この論文の紹介は、"CINDAS LLC" によって発行された "Aerospace and High Performance Alloys Database Ferrous • FeUH H-13 August 2008" に基づいて作成されました。
1. 概要:
- タイトル: 航空宇宙および高性能合金データベース 鉄 • FeUH H-13 (Aerospace and High Performance Alloys Database Ferrous • FeUH H-13)
- 著者: J. C. Benedyk
- 出版年: 2008年8月
- 発行ジャーナル/学会: CINDAS LLC
- キーワード: H-13 steel, AISI/UNS (T20813), composition limits, hot work steel, premium grades, superior grades, toughness, thermal fatigue resistance, alloying elements, microstructure, carbide size, carbide distribution, martensitic steel, air hardening, ultrahigh-strength steel, heat treatment, mechanical properties, airframe applications, landing gear applications, ultimate tensile strength, thermal shock resistance, austenitizing, tempering, secondary hardness, fracture toughness, fatigue strength, elevated temperatures, hydrogen embrittlement, corrosion-resistant coating, oxidation, vanadium content, vanadium carbides, wear resistance, homogenization, powder metallurgy, ingot metallurgy, hot work die, mold materials, nonferrous casting, ferrous casting, hot forming operations, molding of plastics, die casting dies, aluminum die casting, magnesium die casting, extrusion tools, containers, hot forging dies, stamping dies, hot shear blades, plastic molds, thermal fatigue, hot erosion, hot hardness, thermal shock resistance, water cooled dies, nitriding, hard coating, commercial designations, specifications, heat treatment, microstructure, annealing, normalizing, stress relieving, hardening, austenitization, quenching, tempering, stabilizing, retained austenite, nitriding, hardness, room temperature hardness, hot hardness, nitrided case hardness, forms and conditions available, melting and casting practice, physical properties, thermal properties, melting range, phase changes, thermal conductivity, thermal expansion, specific heat, thermal diffusivity, density, specific gravity, electrical properties, magnetic properties, emittance, damping capacity, chemical environments, general corrosion, stress corrosion, oxidation resistance, hydrogen resistance, corrosion/erosion by molten metal, liquid metal induced embrittlement resistance, solid metal induced embrittlement resistance, nuclear environment, mechanical properties, specified mechanical properties, NADCA H-13 207-97 H-13 Steel Acceptance Criteria, other H-13 Steel Acceptance Criteria, mechanical properties at room temperature, tension stress-strain diagrams, tensile properties, compression stress-strain diagrams, compression properties, impact, notch properties, fracture toughness, plane strain fracture toughness, mechanical properties at various temperatures, tensile properties, compression stress-strain diagrams, compression properties, impact, bending, torsion and shear, bearing, stress concentration, notch properties, fracture toughness, combined loading, ductile to brittle transition temperature, creep and creep rupture properties, fatigue properties, high-cycle fatigue, low-cycle fatigue, elastic properties, poisson’s ratio, modulus of elasticity, modulus of rigidity, tangent modulus, secant modulus, thermal fatigue properties, CWRU thermal fatigue test, IITRI thermal fatigue test, thermal fatigue tests of H-13 steel suppliers, fabrication, forming, hot working, forging, machining and grinding, joining, surface treating.



2. 抄録または序論
1.0 General
この中合金、マルテンサイト系、空冷硬化型、超高強度鋼は、組成、熱処理、および多くの特性において H-11 および H 11 Mod と類似しています。鋼種 H-11、H-11 Mod、および H-13 は、航空機および着陸装置の用途において重要な、優れた耐熱衝撃性を持ちながら 300 ksi の極限引張強度まで熱処理できる能力など、いくつかの特性を示します。これらの鋼種は通常、オーステナイト化し、空気、不活性ガス、油、または熱塩浴で冷却することにより硬化されます。焼戻しを行うと、焼戻し曲線に二次硬化の極大を示し、1050~1100F で二重または三重焼戻しを行うと、通常、高い室温極限引張強度 (220~250 ksi) と良好な破壊靭性および室温および高温での最大疲労強度を兼ね備えた高硬度 (44~48 Rc) を発現します。
H-13 鋼は、超高強度用途の構造用鋼としては H-11 Mod ほど一般的に使用されていませんが、入手可能性やわずかに優れた耐摩耗性、および H-13 のその他の特性が利点となる場合には H-11 Mod の代替として使用できます。
3. 研究背景:
研究トピックの背景:
- H-13 のような熱間工具鋼は、高温で硬度と強度を維持できる能力があるため、ダイカストおよび熱間成形において非常に重要です。
- H-13 は、アルミニウムおよびマグネシウムのダイカスト金型、押出工具、熱間鍛造およびスタンピング金型、熱間せん断刃、およびプラスチック金型に最適な材料です。
- 主要な特性には、熱疲労、熱エロージョン、耐摩耗性、および 1000F 以上の温度での熱間硬度保持能力が含まれます。
- 良好な耐熱衝撃性により、金型と工具は使用中に内部水冷が可能です。
- 耐摩耗性を向上させるために、窒化や硬質コーティングなどの表面処理が使用されます。
既存研究の現状:
- プレミアムグレードおよびスーペリアグレードの H-13 は、組成が制御され、微細構造が改良されており、靭性と熱疲労抵抗が向上しています。
- 粉末/粒子冶金グレードは、従来のインゴット冶金 H-13 鋼と比較して、炭化物と硫化物の分布が大幅に改良されており、特性が向上しています。
- 研究では、オーステナイト化温度 (1950F および 2050F) が、熱応力サイクル下での軟化抵抗の増加により、熱疲労抵抗の向上に及ぼす影響が調査されています。
- NADCA は、ダイカスト金型に使用されるプレミアムグレードおよびスーペリアグレードの H-13 の組成と微細組織の清浄度限界を指定しています。
研究の必要性:
- さまざまな用途において費用対効果の高い鋼種を選択するには、適切な H-13 鋼種を選択することが重要です。
- H-13 の熱処理と微細構造を理解することは、ダイカストや熱間成形などの要求の厳しい用途でその性能を最適化するために不可欠です。
- 室温および高温での H-13 の機械的特性および物理的特性を特性評価することは、適切な材料選択と用途設計に必要です。
- 窒化やコーティングなどの表面処理を調査することは、耐摩耗性と耐食性を向上させ、H-13 金型と工具の耐用年数を延ばすために重要です。
4. 研究目的と研究課題:
研究目的:
本論文は、主にダイカストおよび熱間工具用途を対象として、H-13 ダイ鋼の特性、熱処理、製造、および性能特性に関する包括的なハンドブックレベルの概要を提供することを目的としています。
キーリサーチ:
- H-13 鋼種の化学組成、市販名、および仕様。
- 焼鈍、応力除去、硬化 (オーステナイト化および焼入れ)、焼戻し、および安定化を含む熱処理手順、ならびにそれらが微細構造と硬度に及ぼす影響。
- 熱伝導率、熱膨張、比熱、密度、弾性率などの物理的特性。
- 室温および高温での機械的特性 (引張強度、降伏強度、硬度、衝撃靭性、破壊靭性、疲労特性、クリープ抵抗など)。
- 成形、機械加工、研削、溶接、表面処理などの製造面。
- 一般腐食、応力腐食、酸化、溶融金属接触、熱疲労などのさまざまな環境での性能。
研究仮説:
- より高いオーステナイト化温度 (1950F~2050F) は、従来の 1850F オーステナイト化と比較して、H-13 鋼の熱疲労抵抗を向上させます。
- 制御された組成と改良された微細構造を持つプレミアムグレードおよびスーペリアグレードの H-13 鋼は、靭性と熱疲労抵抗が向上しています。
- 窒化や PVD コーティングなどの表面処理は、H-13 金型と工具の耐摩耗性、耐食性、および熱疲労寿命を向上させます。
- 応力促進焼戻しは、高温と応力が関与する使用条件下での H-13 鋼の硬度と性能に影響を与えます。
5. 研究方法
研究デザイン:
本論文は、H-13 ダイ鋼に関する既存の文献、仕様、および研究結果をまとめた記述的レビューです。ハンドブック、技術論文、材料仕様、および研究報告書からのデータに基づいています。
データ収集方法:
データは以下から収集されました。
- Metals Handbooks
- HEAT TREATER’S GUIDE
- NADCA 規格
- 鋼鉄メーカー (Allegheny Ludlum、Assab Steels、Bohler-Uddeholm、Carpenter、Crucible、Latrobe、ThyssenKrupp、International Mold Steel、MetalTek、Osprey Metals、GM Powertrain Group、FORD) の材料データシート
- 研究出版物および報告書 (Ph.D. Thesis、SDCE International Die Casting Congress papers、Die Casting Research Foundation reports、IIT Research Institute reports、TPTC Confidential Reports、ジャーナル記事)。
分析方法:
本論文では、さまざまな情報源からの情報を統合および整理して、H-13 鋼の包括的な概要を提供しています。表、図、および説明文を使用して、組成、特性、熱処理、および性能に関するデータを提示しています。分析は主に定性的であり、報告されたデータと傾向の要約と説明に焦点を当てています。定量的分析は、特性値や図からのグラフデータなど、引用された情報源から直接提示されたデータに限定されています。
研究対象と範囲:
本論文の対象は、H-13 熱間ダイ鋼です。範囲には以下が含まれます。
- 化学組成、名称、および仕様。
- 熱処理と微細構造。
- 物理的、機械的、および環境的特性。
- 製造および接合方法。
- ダイカストおよび熱間工具用途での性能。
6. 主な研究結果:
主な研究結果:
- 組成と鋼種: 標準グレードおよびプレミアム/スーペリアグレードの H-13 鋼は、AISI/UNS (T20813) および制御された不純物 (P、S) および合金元素を含む修正組成によって定義されます。表 1.4.1、1.4.2、および 1.4.3 に、これらの組成と介在物限度を詳細に示します。
- 熱処理: 焼鈍、応力除去、硬化 (オーステナイト化および焼入れ)、焼戻し手順は、目的の特性を達成するために重要です。図 1.5.4.1、1.5.5.1、1.5.5.2、1.5.5.3、1.5.5.8、1.5.8.1、1.5.8.2、1.5.8.3、1.5.8.4、1.5.8.6、および 1.5.8.7、および表 1.6.1.1、1.6.1.2、1.6.1.3、1.6.1.4、1.5.11.2、1.6.3.1 は、熱処理サイクル、相変態図、焼戻し曲線、および窒化ケース特性を示しています。
- 微細構造: 焼鈍された微細構造は、球状化炭化物が分散したフェライトマトリックスで構成されています (図 1.5.2.1)。硬化および焼戻しされた微細構造は、微細炭化物が分散した焼戻しマルテンサイトです (図 1.5.8.7、1.5.8.8)。
- 硬度: 室温硬度は、熱処理と鋼種によって異なります (表 1.6.1.1、1.6.1.2、1.6.1.3、1.6.1.4、1.6.3.1)。熱間硬度と窒化ケース硬度も特性評価されています (図 1.6.2.1、1.6.2.4、表 1.6.2.2、1.6.2.3、1.6.3.1)。
- 機械的特性: 引張特性、衝撃靭性、および破壊靭性は、室温および高温で示されています (表 3.2.1.1、3.2.1.2、3.2.1.4、3.2.3.1、3.2.3.2、3.2.3.3、3.3.1.4、3.3.3.1、図 3.2.1.3、3.2.7.1.1、3.2.7.2.2、3.2.7.2.3、3.2.7.2.4、3.2.7.2.5、3.2.7.2.6、3.3.1.1、3.3.1.2、3.3.1.3、3.3.3.2、3.3.3.3、3.3.3.4、3.3.3.5、3.3.7.2.2、3.3.7.2.4、3.3.7.2.5、3.3.9.1)。
- 熱疲労: CWRU および IITRI 熱疲労試験は、オーステナイト化温度、鋼種、および熱処理が熱疲労抵抗に及ぼす影響を示しています (図 3.7.1.3、3.7.1.4、3.7.2.5、3.7.3.1、3.7.3.4、3.7.3.5、表 3.7.1.5、3.7.3.2)。
- 腐食と摩耗: 窒化と PVD コーティングは、特に溶融アルミニウムに対する耐食性と耐摩耗性を向上させます (図 2.3.1.1、2.3.3.1、2.3.3.2、2.3.5.1、2.3.5.5、表 1.5.11.2、1.6.3.1)。
- 物理的特性: 熱伝導率と熱膨張データは表 2.1.3.1、2.1.3.2、2.1.4.1、2.1.4.2、2.1.4.3、2.1.4.4 に、密度は表 2.2.1.1 に示されています。
提示されたデータの分析:
- 熱処理の最適化: より高いオーステナイト化温度 (1950~2050F) は、一般に熱疲労と熱間硬度を向上させますが、結晶粒径が増加する可能性があります (図 1.5.5.4、1.5.5.5、1.5.5.6、3.7.1.3)。二重または三重焼戻しは、最適な靭性と寸法安定性を達成するために重要です (図 1.5.4.1、1.5.8.4、表 1.5.8.10)。
- 鋼種選定: プレミアムグレードおよびスーペリアグレードは、制御された組成と精製プロセスにより特性が向上しており、ダイカスト金型などの重要な用途での使用を正当化します (表 1.4.2、1.4.3、図 3.3.9.1、3.7.3.1、3.7.3.4、3.7.3.5)。
- 表面処理の利点: 窒化と PVD コーティングは、表面硬度、耐摩耗性、および耐食性を大幅に向上させ、特に溶融アルミニウムとの接触において、H-13 金型と工具の寿命を延ばします (図 1.5.11.1、2.3.5.1、2.3.5.5、表 1.5.11.2、1.6.3.1)。
- 応力と温度の影響: 応力促進焼戻しと熱疲労は、熱間加工用途において重要な考慮事項であり、硬度と破壊メカニズムに影響を与えます (図 1.5.9.3、1.5.9.4、1.5.9.5、3.7.2.5)。
図の名前リスト:
- Figure 1.5.2.1 Annealed quality “AS” microstructure chart for annealed H-13 steel showing acceptable (AS1-AS9) and unacceptable (AS10-AS18) microstructures according to NADCA—all microstructures at 500x and etched with 5% Nital (Ref. 4)
- Figure 1.5.2.2 Banding microsegregation chart for annealed H-13 steel blocks showing acceptable and unacceptable microstructures according to NADCA—all microstructures at 50x and etched with Villella’s reagent (Ref. 4)
- Figure 1.5.4.1 Schematic of NADCA—recommended austenitizing, quenching, and tempering heat treatment cycle for H-13 steel (Ref. 4)
- Figure 1.5.5.1 Isothermal phase transformation diagram for H-13 steel (0.40 C, 1.05 Si, 5.00 Cr, 1.35 Mo, 1.10V) austenitized at 1850F (Ref. 3)
- Figure 1.5.5.2 Time-temperature transformation diagram for premium grade H-13 steel (Thyrotherm 2344 ESR Magnum, ThyssenKrupp Specialty Steels, Inc.) austenitized at 1870–1920F (Refs. 17, 18)
- Figure 1.5.5.3 Kinetics of bainite transformation for H-13 and H-11 steels compared at given austenitizing temperatures (Ref. 29)
- Figure 1.5.5.4 ASTM grain size versus austenitizing temperature for H-13 steel and air cooled for 0.5-in. cube samples soaked at temperature for 25–80 minutes (Ref. 28)
- Figure 1.5.5.5 Volume % carbide (95% confidence interval) in the as-quenched condition of air cooled (AC) small sections and larger 6- and 12-in rounds of H-13 steel as a function of austenitizing temperature for given soak times (Ref. 28)
- Figure 1.5.5.6 As-quenched hardness as a function of austenitizing temperature of air cooled (AC) small sections and larger 6- and 12-in rounds of H-13 steel for given soak times (Ref. 28)
- Figure 1.5.5.7 As-Quenched microstructure for H-13 steel showing moderate carbide precipitation at grain boundaries and finely dispersed carbides in matrix (Ref. 30)
- Figure 1.5.5.8 Continuous cooling transformation diagram for H-13 steel austenitized at 1970F showing cooling curves A through E (Ref. 30)
- Figure 1.5.8.1 Hardness variation with tempering temperature for H-13 steel air cooled from 1875F and tempered 2 h at temperature (Ref. 1)
- Figure 1.5.8.2 Hardness as a function of tempering temperature for H-13 steel austenitized at 1850F and 1800F, air cooled, and double tempered (Ref. 3)
- Figure 1.5.8.3 Hardness as a function of tempering temperature for H-13 steel austenitized at 1950F and 1800F, air cooled, and tempered for 2 h (Ref. 3)
- Figure 1.5.8.4 Tempering curve (double tempered 2 h + 2 h) for H-13 steel after air quenching (AC) 0.5-in. square samples from 1875, 1950, and 2050F (Ref. 28)
- Figure 1.5.8.5 Master tempering parameter curve for H-13 steel hardened by austenitizing at 1750–1950F and quenching (Ref. 4)
- Figure 1.5.8.6 Time-temperature tempering diagram for H-13 steel hardened by austenitizing at 1875F (Ref. 32)
- Figure 1.5.8.7 Acceptable microstructures (500x, 5% Nital etch) of H-13 steel properly heat treated by austenitizing, quenching, and tempering as per NADCA acceptance criteria (numbering HS1-HS9 does not denote a quality ranking as all are acceptable) (Ref. 4)
- Figure 1.5.8.8 Typical microstructure from the center of a six-inch-thick H-13 steel die hardened commercially in a vacuum furnace at 1850F and double tempered (2 h at 1050F + 2 h at 1100F) (Ref. 30)
- Figure 1.5.8.9 Dimensional change of H13 steel in a 1 x 2 x 6 in. block versus tempering temperature (Ref. 3)
- Figure 1.5.9.1 Variable section creep specimen used to study stress accelerated tempering of H-13 steel as reported in Figures 1.5.9.2–1.5.9.5 (Ref. 25)
- Figure 1.5.9.2 Tempering curves for H-13 steel constructed from unstressed section of test specimen shown in Figure 1.5.9.1 (Ref. 25)
- Figure 1.5.9.3 Hardness change (microhardness surveys converted to Rockwell C) in H-13 steel measured along variable section creep specimen shown in Figure 1.5.9.1 due to stress accelerated tempering at 1000F (Ref. 25)
- Figure 1.5.9.4 Hardness change (microhardness surveys converted to Rockwell C) in H-13 steel measured along variable section creep specimen shown in Figure 1.5.9.1 due to stress accelerated tempering at 1050F (Ref. 25)
- Figure 1.5.9.5 Hardness change (microhardness surveys converted to Rockwell C) in H-13 steel measured along variable section creep specimen shown in Figure 1.5.9.1 due to stress accelerated tempering at 1100F (Ref. 25)
- Figure 1.5.11.1 Cross-sectional optical micrographs of gas nitrided, ion nitrided, and salt bath nitrided H-13 steel after austenitization at 1890F and triple tempering (70X magnification) (Ref. 34)
- Figure 1.5.11.3 Gas nitrided case (24 h at 975F) produced on H-13 steel that was austenitized at 1890F, triple tempered at 950F, and surface activated in manganese phosphate (300X magnification) (Ref. 35)
- Figure 1.6.1.5 Room temperature hardness or “red hardness” of H-13 steel hardened and tempered as indicated after exposure to elevated temperatures for 4-100 h (Ref. 36)
- Figure 1.6.1.6 Tempering curves of H-13 steel air quenched after austenitizing at 1750, 1850, and 2050F showing hardness (Rc or HRC) as a function of time at a tempering temperature of 1100F (Ref. 22)
- Figure 1.6.1.7 Tempering curves for H-13 steel air quenched after austenitizing at 1750, 1850, and 2050F, tempering to 45 HRC, and showing hardness (Rc or HRC) as a function of time at a tempering temperature of 1000F (Ref. 22)
- Figure 1.6.2.1 Typical hot hardness of H-13 steel for specimens oil quenched from 1850F and double tempered 2 + 2 h at indicated tempering temperature (Ref. 37)
- Figure 1.6.2.4 Effect of temperature on hot Brinell hardness (HB) of hardened (austenitized and quenched, untempered) H-13 steel (Ref. 44)
- Figure 2.3.1.1 Potentiodynamic polarization curves of AISI H-13 steel measured in a 3.5% NaCl solution at pH = 6 on an (…) untreated sample, (----) nitrogen plasma immersion ion implantation (PIII) processed sample (T=300C, t=12 h), and (—) nitrogen PIII processed sample (T=450C, t=9 h) (Ref. 45)
- Figure 2.3.3.1 Comparative oxidation resistance of H-13 and maraging steels at 1000F (Ref. 46)
- Figure 2.3.3.2 Cross sectional view of oxide buildup in thermal fatigue crack in hardened H-13 steel specimen: (a) 50x, nital etch and (b) 500x, nital etch (Ref. 22)
- Figure 2.3.5.1 Variations in corroded/eroded depth of immersion test specimens of hardened and tempered H-13 steel as heat treated and machined and separately nitrided by gas or ion nitriding maintained in a molten Al-Si-Cu (KS ALDC) aluminum alloy at 1300F for 43 h (Ref. 47)
- Figure 2.3.5.2 Schematic diagram of accelerated washout testing arrangement at Case Western Reserve University (CWRU) with molten aluminum alloy injected into die cavity at ~70 in/s (Ref. 48)
- Figure 2.3.5.3 Test pin design and position within die cavity of CWRU accelerated washout test arrangement shown in Figure 2.3.5.2 (Ref. 48)
- Figure 2.3.5.4 Microstructural cross sections (500x) PVD coated pin specimens tested in CWRU accelerated washout arrangement shown in Figure 2.3.5.2 (Ref. 48)
- Figure 2.3.5.5 Effect of various types of PVD coatings shown in Figure 2.3.5.4 on washout resistance of H-13 steel die casting core pins in CWRU accelerated washout test shown in Figures 2.3.5.2 and 2.3.5.3 (Ref. 48)
- Figure 2.3.6.1 Schematic drawing of TPTC U-bend liquid zinc embrittlement test procedure conducted on H-13 steel plate specimens: original annealed specimen bent into U-shape, heat treated, bent to an incipient plastic flow condition at a displacement of Δd (left), displacement held by fastener, and immersed in a molten zinc bath (right) (Ref. 50)
- Figure 2.3.6.2 Liquid zinc embrittlement TPTC U-bend test data (Y-axis: time to fracture in hours; X-axis: test conditions as shown in Figure 2.3.6.1) conducted on H-13 steel plate specimens (Ref. 50)
- Figure 3.2.7.1.1 Effect of notch radius on the impact strength of Izod type specimens of H-13 steel heat treated to 48 Rockwell C and tested at room temperature (Ref. 61)
- Figure 3.2.7.2.2 Room temperature plane strain fracture toughness (KIc) of small and large size specimens of H-13 steel versus austenitizing temperature (a) and tempered hardness (b) after all specimens were double tempered at 1100F (2 + 2 h) for austenitizing soak times and cooling conditions given (25 min soak and air quench for small specimens and 50 and 60 min soak and simulated laboratory quench for 6- and 12-in. rounds) (Ref. 28)
- Figure 3.2.7.2.3 Variation of room temperature plane strain fracture toughness KIc of heat treated H13 steel, austenitized at 1870F for 30 min, quenched at various rates, and tempered to 44 HRC, as a function of quench rate (Ref. 76)
- Figure 3.2.7.2.4 Charpy V-notch (CVN) impact values of H13 steel quenched at various rates after austenitizing at 1870F for 30 min and tempered to 44 HRC (Ref. 76)
- Figure 3.2.7.2.5 Correlation between (KIc/σys)2 and CVN/σys at room temperature for H13/H11 steels (Ref. 77)
- Figure 3.2.7.2.6 Experimental values of KIc at room temperature compared with values of KIc calculated from CVN and HRC data at room temperature (see linear regression relationship in 3.2.7.2) for H13 and H11 steels (Ref. 77)
- Figure 3.3.1.1 Effect of elevated temperature on tensile strength of H-13 steel heat treated to room temperature Rockwell C (HRC) hardness values given (Ref. 44)
- Figure 3.3.1.2 Effect of elevated temperature (C x 1.8 + 32 = F) on tensile and 0.2 yield (creep limit) strength (N/mm2 x 0.145 = ksi) and reduction in area of H-13 steel heat treated to room temperature strength level given (Ref. 17)
- Figure 3.3.1.3 Flow stress (determined from modified Johnson-Cook model of flow stress and tuned by OXCUT computer program and experimental data from lathe machining experiments) of H-13 steel at temperatures of 800–1200C (1472-2192F) and strain rates of 6 x 103 – 9 x 105 1/s for H-13 steel originally at 46 Rockwell C (HRC) hardness (MPa x 0.145 = ksi) (Ref. 57)
- Figure 3.3.3.2 Longitudinal Charpy V-notch impact resistance versus austenitizing temperature for H-13 steel specimens austenitized for treatment times given, air quenched (small size specimens) or cooled to simulated quenching of 6- and 12-in. rounds, double tempered at 1000F (2 + 2 h), and subsequently tested at room temperature and 800F (Ref. 28)
- Figure 3.3.3.3 Longitudinal Charpy V-notch impact resistance versus austenitizing temperature for H-13 steel specimens austenitized for treatment times given, air quenched (small size specimens) or cooled to simulated quenching of 6- and 12-in. rounds, double tempered at 1100F (2 + 2 h), and subsequently tested at room temperature and 800F (Ref. 28)
- Figure 3.3.3.4 Longitudinal Charpy V-notch impact resistance versus austenitizing temperature for H-13 steel specimens austenitized for treatment times given, air quenched (small size specimens) or cooled to simulated quenching of 6- and 12-in. rounds, double tempered at 1150F (2 + 2 h), and subsequently tested at room temperature and 800F (Ref. 28)
- Figure 3.3.3.5 Longitudinal Charpy V-notch impact resistance versus tempered hardness for H-13 steel specimens austenitized at 1875, 1950, and 2025F for soak times given, air quenched (small size specimens) or cooled to simulated quenching of 6- and 12-in. rounds, tempered, and subsequently tested at 800F (Ref. 28)
- Figure 3.3.7.2.1 Figure] Short rod (chevron-notch) fracture toughness specimen used to obtain data shown in Figure 3.3.7.2.2 with shaded area denoting crack advance increment (Refs. 78, 79)
- Figure 3.3.7.2.2 [Figure] Temperature dependence of KIc (K-Iv ~ KIc) of H13 steel, VASCO MA ultrahigh strength steel, M 50 high temperature bearing steel, and S 2 tool steel used for drill bit bearings (SOLAR STEEL) (heat treatment and room temperature property data on these steels presented in Table 3.3.7.2.3) (Ref. 78)
- Figure 3.3.9.1 Representation of DBTT curves based on Charpy V-notch (CVN) tests of low quality and high quality H-13 tool steels heat treated as per NADCA 207-97 (3.1.1) (Ref. 60)
- Figure 3.4.1 Creep characteristics of H-13 steel heat treated to 216 ksi room temperature tensile strength (~44–46 HRC): strain duration in h (to 1% creep limit – left or creep rupture – right) as a function of stress (N/mm2 x 0.145 = ksi) at temperatures (C x 1.8 + 32 = F) indicated (Ref. 17)
- Figure 3.5.1.1 Fatigue strength (N/mm2 x 0.145 = ksi) of smooth and notched specimens tested at room temperature in fully reversed tension-compression (R = -1) of hardened H-13 steel in relation to microstructural homogeneity achieved by electric arc air melted, ESR, and special treatment (patented Isodisc process) (Ref. 38)
- Figure 3.5.1.2 [Figure] Tension-tension (R = +0.2) fatigue curves determined at 60 Hz for longitudinal specimens of air melted () and ESR () heats of H-13 steel in the hardened condition (austenitized at 1850F, oil quenched, and double tempered 2 + 2 h at 1090F to 48 HRC hardness) (Ref. 62)
- Figure 3.5.1.3 [Figure] Fully reversed tension-compression (R = -1) fatigue curves determined at 60Hz for longitudinal ( – ESR, – air melted) and transverse ( – ESR, – air melted) H-13 steel in the hardened condition (austenitized at 1850F, oil quenched, and double tempered 2 + 2 h at 1090F to 48 HRC hardness) (Ref. 62)
- Figure 3.7.1.1 [Figure] Schematic drawing of CWRU thermal fatigue test used in studying H-13 thermal fatigue and heat checking resistance showing apparatus used to dip specimen into molten A380 aluminum at 1300F (upper) and water cooled H-13 steel test specimen (lower) (Refs. 22–24, 48)
- Figure 3.7.1.2 [Figure] Thermal cycle used in determining thermal fatigue resistance of H-13 steel in the CWRU test for different austenitizing temperatures (Figure 3.7.1.3) and various types and grades of H-13 steel (Figure 3.7.1.4) (Refs. 22–24)
- Figure 3.7.1.3 [Figure] Thermal fatigue behavior in the CWRU test (Figure 3.7.1.1) of H-13 steel austenitized at 1750, 1850, 1950, and 2050F, air quenched, and all tempered to 45 Rc (HRC) showing average maximum crack length in microns (μ) (upper) and summation of total crack area (lower) as a function of number of cycles (Refs. 22–24)
- Figure 3.7.1.4 [Figure] Thermal fatigue behavior in the CWRU test (Figure 3.7.1.1) of various types and grades of H-13 steel austenitized at 1850F, air quenched, and all tempered at 1100F to 45 Rc (HRC) showing average maximum crack length in microns (μ) (upper) and summation of total crack area (lower) as a function of number of cycles (Refs. 22–24)
- Figure 3.7.2.1 [Figure] Heating and cooling curves for H-13 steel during a short cycle of thermal cycling between 1100 and 400F in the IITRI thermal fatigue test (Refs. 25, 66)
- Figure 3.7.2.3 [Figure] Number of cycles to crack initiation of H-13 steel in IITRI thermal fatigue test according to the cycle shown in Figure 3.7.2.1 as a function of cleanliness of the steel as rated by the number of +4 mm oxide inclusions at 320x magnification in 40 random fields (Ref. 66)
- Figure 3.7.2.4 [Figure] Heating and cooling curves for H-13 steel during a long cycle of thermal cycling between 1100 and 400F in the IITRI thermal fatigue test (Ref. 25)
- Figure 3.7.2.5 [Figure] Tempering of IITRI thermal fatigue fins (HRC hardness noted on fins) during short and long thermal cycling for 250–16,000 cycles (Ref. 25)
- Figure 3.7.3.1 [Figure] Thermal fatigue data from Crucible Steel Co. test (alternate immersion of square specimens in molten A380 aluminum at 1250F and quenching in a water bath at 200F with examination for cracks every 10, 000 cycles) (Ref. 43)
- Figure 3.7.3.3 [Figure] Thermal fatigue testing apparatus of EWK/Thyssen Krupp Specialty Steel: Ar atmosphere to avoid corrosion, induction heating to 1200F, water bath maintained at or near room temperature and at a pH = 10.5 to improve wetting, 2 x 2 x 0.40 in. H-13 steel samples cut from 30 x 8 in. forged slabs in transverse direction and rough machined, samples were hardened and tempered to 44–46 HRC and ground to a fine finish (Ref. 68)
- Figure 3.7.3.4 [Figure] Total crack length measured on samples of a superior grade of AISI H-13 (Thyrotherm 2344 EFS Supra) and a modified grade of H-13 (Thyrotherm 2367 EFS Supra) heat treated to 44–46 HRC and tested in the EWK/Thyssen Krupp Specialty Steel thermal fatigue apparatus shown in Figure 3.7.3.3 (Ref. 68)
- Figure 3.7.3.5 [Figure] Microscopic evaluation at 200x of some thermal fatigue cracks developed in samples (Figure 3.7.3.4) from the EWK/Thyssen Krupp Specialty Steel thermal fatigue test (Figure 3.7.3.3) (Ref. 68)
7. 結論:
主な調査結果の要約:
- H-13 鋼は、優れた耐焼戻し性、熱間硬度、および耐熱衝撃性により、ダイカストおよび熱間成形に広く使用されている汎用性の高い熱間工具鋼です。
- 最適な熱処理、特にオーステナイト化と焼戻しは、目的の機械的特性と性能を達成するために不可欠です。より高いオーステナイト化温度は、熱疲労抵抗を向上させることができます。
- プレミアムグレードおよびスーペリアグレードは、粉末冶金ルートとともに、従来の H-13 鋼と比較して特性が向上しています。
- 窒化や PVD コーティングなどの表面処理は、耐摩耗性と耐食性を向上させるのに効果的であり、工具寿命を延ばします。
- 応力促進焼戻しと熱疲労挙動を理解することは、要求の厳しい用途における H-13 部品の耐用年数を予測および改善するために不可欠です。
研究の学術的意義:
- 本論文は、H-13 鋼に関するデータと研究結果を包括的にまとめたものであり、材料科学および製造工学の専門家や研究者にとって貴重なリソースとして役立ちます。
- H-13 鋼の組成、熱処理、微細構造、特性、および性能間の複雑な相互作用を強調し、熱間工具鋼技術におけるさらなる研究開発のための洞察を提供します。
- 熱疲労試験方法論 (CWRU、IITRI、およびサプライヤー固有の試験) の詳細なレビューは、金型材料の熱疲労評価の理解と標準化に貢献しています。
実践的な意味合い:
- 提示された情報は、H-13 鋼工具の十分な情報に基づいた材料選択と熱処理設計を支援し、ダイカスト、鍛造、押出、および成形用途での性能を最適化し、耐用年数を延ばします。
- オーステナイト化温度や焼入れ速度などの加工パラメータの影響を理解することで、特定の用途要件を満たすように調整された熱処理が可能になります。
- 表面処理のレビューは、耐摩耗性と耐食性を向上させ、製造プロセスのダウンタイムを削減し、生産性を向上させるためのガイダンスを提供します。
- さまざまな温度での機械的特性および物理的特性に関するデータは、H-13 工具およびコンポーネントの正確な設計とシミュレーションに不可欠です。
研究の限界と今後の研究分野:
- 本論文は、既存の文献とデータの要約であり、オリジナルの実験的研究ではありません。
- 分析の深さは、レビューされた文書の範囲によって制限されます。
- 今後の研究では、以下が必要です。
- 産業用ダイカストおよび熱間成形環境における高度な H-13 グレードおよび表面処理の長期性能を調査する。
- H-13 鋼の熱疲労および応力促進焼戻しに関するより正確な予測モデルを開発する。
- 強化された H-13 鋼特性のための粉末冶金加工および合金化戦略を最適化する。
- さまざまな研究およびサプライヤー間でデータ比較可能性を向上させるために、熱疲労試験方法を標準化する。
8. 参考文献:
- 1. Metals Handbook Ninth Edition. Volume 1. Properties and Selection: Irons and Steels, American Society for Metals (now ASM International), 1978, pp. 437–39.
- 2. Metals Handbook Ninth Edition. Volume 3. Properties and Selection: Stainless Steels, Tool Materials and Special-Purpose Metals, American Society for Metals (now ASM International), 1980, pp. 421–69.
- 3. HEAT TREATER’S GUIDE: Practices and Procedures for Irons and Steels, ASM International, 2nd Ed., 1998, pp. 600-605.
- 4. Premium and Superior Quality H-13 Steel and Heat Treatment Acceptance Criteria for Pressure Die Casting Dies: NADCA #207-2003, North American Die Casting Association (NADCA), River Grove, Illinois, 2003.
- 5. Allegheny Ludlum H-13 Tool Steel, UNS T20813, DATA SHEET.
- 6. Assab Steels 8407 SUPREME Hot Work Steel, DATA SHEET.
- 7. Bohler-Uddeholm ORVAR H-13 Hot Work Tool Steel, DATA SHEET.
- 8. Bohler-Uddeholm SUPERIOR H-13 Hot Work Tool Steel, DATA SHEET.
- 9. Bohler-Uddeholm ISOBLOC H-13 Hot Work Tool Steel, DATA SHEET.
- Carpenter Pyrotough® 78 Hot Work Die Steel. DATA SHEET.
- Carpenter No. 883® Hot Work Die Steel (Red-Tough) (AISI H-13), DATA SHEET.
- Crucible Nu-Die® XL (Premium Quality AISI H-13) Tool Steel, DATA SHEET.
- International Mold Steel DH2F Pre-Hardened H-13-Type Mold Steel, DATA SHEET.
- International Mold Steel Premium H-13 Hot Work Die and Mold Steel, DATA SHEET.
- Latrobe LSS® H-13 Tool Steel, DATA SHEET.
- Latrobe VDC® H-13 Tool Steel, DATA SHEET.
- ThyssenKrupp Specialty Steels THYROTHERM 2344, DATA SHEET.
- ThyssenKrupp Specialty Steels THYROTHERM 2344 ESR MAGNUM, DATA SHEET.
- ThyssenKrupp Specialty Steels THYROTHERM 2367 SUPRA ESR, DATA SHEET.
- Premium Grade H-13/Hot Work Tool Material Standard Specification: Die Insert and Heat Treating Specification, Spec. No. DC-9999-1, GM Powertrain Group, 6-29-2001.
- Die Insert Material and Heat Treatment Performance Requirements: General Applications, Spec. No. AMTD DC2010, FORD Advanced Manufacturing Technology Development, 17 February 2003.
- Benedyk, J. C., Thermal Fatigue Behavior of H-13 Die Steels, Ph.D. Thesis, Case Western Reserve University, January, 1969.
- Benedyk, J. C., Moracz, D. J., and Wallace, J. F., “Thermal Fatigue Behavior of Die Materials for Aluminum Die Casting, ” Paper No. 111, 6th SDCE (Society of Die Casting Engineers) International Die Casting Congress, November 16–19, 1970.
- Dunn, R. P., “Thermal Fatigue Behavior of H-13 Steel & Other Die Materials for Aluminum Die Casting, ” Report of the Task Group on Materials & Surface Treatments for Dies, Die Casting Research Foundation 1969 Annual Meeting, October 8, 1969.
- Nolen, R. K., Benedyk, J. C., and Howes, M. A. H., Investigation of Strain Softening Occurring during Thermal Fatigue, Internal Research and Development Project Final Report on Project B1051, IIT Research Institute, October 23, 1969.
- Purohit, S. and Tszeng, C., “Carbide Dissolution in H-13 Tool Steel during Austenitization, ” TPTC (Thermal Processing Technology Center, Illinois Institute of Technology) Project Review, 2003.
- Pacyna, J. and Mazur, A., “The Influence of Grain Size upon the Fracture Toughness of the Hot-Work Tool Steel, ” Scandinavian J. of Metallurgy, No. 12, 1983, pp. 22–28.
- Schmidt, M. L., “Effect of Austenitizing Temperature on the Structure and Mechanical Property Behavior of Laboratory Treated Specimens and Large Section Sizes of H-13 Tool Steel, ” Paper No. G-T87-006, 14th SDCE (Society of Die Casting Engineers) International Die Casting Congress, May 11–14, 1987.
- Stuhl, J. H. and Schindler, A. M., “New Materials Study of 5% Chromium Type Steels for Use in Die Casting Dies, ” Paper No. G-T75-053, 8th SDCE (Society of Die Casting Engineers) International Die Casting Congress, May 17–20, 1975.
- Conybear, J. A., “Vacuum Hardening of H-13 Die Steels: Experience with Convective Assisted Heating and Isothermal Holding in Regard to Distortion and Metallurgical Properties, ” reprinted from Industrial Heating, August, 1993.
- Alloy Tool Steel SPEC FACTS A.I.S.I. H-13, DATA SHEET.
- Thelning, K. E., “How Far Can H-13 Die Casting Die Steel Be Improved, ” Paper No. 114, 6th SDCE (Society of Die Casting Engineers) International Die Casting Congress, November 16–19, 1970.
- Huffman, D. D. “Avoiding Retained Austenite in Tool Steels, ” Source Book on Heat Treating: Vol. II – Production and Engineering Practices, American Society for Metals (now ASM International), December, 1974, pp. 276–79.
- Y.-M. Rhyim, et al., “Effect of Surface Treatment on the Life of AISI H-13 Steel Core Pin for Die Casting, ” Key Engineering Materials, Vols. 326–28, 2006, pp. 1181–84.
- Metals Handbook Ninth Edition. Volume 9: Metallography and Microstructures, American Society for Metals (now ASM International), 1985, p. 228.
- Cremisio, R. S., Pridgeon, J. W., and Mills, D. W, Hot Work Materials Processing and Metallurgy for Hot Extrusion Applications, AJAX Forging and Casting Co., Allegheny Ludlum Industries Co., Ferndale, MI, 1977, pp. 24–25.
- Metals Handbook Ninth Edition. Volume 1. Properties and Selection: Irons and Steels, American Society for Metals (now ASM International), 1978, p. 440.
- Schindler, A. M., Kulmberg, A., and Stuhl, J. H., “Thermal Fatigue of H-13 in Die Casting Applications, ” Paper No. G-T77-065, 9th SDCE (Society of Die Casting Engineers) International Die Casting Congress, June 6–9, 1977.
- Metals Handbook Ninth Edition. Volume 9: Metallography and Microstructures, American Society for Metals (now ASM International), 1985, p. 271.
- MetalTek MTek T90813 H-13 Tool Steel, DATA SHEET.
- Osprey Metals H-13 Tool Steel Powder Grades, DATA SHEETS.
- Cremisio, R. S., Pridgeon, J. W., and Mills, D. W, Hot Work Materials Processing and Metallurgy for Hot Extrusion Applications, AJAX Forging and Casting Co., Allegheny Ludlum Industries Co., Ferndale, MI, 1977, pp. 4–13.
- Crucible CPM® Nu-Die® EZ, DATA SHEET, Issue #2.
- Engineering Properties of Steel: Hot Work Tool Steels, ASM International, 1982, pp. 457–62.
- da Silva, L. L. G., Ueda, M., and Nakazato, R. Z., “Enhanced Corrosion Resistance of AISI H13 Steel Treated by Nitrogen Plasma Immersion Ion Implantation, ” Surf. Coat. Techn., 201, 2007, pp. 8291–94.
- Hamaker, J. C. and Yates, D. H., “A Forward Look at the New Die Steels, ” Paper No. 1201, 4th SDCE (Society of Die Casting Engineers) International Die Casting Congress, November 14–17, 1966.
- Youn, K.-T., et al., “An Evaluation of Thermal Fatigue Cracking and Chemical Reaction in Die Casting Mould, ”Key Engineering Materials, Vols. 345-346, 2007, pp. 701–04.
- Test data and review of latest research on H-13 steel kindly provided by Prof. J. Wallace of CWRU.
- Kamdar, M. H., “Liquid-Metal Embrittlement, ” Metals Handbook. Volume 11. Failure Analysis and Prevention, ASM International, 1986, pp. 225–38.
- Kim, T., et al., “Liquid Zinc Embrittlement Study of H 13 Steel in Various Austenitized and Tempered Conditions, ” TPTC Confidential Report for Industrial Client (data kindly provided with permission), 2008.
- Kamdar, M. H., “Embrittlement by Solid-Metal Environments, ” Metals Handbook. Volume 11. Failure Analysis and Prevention, ASM International, 1986, pp. 239–44.
- Takao, et al., “Crack Initiation and Propagation Mechanism of Die for Extruding 7000 Series Alloy, ” Keikinzoku Fakkai Koen Gaiyo, 1993, Vol. 84, pp. 275–76 (in Japanese).
- Benedyk, J., et al., “Literature Survey on H-13 Extrusion Die Failure (I), ” TPTC Confidential Report for Industrial Client, 2003.
- Gordon, P., “Metal-Induced Embrittlement of Metals – An Evaluation of Embrittler Transport Mechanisms, ” Met. Trans. A, V. 9A, Feb., 1978, pp. 267–73.
- Kim, C. D, “Hydrogen-Damage Failures, ” Metals Handbook. Volume 11. Failure Analysis and Prevention, ASM International, 1986, pp. 245–51.
- Rosenfield, A. R. and Marshall, C. W., “Ductile-to Brittle Fracture Transition, ” Metals Handbook. Volume 11. Failure Analysis and Prevention, ASM International, 1986, pp.69, 100.
- Shatla, M., Kerk, C., and Altan, T., “Process Modeling in Machining. Part I: Determination of Flow Stress Data, ” International J. of Machine Tools & Manufacture, Vol. 41, 2001, pp. 1511–34.
- Crucible Nu-Die® V (AISI H-13) Tool Steel, Issue #13, DATA SHEET.
- Plane Strain Fracture Toughness (KIc) Data Handbook for Metals, Army Materials and Mechanics Research Center, Watertown, MA, December, 1973.
- Brada, G., “Effects of Quench Rate and Impact Test Temperature on the Toughness and Microstructure of H13, ” Die Casting Engineer, May, 2002, pp. 22–24.
- Huffman, D. D., “Aluminum Extrusion Tooling: Where Do We Stand?, ” International Extrusion Technology Seminar, 1969, paper no. 23.
- Philip, T.V., “ESR: A Means of Improving Transverse Mechanical Properties in Tool and Die Steels, ” Metals Technology, Dec., 1975, p. 554.
- Manson, S. S., Thermal Stress and Low-Cycle Fatigue, McGraw-Hill, 1966, pp. 125–91.
- Manson, S. S. and Halford, G., “A Method of Estimating High-Temperature Low-Cycle Fatigue Behavior of Materials, ” NASA Lewis Research Center, Cleveland, Ohio, January, 1967.
- Barrow, B. J., “The Thermal Fatigue Resistance of H-13 Die Steel for Aluminum Die Casting Dies, ” NASA Technical Memorandum 83331, NASA Lewis Research Center, Cleveland, Ohio, August, 1982.
- Rostoker, W., et al., The Metallurgy of Thermal Fatigue: Summary Report IV on Thermal Fatigue Resistance of Martensitic Steels, IITRI-B879-20, July 17, 1967.
- Alloy Tool Steel SPEC FACTS Premium Grade H-13, DATA SHEET.
- Ehrhardt, R., et al., “Improving the Heat Checking Characteristics of AISI H13 by Modification of the Chemical Composition, ” Die Casting Engineer, Nov., 2003, pp. 30–37.
- Metals Handbook Ninth Edition. Vol. 16. Machining, ASM International, 1989, pp. 712–26.
- Metals Handbook Ninth Edition. Vol. 16. Machining, ASM International, 1989, pp. 557–64)
- Bosheh, S. S. and Mativenga, P. T., “White Layer Formation in Hard Turning of H13 Tool Steel at high Cutting Speeds Using CBN Tooling, ” International J. of Machine Tools & Manufacture, Vol. 46, 2006, pp. 225–33.
- Metals Handbook Ninth Edition. Vol. 16. Machining, ASM International, 1989, pp. 514–19)
- Extrusion Dies & Tooling Manual: Recommended Handling and Maintenance, Aluminum Extruders Council, pp. 16-17.
- Björk, T., Westergård, R., and Hogmark, S., “Wear of Surface Treated Dies for Aluminium Extrusion – A Case Study, ” Wear, Vol. 249, 2001, pp. 316–23.
- Müller, K. B., “Deposition of Hard Films on Hot Working Steel Dies for Aluminium, ” J. of Materials Processing Technology, Vols. 130-131, 2002, pp. 423–37.
- Okuno, T., “Effect of Microstructure on the Toughness of Hot Work Tool Steels, H13, H10, H19,” Tran. ISIJ, Research Article, Vol. 27, 1987, pp. 51–59.
- Leskovšek, V., “Correlation Between the KIc,the HRC and the Charpy V-Notch Test Results for H11/H13 Hot work Tool Steels at Room Temperature,” Steel Research Int., Vol. 79, No. 4, 2008, pp. 306–13.
- Barker, L. M. and Leslie, W. C.,” Short Rod KIc Tests of Several Steels at Temperatures to 700K,” Fracture 1977, Vol. 2, ICF4, Waterloo, Canada, June 19–24, 1977, MS311, pp. 305–11.
- ASTM E 1304: Standard Test Method for Plane-Strain (Chevron-Notch) Fracture Toughness of Metallic Materials.
- Qamar, S. Z., et al., “Regression-based CVN-K-Ic Models for Hot Work Tool Steels,” Mater. Sci. and Eng., Vol. A 430, 2006, pp. 208–15.
9. 著作権:
- この資料は、"Author: J. C. Benedyk" 氏の論文です: "Aerospace and High Performance Alloys Database Ferrous • FeUH H-13 August 2008" に基づいています。
- 論文ソース: [ドキュメントに記載なし]
この資料は上記の論文に基づいて要約されたものであり、商業目的での無断使用は禁止されています。
Copyright © 2025 CASTMAN. All rights reserved.