Development of High-Ductility and Low-Hot-Tearing-Susceptibility Non-heat Treatment Al–Mg–Mn-Based Die Casting Alloy for Automotive Structural Parts

International Journal of Metalcasting (2023)Cite this article

Abstract

Non-heat-treated Al–Mg-based die casting alloys have been developed for the structural parts of automobiles. In previous studies, alloy compositions with at least 1.0%Si have been proposed to reduce the hot tearing susceptibility (HTS). On the other hand, the increase in the Si content reduces the ductility. For some automotive body structures, Al–Mg alloy die castings with Si content exceeding 1.0% should not have the required ductility. This study aims to develop an Al–Mg alloy with both high ductility and low HTS by investigating the following three characteristics of an Al–4.5Mg–1.0Mn alloy with 0.2%Si added: (1) additional elements to reduce the HTS, (2) the associated mechanical properties (requirements for the automotive company: 0.2% proof stress ≥ 140 MPa and fracture elongation ≥ 15%), and (3) the mechanism of decreasing the HTS. It was revealed that the co-addition of 0.025%Sr, 0.08%Ti, and 0.016%B reduced the HTS when the hydrogen content of the melt was 0.5–1.0 mL/100 g Al. Furthermore, the 0.2% proof stress and fracture elongation of a lower link arm produced via HPDC with the above composition were found to achieve the requirements. It was also indicated that the mechanism of decrease in the HTS by the Sr addition should result from the decrease in the thermal tensile load due to the formation of hydrogen porosity at a lower solid fraction than that without Sr. It is suggested that when 0.025%Sr, 0.08%Ti, and 0.016%B are added to the Al–4.5Mg–1.0Mn–0.2Si alloy, non-heat-treated automotive structural parts with both high ductility and low HTS will be obtained by high-pressure die casting.

This is a preview of subscription content, access via your institution.

References

  1. S. Ji, D. Watson, Z. Fan, M. White, Development of a super ductile diecast Al–Mg–Si alloy. Mater. Sci. Eng. A 556, 824–833 (2012). https://doi.org/10.1016/j.msea.2012.07.074Article CAS Google Scholar 
  2. L. Wan, Z. Hu, S. Wu, X. Liu, Mechanical properties and fatigue behavior of vacuum-assist die cast AlMgSiMn alloy. Mater. Sci. Eng. A 576, 252–258 (2013). https://doi.org/10.1016/j.msea.2013.03.042Article CAS Google Scholar 
  3. S. Ji, F. Yan, Z. Fan, Development of a high strength Al–Mg2Si–Mg–Zn based alloy for high pressure die casting. Mater. Sci. Eng. A 626, 165–174 (2015). https://doi.org/10.1016/j.msea.2014.12.019Article CAS Google Scholar 
  4. L. Yuan, P. Han, G. Asghar, B. Liu, B. Hu, P. Fu, L. Peng, Development of high strength and toughness non-heated Al–Mg–Si alloys for high-pressure die-casting. Acta Metall. Sinica 34, 845–860 (2021). https://doi.org/10.1007/s40195-020-01174-1Article CAS Google Scholar 
  5. H. Hosokawa, H. Iwasaki, M. Mabuchi, T. Tagata, K. Higashi, Effects of Si on deformation behavior and cavitation of coarse-grained Al–4.5Mg alloys exhibiting large elongation. Acta mater. 47, 1859–1867 (1999). https://doi.org/10.1016/S1359-6454(99)00047-6Article CAS Google Scholar 
  6. J. Ito, S. Kitaoka, N. Oshiro, N. Nonaka, T. Koike, M. Yoshida, Influence of composition and thickness on mechanical properties of non-heat treatment high pressure die casting Al–Mg based alloy for automotive body parts. J. JFS 89, 795–798 (2017). https://doi.org/10.11279/jfes.89.795Article Google Scholar 
  7. N. Nishi, S. Kami, Y. Takahashi, H. Komoto, J.G. Conley, The Mechanical properties of Al–Ni–Mg and Al–Mn–Mg die casting alloys. Miner. Met Mater. Soc. 45, 1–464 (1988)Google Scholar 
  8. S. Li, D. Apelian, Hot tearing of aluminum alloys a critical literature review. Int. J. Metalcast. 5, 23–40 (2011). https://doi.org/10.1007/BF03355505Article Google Scholar 
  9. A.M. Nabawy, A.M. Samuel, F.H. Samuel, A review on the criteria of hot tearing susceptibility of aluminum cast alloys. Int. J. Metalcast. 15, 1362–1374 (2021). https://doi.org/10.1007/s40962-020-00559-3Article Google Scholar 
  10. G.K. Sigworth, T.A. Kuhn, Grain refinement of aluminum casting alloys. Int. J. Metalcast. 1, 31–40 (2007). https://doi.org/10.1007/BF03355416Article CAS Google Scholar 
  11. H.F. Bishop, C.G. Ackerlind, W.S. Pellini, Investigation of metallurgical and mechanical effects in the development of hot tearing. Trans. AFS 65, 247–258 (1957)Google Scholar 
  12. M. Easton, H. Wang, J. Grandfield, D. Stjohn, E. Sweet, An Analysis of the effect of grain refinement on the hot tearing of aluminium alloys. Mater. Forum 28, 224–229 (2004)CAS Google Scholar 
  13. S. Lin, C. Aliravci, M.O. Pekguleryuz, Hot-tear susceptibility of aluminum wrought alloys and the effect of grain refining. Metall. Mater. Trans. A 38, 1056–1068 (2007). https://doi.org/10.1007/s11661-007-9132-7Article CAS Google Scholar 
  14. R. Kimura, H. Hatayama, K. Shinozaki, I. Murashima, J. Asada, M. Yoshida, Effect of grain refiner and grain size on the susceptibility of Al–Mg die casting alloy to cracking during solidification. J. Mater. Process. Technol. 209, 210–219 (2009). https://doi.org/10.1016/j.jmatprotec.2008.01.053Article CAS Google Scholar 
  15. A.W. Shah, S. Ha, B. Kim, Y. Yoon, H. Lim, S. Kim, Effect of compositional variation on the microstructural evolution and the castability of Al–Mg–Si ternary alloys. Metall. Mater. Trans. A 52, 3353–3365 (2021). https://doi.org/10.1007/s11661-021-06306-5Article CAS Google Scholar 
  16. B. Hu, D. Li, J. Xu, X. Wang, X. Zeng, Hot tearing behavior in double ternary eutectic alloy system: Al–Mg–Si alloys. Metall. Mater. Trans. A 52, 789–805 (2021). https://doi.org/10.1007/s11661-020-06101-8Article CAS Google Scholar 
  17. S. Saikawa, G. Soshima, G. Okazawa, S. Ikeno, Effects of Ti-B and Sr on the hot-tearing of Al–Mg–Si system alloy. J. JFS 87, 538–544 (2015). https://doi.org/10.11279/jfes.87.538Article Google Scholar 
  18. S. Saikawa, G. Aoshima, N. Hattori, S. Ikeno, E. Yanagihara, Effects of Sr addition on hot-tearing of Al–6%Mg–3%Si alloy. J. JFS 87(2015), 561–568 (2015). https://doi.org/10.11279/jfes.87.561Article CAS Google Scholar 
  19. E. Yanagihara, G. Aoshima, S. Komura, S. Saikawa, S. Ikeno, Effect of Sr addition on the solidification structure in Al-6mass%Mg-3mass%Si alloy. Mater. Sci. Forum 879, 2383–2388 (2016). https://doi.org/10.4028/www.scientific.net/MSF.879.2383Article Google Scholar 
  20. M. Shimizu, Y. Nagata, N. Oshiro, S. Miyaziri, T. Danno, M. Yoshida, Influence of addition of small amount of si on hot-tearing of non-thermally treated high pressure Al–Mg based die casting alloy for automotive body parts. J. JFS 91, 436–438 (2019)Google Scholar 
  21. M. Shimizu, Y. Nagata, N. Oshiro, S. Miyaziri, T. Danno, M. Yoshida, Influence of Sr addition on hot-tearing of non-thermally treated high pressure Al–Mg based die casting alloy for automotive body parts. J. JFS 91, 439–441 (2019)Google Scholar 
  22. S. Oya, T. Fujii, F. Kato, M. Ohtak, Evaluation of hot tearing tendency in binary Al–Cu and Al–Si alloys by I-beam test. J. Jpn. Inst. Light Met. 33, 705–711 (1983)Article Google Scholar 
  23. I.I. Novikov, Hot Shortness of Non-Ferrous Metals and Alloys (Nauka, Moscow, 1966), p.299Google Scholar 
  24. M.M.’ Hamdi, A. Mo, H.G. Fjær, TearSim: a two-phase model addressing hot tearing formation during aluminum direct chill casting. Metall. Mater. Trans. A 37, 3069–3083 (2006). https://doi.org/10.1007/s11661-006-0188-6Article Google Scholar 
  25. Y. Nagata, K. Kato, T. Shishido, K. Moizumi, H. Kambe, N. Oshiro, S. Kitaoka, M. Yoshida, Influence of both amount of hydrogen gas content and addition of Sr, Ti, and B on hot-tearing of non-heat treatment Al–4.5Mg–10Mn based die casting alloy. J. JFS 93, 400–403 (2021). https://doi.org/10.11279/jfes.93.400Article Google Scholar 
  26. Y. Nagata, K. Kato, K. Hayashi, H. Kambe, N. Oshiro, S. Kitaoka, M. Yoshida, Influence of both amount of die lubricant and addition amount of Ti, B, and Sr on hot tearing of an automotive body parts applied for non-heat treatment Al–45Mg–10Mn based die casting alloy. J. JFS 93, 404–407 (2021). https://doi.org/10.11279/jfes.93.404Article Google Scholar 
  27. Japan Institute of Light Metals, Report of the Research Subcommittee, No. 60 (2015)
  28. R. Takai, S. Kimura, R. Kashiuchi, H. Kotaki, M. Yoshida, Grain Refinement effects on the strain rate sensitivity and grain boundary sliding in partially solidified Al–5wt%Mg alloy. Mater. Sci. Eng. A 667, 417–425 (2016). https://doi.org/10.1016/j.msea.2016.05.023Article CAS Google Scholar 
  29. R. Takai, A. Matsushita, S. Yanagida, K. Nakamura, M. Yoshida, Development of an elasto-viscoplastic constitutive equation for an Al–Mg alloy undergoing a tensile test during partial solidification. Mater. Trans. 56, 1233–1241 (2015). https://doi.org/10.2320/matertrans.L-M2015815Article CAS Google Scholar 
  30. R. Hirohara, Y. Kawada, R. Takai, M. Otaki, T. Okane, M. Yoshida, Prediction and experimental validation of cooling rate dependence of viscoplastic properties in a partially solidified state of Al–5 mass%Mg alloy. Mater. Trans. 58, 1299–1307 (2017). https://doi.org/10.2320/matertrans.L-M2017823Article CAS Google Scholar 
  31. A. Matsushita, R. Takai, H. Ezaki, T. Okane, M. Yoshida, A new theoretical approach based on the Maxwell model to obtain rheological properties of solidifying alloys and its validation. Metall. Mater. Trans. A 48, 1701–1707 (2017). https://doi.org/10.1007/s11661-017-3998-9Article CAS Google Scholar 
  32. R. Takai, R. Hirohara, N. Endo, Y. Nagata, T. Okane, M. Yoshida, Controlling factor for maximum tensile stress and elongation of aluminum alloy during partial solidification. Mater. Trans. 60, 2406–2415 (2019). https://doi.org/10.2320/matertrans.L-M2019839Article CAS Google Scholar 
  33. Y. Nagata, R. Takai, T. Okane, M.K. Faiz, M. Yoshida, Influence of solid cohesion on viscous properties in Norton law for aluminum alloys during partial solidification. Mater. Sci. Eng. A 832, 1–11 (2022). https://doi.org/10.1016/j.msea.2021.142339Article CAS Google Scholar 
  34. A.R.E. Singer, S.A. Cottrell, Hot-shortness of the aluminum-silicon alloys of commercial purity. J. Inst. Met. 73, 197–212 (1947)Google Scholar 
  35. H. Nagaumi, S. Suzuki, T. Okane, T. Umeda, Effect of iron content on hot tearing of high-strength Al–Mg–Si Alloy. Mater. Trans. 47, 2821–2827 (2006). https://doi.org/10.2320/matertrans.47.2821Article CAS Google Scholar 
  36. G.K. Sigworth, The Modification of Al–Si casting alloys: important practical and theoretical aspects. Inter. J. Metalcast. 2, 19–40 (2008). https://doi.org/10.1007/BF03355425Article CAS Google Scholar 
  37. D. Argo, J.E. Gruzleski, Porosity in modified aluminum alloy castings. AFS Trans. 96, 65–74 (1988)CAS Google Scholar 
  38. D. Emadi, J.E. Gruzleski, J.M. Toguri, The effect of Na and Sr modification on surface tension and volumetric shrinkage of A356 alloy and their influence on porosity formation. Metal. Trans. B 24, 1055–1063 (1993). https://doi.org/10.1007/BF02660997Article Google Scholar 
  39. Z. Zhang, X. Bian, Z. Liu, Effect of strontium addition on hydrogen content and porosity shape of Al–Si alloys. Int. J. Cast Metals Res. 14, 31–35 (2001). https://doi.org/10.1080/13640461.2001.11819422Article CAS Google Scholar 
  40. Y. Shinada, S. Nishi, Pore formation in aluminum unidirectionally solidifying. J. Jpn. Inst. Light Met. 30, 384–389 (1980). https://doi.org/10.2464/jilm.30.384Article CAS Google Scholar 
  41. M. Rappaz, J.-M. Drezet, M. Gremaud, A new hot-tearing criterion. Metal. Mater. Trans. A 30, 449–455 (1999). https://doi.org/10.1007/s11661-999-0334-zArticle Google Scholar 
  42. J.F. Grandfield, C.J. Davidson, J.A. Taylor, Application of a new hot tearing analysis to horizontal direct chill cast magnesium alloy AZ91. Light Met. 1, 895–901 (2001). https://doi.org/10.1002/3527607331.ch30Article Google Scholar 
  43. D. Emadi, J.E. Gruzleski, M. Pekguleryuz, Melt oxidation behavior and inclusion content in unmodified and Sr-modified A356 alloy—their role in pore nucleation. AFS Trans. 104, 763–768 (1996)CAS Google Scholar 
  44. A.M. Samuel, F.H. Samuel, H.W. Doty, H.W. Doty, S. Valtierra, Influence of oxides on porosity formation in Sr-treated alloys. Inter. J. Metalcast. 11, 729–742 (2017). https://doi.org/10.1007/s40962-016-0118-3Article Google Scholar 
  45. Q. Wang, Q. Hao, W. Yu, Effect of strontium modification on porosity formation in A356 alloy. Inter. J. Metalcast. 13, 944–952 (2019). https://doi.org/10.1007/s40962-018-00300-1Article CAS Google Scholar 
  46. J. Campbell, Complete Casting Handbook (Elsevier, Oxford, 2011)Google Scholar 
  47. S. Kitaoka, K. Nishina, Permissible gas content in aluminum alloy melts relative to the cooling rate of the casting. Proc. Int Symp. Extr. Refin. Fabr. Light Metals 24, 18–21 (1991)Google Scholar 
  48. P.K. Mallick, Materials, Design and Manufacturing for Lightweight Vehicles (Woodhead Publishing, Cambridge, 2010)Book Google Scholar 

Download references

Acknowledgements

This manuscript is based upon a translated version of a paper published in Japanese in “Journal of Japan Foundry Engineering Society, 94 (2022)” under an agreement between IJMC, AFS, and the Japanese Foundry Society. The authors are grateful to the Die Casting Aluminum Alloys Committee established by the Japan Die Casting Association and Japan Aluminum Alloy Refiners Association for collaboration on this study. We would like to also thank Dr. T. Goda of Nissan Motor Co., Ltd., for conducting the experiment and Dr. K. Moizumi of Isuzu Motors, Ltd., for development of the test device.

Funding

This study was supported by Special Young Scientist Research Fellowship from the Japan Foundry Engineering Society.

Author information

Author notes

  1. Hiroshi KambePresent address: Japan Foundry Engineering Society, Minato, Tokyo, Japan
  2. Kiyotaka KatoPresent address: ENEOS Co., Chiyoda, Tokyo, Japan

Authors and Affiliations

  1. Department of Modern Mechanical Engineering, School of Creative Science and Engineering, Waseda University, Shinjuku, Tokyo, JapanYoshihiro Nagata, Kiyotaka Kato, Takuma Shishido & Ao Tsuchiya
  2. Nikkei MC Aluminium Co., Ltd, Minato, Tokyo, JapanSanji Kitaoka
  3. Daiki Aluminium Industry Co., Ltd., Osaka, Osaka, JapanNaoto Oshiro
  4. Department of Manufacturing Technologists, Faculty of Technologists, Institute of Technologists, Gyoda, Saitama, JapanNaomi Nishi & Toshimitsu Okane
  5. Mino Industry Co., Ltd., Nakatsugawa, Gifu, JapanNaoki Nonaka, Takayuki Koike & Toshimitsu Oike
  6. Nissan Motor Co., Ltd., Yokohama, Kanagawa, JapanKenji Hayashi
  7. Department of Mechanical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, MalaysiaKhairi Faiz Muhammad
  8. Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, Shinjuku, Tokyo, JapanMakoto Yoshida
  9. Nissan Motor Co., Ltd., Yokohama, Kanagawa, JapanHiroshi Kambe

Corresponding author

Correspondence to Yoshihiro Nagata.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Cite this article

Nagata, Y., Kato, K., Shishido, T. et al. Development of High-Ductility and Low-Hot-Tearing-Susceptibility Non-heat Treatment Al–Mg–Mn-Based Die Casting Alloy for Automotive Structural Parts. Inter Metalcast (2023). https://doi.org/10.1007/s40962-023-01047-0

Download citation

  • Received20 February 2023
  • Accepted06 April 2023
  • Published16 May 2023
  • DOIhttps://doi.org/10.1007/s40962-023-01047-0

Keywords

  • die casting
  • aluminum alloys
  • hot tearing
  • solidification cracking
  • mechanical properties
  • solidification