, V. Optimum Thermal Design of High‐
Voltage Double‐Sided Cooled Multi‐Chip SiC Power Modules. In Proceedings of the 2019 25th
International Workshop on Thermal Investigations of ICs and Systems (THERMINIC), Lecco, Italy, 25–27 September 2019; pp. 1–4. - McPherson, B.; McGee, B.; Simco, D.; Olejniczak, K.; Passmore, B. Direct Liquid Cooling of High
Performance Silicon Carbide (SiC) Power Modules. In Proceedings of the 2017 IEEE Int. Workshop On
Integrated Power Packaging (IWIPP), Delft, The Netherlands, 5–7 April 2017; pp. 1–5. - S. Acharya, A. Anurag, S. Bhattacharya and D. Pellicone, “Performance Evaluation of a Loop
Thermosyphon‐Based Heatsink for High‐Power SiC‐Based Converter Applications,” in IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 10, no. 1, pp. 99‐110, Jan. 2020, doi:10.1109/TCPMT.2019.2923332. - W. Lee, R. A. Torres, H. Dai, T. M. Jahns and B. Sarlioglu, “Integration and Cooling Strategies for WBG‐
based Current‐Source Inverters‐Based Motor Drives,” 2021 IEEE Energy Conversion Congress and Exposition
(ECCE), Vancouver, BC, Canada, 2021, pp. 5225‐5232, doi: 10.1109/ECCE47101.2021.9595747. - S. ‐G. Han, W. ‐H. Lee, D. ‐Y. Hwang, S. ‐M. Park, J. ‐H. Choi and D. ‐M. Joo, “Thermal Design and
Development of a Inverter Considering the Switch Characteristics of Wide Band Gap Power
semiconductor,” 2021 24th International Conference on Electrical Machines and Systems (ICEMS), Gyeongju,
Korea, Republic of, 2021, pp. 2138‐2144, doi: 10.23919/ICEMS52562.2021.9634211. - A. I. Emon, Mustafeez‐ul‐Hassan, A. B. Mirza, J. Kaplun, S. S. Vala and F. Luo, “A Review of High‐Speed
GaN Power Modules: State of the Art, Challenges, and Solutions,” in IEEE Journal of Emerging and Selected
Topics in Power Electronics, vol. 11, no. 3, pp. 2707‐2729, June 2023, doi: 10.1109/JESTPE.2022.3232265. - Singh, S., Chaudhary, T. & Khanna, G. Recent Advancements in Wide Band Semiconductors (SiC and GaN) Technology for Future Devices. Silicon 14, 5793–5800 (2022). https://doi.org/10.1007/s12633‐021‐01362‐3.
- Kumar, A.; Moradpour, M.; Losito, M.; Franke, W.‐T.; Ramasamy, S.; Baccoli, R.; Gatto, G. Wide Band Gap Devices and Their Application in Power Electronics. Energies 2022, 15, 9172.
https://doi.org/10.3390/en15239172. - S. M. S. H. Rafin, R. Ahmed and O. A. Mohammed, “Wide Band Gap Semiconductor Devices for Power
Electronic Converters,” 2023 Fourth International Symposium on 3D Power Electronics Integration and Manufacturing (3D‐PEIM), Miami, FL, USA, 2023, pp. 1‐8, doi: 10.1109/3D‐PEIM55914.2023.10052586.
Y. Bérubé, A. Ghazanfari, H. F. Blanchette, C. Perreault and K. Zaghib, “Recent Advances in Wide Bandgap Devices for Automotive Industry,” IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics
Society, Singapore, 2020, pp. 2557‐2564, doi: 10.1109/IECON43393.2020.9254478. - Setera, B.; Christou, A. Challenges of Overcoming Defects in Wide Bandgap Semiconductor Power
Electronics. Electronics 2022, 11, 10. https://doi.org/10.3390/electronics11010010 - Wang, Y.; Ding, Y.; Yin, Y. Reliability of Wide Band Gap Power Electronic Semiconductor and Packaging:A Review. Energies 2022, 15, 6670. https://doi.org/10.3390/en15186670
- G. Iannaccone, C. Sbrana, I. Morelli and S. Strangio, “Power Electronics Based on Wide‐Bandgap
Semiconductors: Opportunities and Challenges,” in IEEE Access, vol. 9, pp. 139446‐139456, 2021, doi:
10.1109/ACCESS.2021.3118897. - Lee, H.; Smet, V.; Tummala, R. A Review of SiC Power Module Packaging Technologies: Challenges,
Advances, and Emerging Issues. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 8, 239–255. - Chen, J.; Du, X.; Luo, Q.; Zhang, X.; Sun, P.; Zhou, L. A Review of Switching Oscillations of Wide Bandgap
Semiconductor Devices. IEEE Trans. Power Electron. 2020, 35, 13182–13199. - S. J. Bader et al., “Prospects for Wide Bandgap and Ultrawide Bandgap CMOS Devices,” in IEEE
Transactions on Electron Devices, vol. 67, no. 10, pp. 4010‐4020, Oct. 2020, doi: 10.1109/TED.2020.3010471. - J. A. Ferreira and P. Wilson, “The Impact of ITRW: How Can WBG Power Semiconductors Break
Through?,” in IEEE Open Journal of Power Electronics, vol. 2, pp. 327‐335, 2021, doi:
10.1109/OJPEL.2021.3071876. - I. C. Kizilyalli, Y. A. Xu, E. Carlson, J. Manser and D. W. Cunningham, “Current and future directions in
power electronic devices and circuits based on wide band‐gap semiconductors,” 2017 IEEE 5th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Albuquerque, NM, USA, 2017, pp. 417‐417, doi:
10.1109/WiPDA.2017.8170583. - [196] Yuan, X.; Laird, I.; Walder, S. Opportunities, Challenges, and Potential Solutions in the Application
of Fast‐Switching SiC Power Devices and Converters. IEEE Trans. Power Electron. 2021, 36, 3925–3945. - Matallana, A.; Ibarra, E.; López, I.; Andreu, J.; Garate, J.I.; Jordà, X.; Rebollo, J. Power Module Electronics in HEV/EV Applications: New Trends in Wide‐Bandgap Semiconductor Technologies and Design Aspects.
Renew. Sustain. Energy Rev. 2019, 113, 109264. - Investigation and Review of Challenges in a High‐Temperature 30‐KVA Three‐Phase Inverter Using SiC MOSFETs. IEEE Trans. Ind. Appl. 2018, 54, 2483–2491.
- I. C. Kizilyalli, E. P. Carlson and D. W. Cunningham, “Barriers to the Adoption of Wide‐Bandgap
Semiconductors for Power Electronics,” 2018 IEEE International Electron Devices Meeting (IEDM), San
Francisco, CA, USA, 2018, pp. 19.6.1‐19.6.4, doi: 10.1109/IEDM.2018.8614501. - X. Yuan, “Application of silicon carbide (SiC) power devices: Opportunities, challenges and potential
solutions,” IECON 2017—43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 2017, pp. 893‐900, doi: 10.1109/IECON.2017.8216154. - Z. Zhang, Y. Hu, X. Chen, G. W. Jewell and H. Li, “A Review on Conductive Common‐Mode EMI
Suppression Methods in Inverter Fed Motor Drives,” in IEEE Access, vol. 9, pp. 18345‐18360, 2021, doi:10.1109/ACCESS.2021.3054514 - P. Weiss, C. Bauer, R. Jung and K. Berberich, “Double Side Cooled Modules Enable Future Generation of SiC‐Traction‐Inverters,” PCIM Europe digital days 2021; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Online, 2021, pp. 1‐6
- E. A. Jones, F. F. Wang and D. Costinett, “Review of commercial GaN power devices and GaN‐based
converter design challenges”, IEEE J. Emerg. Sel. Topics Power Electron., vol. 4, no. 3, pp. 707‐719, Sep. 2016. - https://us.metoree.com/categories/sic‐mosfet/
- Blaschke, F. The principle of field‐orientation as applied to the new transvector closed‐loop system for rotating‐field machines. Siemens Rev. 1972, 34, 217–220.
- Carbone, L.; Cosso, S.; Kumar, K.; Marchesoni, M.; Passalacqua, M.; Vaccaro, L. Induction Motor Field‐
Oriented Sensorless Control with Filter and Long Cable. Energies 2022, 15, 1484.
https://doi.org/10.3390/en15041484.
J. R. Domínguez, I. Dueñas and S. Ortega‐Cisneros, “Discrete‐Time Modeling and Control Based on Field Orientation for Induction Motors,” in IEEE Transactions on Power Electronics, vol. 35, no. 8, pp. 8779‐8793, Aug. 2020, doi: 10.1109/TPEL.2020.2965632. - M. J. Akhtar and R. K. Behera, “Space Vector Modulation for Distributed Inverter‐Fed Induction Motor
Drive for Electric Vehicle Application,” in IEEE Journal of Emerging and Selected Topics in Power Electronics,
vol. 9, no. 1, pp. 379‐389, Feb. 2021, doi: 10.1109/JESTPE.2020.2968942. - G. ‐J. Jo and J. ‐W. Choi, “Gopinath Model‐Based Voltage Model Flux Observer Design for Field‐Oriented Control of Induction Motor,” in IEEE Transactions on Power Electronics, vol. 34, no. 5, pp. 4581‐4592, May 2019, doi: 10.1109/TPEL.2018.2864322.
- I. M. Mehedi, N. Saad, M. A. Magzoub, U. M. Al‐Saggaf and A. H. Milyani, “Simulation Analysis and
Experimental Evaluation of Improved Field‐Oriented Controlled Induction Motors Incorporating
Intelligent Controllers,” in IEEE Access, vol. 10, pp. 18380‐18394, 2022, doi: 10.1109/ACCESS.2022.3150360. - M. J. Cheerangal, A. K. Jain and A. Das, “Multiple Fault Tolerant Control Strategy for Rotor Field Oriented Induction Motor Drive Fed From CHB Converter With Redundant Cells,” in IEEE Transactions on Power Electronics, vol. 38, no. 1, pp. 852‐861, Jan. 2023, doi: 10.1109/TPEL.2022.3202313.
- H. Abbasi, M. Ghanbari, R. Ebrahimi and M. Jannati, “IRFOC of Induction Motor Drives Under Open‐
Phase Fault Using Balanced and Unbalanced Transformation Matrices,” in IEEE Transactions on Industrial Electronics, vol. 68, no. 10, pp. 9160‐9173, Oct. 2021, doi: 10.1109/TIE.2020.3026278. - A. Devanshu, M. Singh and N. Kumar, “An Improved Nonlinear Flux Observer Based Sensorless FOC IM Drive With Adaptive Predictive Current Control,” in IEEE Transactions on Power Electronics, vol. 35, no. 1, pp. 652‐666, Jan. 2020, doi: 10.1109/TPEL.2019.2912265.
- M. Shabandokht‐Zarami, M. Ghanbari, E. Alibeiki and M. Jannati, “A Modified FOC Strategy With Optimal Rotor Flux for FTC of Star‐Connected TPIMDs Against Single‐Phase Open Fault,” in IEEE Canadian Journal of Electrical and Computer Engineering, vol. 44, no. 1, pp. 83‐93, winter 2021, doi:
10.1109/ICJECE.2020.3027606. - I. G. Prieto, M. J. Duran, P. Garcia‐Entrambasaguas and M. Bermudez, “Field‐Oriented Control of
Multiphase Drives With Passive Fault Tolerance,” in IEEE Transactions on Industrial Electronics, vol. 67, no. 9, pp. 7228‐7238, Sept. 2020, doi: 10.1109/TIE.2019.2944056. - https://www.st.com/en/applications/industrial‐motor‐control/3‐phase‐field‐oriented‐control‐foc.
- Białoń, T.; Niestrój, R.; Michalak, J.; Pasko, M. Induction Motor PI Observer with Reduced‐Order
Integrating Unit. Energies 2021, 14, 4906. https://doi.org/10.3390/en14164906 - Wang, F.; Zhang, Z.; Mei, X.; Rodríguez, J.; Kennel, R. Advanced Control Strategies of Induction Machine:
Field Oriented Control, Direct Torque Control and Model Predictive Control. Energies 2018, 11, 120. - Fnaiech, M.A.; Guzinski, J.; Trabelsi, M.; Kouzou, A.; Benbouzid, M.; Luksza, K. MRAS‐Based Switching
Linear Feedback Strategy for Sensorless Speed Control of Induction Motor Drives. Energies 2021, 14, 3083.
https://doi.org/10.3390/en14113083 - Pal, A.; Das, S.; Chattopadhyay, A. An improved rotor flux space vector based MRAS for field‐oriented
control of induction motor drives. IEEE Trans. Power Electron. 2018, 33, 5131–5141. - Dehghan‐Azad, E.; Gadoue, S.; Atkinson, D.; Slater, H.; Barrass, P.; Blaabjerg, F. Sensorless control of im based on stator‐voltage mras for limp‐home ev applications. IEEE Trans. Power Electron. 2018, 33, 1911–S. Khadar, H. Abu‐Rub and A. Kouzou, “Sensorless Field‐Oriented Control for Open‐End Winding Five‐Phase Induction Motor With Parameters Estimation,” in IEEE Open Journal of the Industrial Electronics Society, vol. 2, pp. 266‐279, 2021, doi: 10.1109/OJIES.2021.3072232.
- E. Hamdi, T. Ramzi, I. Atif and M. F. Mohamed, “Real time implementation of indirect rotor flux oriented control of a five‐phase induction motor with novel rotor resistance adaption using sliding mode observer”, J. Franklin Inst., vol. 355, pp. 2112‐2141, 2018.
- K. K. Prabhakar, C. Upendra Reddy, P. Kumar and A. K. Singh, “A New Reference Flux Linkage Selection Technique for Efficiency Improvement of Direct Torque Controlled IM Drive,” in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 8, no. 4, pp. 3751‐3762, Dec. 2020, doi:
10.1109/JESTPE.2020.2979235.
S. Savarapu, M. Qutubuddin and Y. Narri, “Modified Brain Emotional Controller‐Based Ripple
Minimization for SVM‐DTC of Sensorless Induction Motor Drive,” in IEEE Access, vol. 10, pp. 40872‐40887,2022, doi: 10.1109/ACCESS.2022.3165651. - I. M. Alsofyani, Y. Bak and K. ‐B. Lee, “Fast Torque Control and Minimized Sector‐Flux Droop for Constant Frequency Torque Controller Based DTC of Induction Machines,” in IEEE Transactions on Power Electronics, vol. 34, no. 12, pp. 12141‐12153, Dec. 2019, doi: 10.1109/TPEL.2019.2908631.
- I. M. Alsofyani, N. R. N. Idris and K. ‐B. Lee, “Dynamic Hysteresis Torque Band for Improving the
Performance of Lookup‐Table‐Based DTC of Induction Machines,” in IEEE Transactions on Power
Electronics, vol. 33, no. 9, pp. 7959‐7970, Sept. 2018, doi: 10.1109/TPEL.2017.2773129. - M. H. Holakooie, M. Ojaghi and A. Taheri, “Direct Torque Control of Six‐Phase Induction Motor With a
Novel MRAS‐Based Stator Resistance Estimator,” in IEEE Transactions on Industrial Electronics, vol. 65,no. 10, pp. 7685‐7696, Oct. 2018, doi: 10.1109/TIE.2018.2807410. - R. H. Kumar, et. Al., “Review of recent advancements of direct torque control in induction motor drives—a decade of progress”, IET Power Electronics, Vol. 11, No. 1, pp. 1‐15, 2018
- N. El Ouanjli et al., “Modern improvement techniques of direct torque control for induction motor drives—a review,” in Protection and Control of Modern Power Systems, vol. 4, no. 2, pp. 1‐12, April 2019, doi:10.1186/s41601‐019‐0125‐5.
- Peter, A. K., Mathew, J., & Gopakumar, K. (2023). A simplified DTC‐SVPWM scheme for induction motor drives using a single PI controller. IEEE Transactions on Power Electronics, 38(open in a new window)(1(open in a new window)), 750–761. https://doi.org/10.1109/TPEL.2022.3197362.
- Benevieri, A.; Maragliano, G.; Marchesoni, M.; Passalacqua, M.; Vaccaro, L. Induction Motor Direct Torque Control with Synchronous PWM. Energies 2021, 14, 5025.
- P. Naganathan and S. Srinivas, “MTPA Associated DTC Methodologies for Enhanced Performance and
Energy Savings in Electric Vehicle Mobility With Induction Motor Drive,” in IEEE Transactions on
Transportation Electrification, vol. 8, no. 2, pp. 1853‐1862, June 2022, doi: 10.1109/TTE.2021.3130178. - Pimkumwong, N.; Wang, M.S. Full‐order observer for direct torque control of induction motor based on constant V/F control technique. ISA Trans. 2018, 73, 189–200.
- Ammar, A., Bourek, A. & Benakcha, A. Robust SVM‐direct torque control of induction motor based on sliding mode controller and sliding mode observer. Front. Energy 14, 836–849 (2020).
https://doi.org/10.1007/s11708‐017‐0444‐z - E. Hamdi, T. Ramzi, I. Atif and M. F. Mohamed, “Adaptive direct torque control using Luenberger‐sliding mode observer for online stator resistance estimation for five‐phase induction motor drives”, Elect. Eng.,
vol. 100, pp. 1639‐1649, 2018. - A. Abdelkarim, K. Aissa, M. Brahim, A. Tarek and A. Younes, “Feedback linearization based sensorless
direct torque control using stator flux MRAS‐sliding mode observer for induction motor drive”, ISA Trans., vol. 98, pp. 382‐392, Mar. 2020. - V. S. Reddy Chagam and S. Devabhaktuni, “Enhanced Low‐Speed Characteristics With Constant Switching Torque‐Controller‐Based DTC Technique of Five‐Phase Induction Motor Drive With FOPI Control,” in IEEE Transactions on Industrial Electronics, vol. 70, no. 11, pp. 10789‐10799, Nov. 2023, doi:10.1109/TIE.2022.3227275.
- X. Wu, W. Huang, X. Lin, W. Jiang, Y. Zhao and S. Zhu, “Direct Torque Control for Induction Motors Based on Minimum Voltage Vector Error,” in IEEE Transactions on Industrial Electronics, vol. 68, no. 5, pp. 3794‐3804, May 2021, doi: 10.1109/TIE.2020.2987283.
- Tiitinen, P.; Surandra, M. The next generation motor control method, DTC direct torque control. In
Proceedings of the International Conference on Power Electronics, Drives and Energy Systems for
Industrial Growth, New Delhi, India, 8–11 January 1996;Volume 1, pp. 37–43. - [241] B. Çavuş and M. Aktaş, “MPC‐Based Flux Weakening Control for Induction Motor Drive With DTC for Electric Vehicles,” in IEEE Transactions on Power Electronics, vol. 38, no. 4, pp. 4430‐4439, April 2023, doi: 10.1109/TPEL.2022.3230547.
J. Rodriguez et al., “Latest Advances of Model Predictive Control in Electrical Drives—Part I: Basic
Concepts and Advanced Strategies,” in IEEE Transactions on Power Electronics, vol. 37, no. 4, pp. 3927‐3942, April 2022, doi: 10.1109/TPEL.2021.3121532. - M. H. Arshad, M. A. Abido, A. Salem and A. H. Elsayed, “Weighting Factors Optimization of Model
Predictive Torque Control of Induction Motor Using NSGA‐II With TOPSIS Decision Making,” in IEEE
Access, vol. 7, pp. 177595‐177606, 2019, doi: 10.1109/ACCESS.2019.2958415. - [244] Aziz, A.G.M.A.; Rez, H.; Diab, A.A.Z. Robust Sensorless Model‐Predictive Torque Flux Control for
High‐Performance Induction Motor Drives. Mathematics 2021, 9, 403. - I. Gonzalez‐Prieto, M. Duran, J. Aciego, C. Martin and F. Barrero, “Model predictive control of six‐phase induction motor drives using virtual voltage vectors”, IEEE Trans. Ind. Electron., vol. 65, no. 1, pp. 27‐37, Jan. 2018.
- Y. Zhou and G. Chen, “Predictive DTC Strategy With Fault‐Tolerant Function for Six‐Phase and Three‐
Phase PMSM Series‐Connected Drive System,” in IEEE Transactions on Industrial Electronics, vol. 65, no. 11, pp. 9101‐9112, Nov. 2018, doi: 10.1109/TIE.2017.2786236. - M. Chebaani, M. Ebeed, W. S. E. Abdellatif, Z. M. S. Elbarbary and N. A. Nouraldin, “Design and
Implementation of an Improved Finite‐State Predictive Direct Torque Control for Induction Motor With New Weighting Factor Elimination,” in IEEE Access, vol. 11, pp. 58169‐58187, 2023, doi:
10.1109/ACCESS.2023.3283983. - A. Yang and Z. Lu, “Multiscalar Model‐Based Predictive Torque Control Without Weighting Factors and Current Sensors for Induction Motor Drives,” in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 10, no. 5, pp. 5785‐5797, Oct. 2022, doi: 10.1109/JESTPE.2022.3181802.
- T. Wang, Y. Wang, Z. Zhang, Z. Li, C. Hu, and F. Wang, “Comparison and analysis of predictive control of induction motor without weighting factors,” Energy Reports, vol. 9, no. 2, pp. 558–568, Apr. 2023, doi:10.1016/j.egyr.2023.03.046.
- Wróbel, K.; Serkies, P.; Szabat, K. Model Predictive Base Direct Speed Control of Induction Motor Drive—Continuous and Finite Set Approaches. Energies 2020, 13, 1193. https://doi.org/10.3390/en13051193.
- Novak, M.; Xie, H.T.; Dragicevic, T.; Wang, F.X.; Rodríguez, J.; Blaabjerg, F. Optimal Cost Function
Parameter Design in Predictive Torque Control (PTC) Using Artificial Neural Networks (ANN). IEEE Trans. Ind. Electron. 2021, 68, 7309–7319. - Muddineni, V.P.; Bonala, A.K.; Sandepudi, S.R. Grey Relational Analysis‐Based Objective Function
Optimization for Predictive Torque Control of Induction Machine. IEEE Trans. Ind. Appl. 2021, 57, 835–844. - Y. Zhang, Z. Yin, W. Li, J. Liu and Y. Zhang, “Adaptive Sliding‐Mode‐Based Speed Control in Finite Control Set Model Predictive Torque Control for Induction Motors,” in IEEE Transactions on Power Electronics, vol. 36, no. 7, pp. 8076‐8087, July 2021, doi: 10.1109/TPEL.2020.3042181.
- Norambuena, M.; Rodríguez, J.; Zhang, Z.B.; Wang, F.X.; Garcia, C.; Kennel, R. A Very Simple Strategy for High‐Quality Performance of AC Machines Using Model Predictive Control. IEEE Trans. Power Electron. 2019, 34, 794–800.
- Mamdouh, M.; Abido, M.A. Efficient Predictive Torque Control for Induction Motor Drive. IEEE Trans. Ind. Electron. 2019, 66, 6757–6767
- Geyer, T. Algebraic tuning guidelines for model predictive torque and flux control. IEEE Trans. Ind. Appl. 2018, 51, 4464–4475.
- Mohamed Azab, Comparative Study of BLDC Motor Drive with Different Approaches: FCS‐Model
Predictive Control and Hysteresis Current Control, World Electric. Vehicle. Journal, MDPI. 2022, vol. 13, no. 7: 112, pp. 1‐22. MDPI, June 2022. https://doi.org/10.3390/wevj13070112. - X. Wang, H. Zhang, S. Sun, Y. Gao and B. Jin, “Energy Recovery and Utilization Efficiency Improvement for Motor‐Driven System Using Dynamic Energy Distribution Method,” in IEEE Transactions on Vehicular Technology, vol. 71, no. 10, pp. 10327‐10336, Oct. 2022, doi: 10.1109/TVT.2022.3187051.
- Y. Zhang, W. Yuan, R. Fu and C. Wang, “Design of an Energy‐Saving Driving Strategy for Electric Buses,” in IEEE Access, vol. 7, pp. 157693‐157706, 2019, doi: 10.1109/ACCESS.2019.2950390.
Y. Zhang, Y. Zhang, Z. Ai, Y. L. Murphey and J. Zhang, “Energy Optimal Control of Motor Drive System
for Extending Ranges of Electric Vehicles,” in IEEE Transactions on Industrial Electronics, vol. 68, no. 2, pp. 1728‐1738, Feb. 2021, doi: 10.1109/TIE.2019.2947841. - S. Wang, Q. Zhang, G. Kang, X. Fan, S. Zhang and J. Bao, “An Optimization Method for Improving
Efficiency of Electric Propulsion System of Electric Seaplane,” in IEEE Access, vol. 11, pp. 31052‐31061, 2023, doi: 10.1109/ACCESS.2023.3249293. - M. N. Almani, G. A. Hussain and A. A. Zaher, “An Improved Technique for Energy‐Efficient Starting and Operating Control of Single Phase Induction Motors,” in IEEE Access, vol. 9, pp. 12446‐12462, 2021, doi:10.1109/ACCESS.2021.3050920.
- V. R. Babu, T. Maity and G. Ramesh, “Speed Control and Optimum Efficiency of Induction Motor Driven Ventilation Fan in Mines,” 2019 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT), Coimbatore, India, 2019, pp. 1‐4, doi: 10.1109/ICECCT.2019.8869355
- Golsorkhi, M.S.; Binandeh, H.; Savaghebi, M. Online Efficiency Optimization and Speed Sensorless Control of Single‐Phase Induction Motors. Appl. Sci. 2021, 11, 8863. https://doi.org/10.3390/app11198863
- S. Nassiri, M. Labbadi, C. Chatri and M. Cherkaoui, “Optimal Efficiency Controller Design of Pumping
Systems,” 2024 American Control Conference (ACC), Toronto, ON, Canada, 2024, pp. 4493‐4498, doi:
10.23919/ACC60939.2024.10645052. - Shukla, N. K., Srivastava, R., & Mirjalili, S. (2022). A hybrid dragonfly algorithm for efficiency optimization of induction motors. Sensors, 22, 2594. https://doi.org/10.3390/s22072594
- Z. Ma and D. Sun, “Energy Recovery Strategy Based on Ideal Braking Force Distribution for Regenerative Braking System of a Four‐Wheel Drive Electric Vehicle,” in IEEE Access, vol. 8, pp. 136234‐136242, 2020, doi:10.1109/ACCESS.2020.3011563.
- Q. Xu, F. Wang, X. Zhang and S. Cui, “Research on the Efficiency Optimization Control of the Regenerative Braking System of Hybrid Electrical Vehicle Based on Electrical Variable Transmission,” in IEEE Access, vol.7, pp. 116823‐116834, 2019, doi: 10.1109/ACCESS.2019.2936370.
- S. Dabral, S. Basak and C. Chakraborty, “Regenerative Braking Efficiency Enhancement Using Pole‐
Changing Induction Motor,” in IEEE Transactions on Transportation Electrification, vol. 10, no. 3, pp. 7580‐7590, Sept. 2024, doi: 10.1109/TTE.2023.3331448. - [270] N. B. b. Ahamad, C. ‐L. Su, X. Zhaoxia, J. C. Vasquez, J. M. Guerrero and C. ‐H. Liao, “Energy
Harvesting From Harbor Cranes With Flywheel Energy Storage Systems,” in IEEE Transactions on Industry Applications, vol. 55, no. 4, pp. 3354‐3364, July‐Aug. 2019, doi: 10.1109/TIA.2019.2910495. - [271] M. Becker, M. Stender and O. Wallscheid, “Nonlinear Efficiency‐Optimal Model Predictive Torque Control of Induction Machines,” in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 12, no. 5, pp. 4740‐4753, Oct. 2024, doi: 10.1109/JESTPE.2024.3437739.
- https://new.abb.com/drives/dtc
- https://www.danfoss.com/en/about‐danfoss/our‐businesses/drives/
- https://www.deltaww.com/en‐US/products/AC‐Motor‐Drives/ALL/
- https://www.eaton.com/us/en‐us/products/controls‐drives‐automation‐sensors/variable‐frequency‐
drives.html - https://www.emotron.com/products/variable‐frequency‐drives‐vdf/
- https://www.fujielectric.com/products/drives_inverters/ac_drives_lv/index.html
- https://hitachiacdrive.com/
- https://www.inomaxtechnology.com/product‐category/motion‐control/variable‐frequency‐ drives/
- https://www.invertekdrives.com/
- https://emea.mitsubishielectric.com/fa/products/drv/inv
- https://acim.nidec.com/en/drives/control‐techniques/Products
- https://industrial.omron.eu/en/products/variable‐speed‐drives
- https://www.rockwellautomation.com/en‐gb/products/hardware/allen‐bradley/vfd.html
- https://www.se.com/us/en/product‐category/2900‐variable‐speed‐drives/
- https://www.siemens.com/us/en/products/drives/sinamics‐electric‐drives.html
- https://www.toshiba.com/tic/motors‐drives
https://www.weg.net/catalog/weg/US/en/Drives/Variable‐Speed‐Drives/c/GLOBAL_WDC_DRV_IF - https://www.yaskawa.com/products/drives/industrial‐ac‐drives
- https://literature.rockwellautomation.com/idc/groups/literature/documents/td/750‐td100_‐en‐p.pdf
- https://literature.rockwellautomation.com/idc/groups/literature/documents/wp/drives‐wp002_‐en‐p.pdf
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
著作権と参考文献:
この要約は、Mohamed Ahmed Azab著の論文「高効率誘導電動機ドライブにおける最近の動向に関するレビュー」に基づいて作成されています。
論文出典: doi: 10.20944/preprints202412.1530.v2
この要約は上記の論文に基づいて要約を作成したものであり、著者の許可なく商業目的で使用することはできません。
Copyright © 2025 CASTMAN. All rights reserved.