Category Archives: Aluminium-E

Computer aided engineering (CAE) simulation for the design optimization of gate system on high pressure die casting (HPDC) process

Computer aided engineering (CAE) simulation for the design optimization of gate system on high pressure die casting (HPDC) process

Hyuk-JaeKwonaHong-KyuKwonbaDepartment of Civil Engineering, Cheongju University, Cheongju-city, Choongnam, South KoreabDepartment of Industrial & Management Engineering, Namseoul University, Cheonan-city, Choongnam, South Korea Abstract A most important progress in civilization was the introduction of mass production. HPDC molds are one of main technologies for mass production. Due to the high velocity of the liquid metal, aluminum die-casting

Read More

Fig. 10. Photograph of (a) the composite salt core and (b) hollow-structure zinc alloy castings by this composite salt core: b1-without and b2 with water soluble removing.

Comparative study on performance and microstructure of composite
water-soluble salt core material for manufacturing hollow zinc
alloy castings

FuchuLiuabSuoTubXiaolongGongbGuanjinLibWenmingJiangbXinwangLiubZitianFanbaSchool of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan, 430074, ChinabState Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China Highlights A high-strength water-soluble composite KNO3-20 mol% KCl salt core material was successfully fabricated. Bauxite and glass-fiber powder were added and acted as

Read More

Figure 1 – Stresses occur if the liquid aluminum hits the salt core. These can be computed and subsequently displayed by means of simulation.

Use of Simulation to Predict the Viability of Salt Cores in the HPDC Process- Shot Curve as a Decisive Criterion

Martin Lagler, Process Engineer ApplicationsBühler AG Uzwil, Switzerland Abstract Lost Core is a technology which is becoming increasingly more popular as the need for lightweight construction increases. The advantages are obvious: Completely new components can be developed since the use of salt cores in HPDC allows for complex internal designs. In addition, combining several components

Read More

Figure 1. SEM morphologies of the glass fibers: (a) sample 1 (size = 74 lm), (b) sample 2 (size = 25 lm) and (c) sample 3 (size = 12.5 lm)

Effects of glass fiber size and content on microstructures and properties of KNO3-based water-soluble salt core for high pressure die casting

Xiaolong Gong,  Wenming Jiang,  Fuchu Liu,  Zhiyuan Yang,  Feng Guan &  Zitian Fan  International Journal of Metalcasting volume 15, pages520–529 (2021)Cite this article 187 Accesses 2 Citations Metrics Abstract The water-soluble salt core with higher bending strength and toughness is necessary to withstand the high pressure needed to manufacture some complex parts by high pressure die casting (HPDC). In this paper,

Read More

Figure 7. Detail of fixing pins in the fixed die cavity for placing the aluminium foam.

Aluminium Foam and Magnesium Compound Casting Produced by High-Pressure Die Casting

by Iban Vicario 1,*,Ignacio Crespo 2,†,Luis Maria Plaza 2,Patricia Caballero 1,† andIon Kepa Idoiaga 3,‡1Department of Foundry and Steel making, Tecnalia Research & Innovation, c/Geldo, Edif. 700, E-48160 Derio, Spain2Department of Aerospace, Tecnalia Research & Innovation, c/Mikeletegi 2, E-20009 Donostia, Spain3Industrias Lebario, c/Arbizolea 4, E-48213 Izurza, Spain*Author to whom correspondence should be addressed.†These authors contributed equally to this work.‡This author supervised this

Read More

Figure 1. Schematics explaining the vehicle Life Cycle Assessment that encompasses all phases of the product cycle, from raw material extraction to end-of-life recycling and disposal.

Current Trends in Automotive Lightweighting Strategies and Materials

settingsOpen AccessReview Current Trends in Automotive Lightweighting Strategies and Materials by Frank CzerwinskiCanmetMATERIALS, Natural Resources Canada, Hamilton, ON L8P 0A5, CanadaAcademic Editor: Carola Esposito CorcioneMaterials2021, 14(21), 6631; https://doi.org/10.3390/ma14216631Received: 17 September 2021 / Revised: 26 October 2021 / Accepted: 29 October 2021 / Published: 3 November 2021(This article belongs to the Special Issue Lightweight Structural Materials for Automotive and Aerospace) Abstract The automotive lightweighting trends, being

Read More

Fig. 1. Squeeze casting device.

Effect of Applying Pressure of High Pressure Diecasting Process Using Salt core

용탕단조 시 저온염코어 적용 가압력의 영향 Lee, Jun-Ho (R & D Division for Hyundai Motor Co. & Kia Motors Corp.) ; Moon, J.H. (R & D Center, Dong Yang Piston Co., LTD.) ; Lee, Dock-Young (Division of Materials, Korea Institute of Science and Technology) 이준호 (현대자동차 기술연구소) ; 문중화 (동양피스톤(주)) ; 이덕영 (한국과학기술연구원 기능금속재료연구센터) Abstract A new concept of salt core,

Read More

Figure 16. Cross-sectional view of a cast part with a salt core.

Effects of Composition on the Physical Properties of Water-Soluble Salt Cores

수용성 염핵의 물리적 특성에 대한 조성의 영향 Cihan Cantas &  Bedri Baksan  International Journal of Metalcasting volume 15, pages839–851 (2021)Cite this article 175 Accesses 1 Citations Metrics Abstract The demand for producing essential cast parts and the design requirements for superior engineering performance have increased in recent years. Sand cores used in conventional aluminum cast parts are harmful to the environment,

Read More

Figure 13. Pouring process to assembled mould

DEVELOPMENT OF WATER-BASED CORE TECHNOLOGY FOR LIGHT ALLOYS

ABSTRACT This thesis describes, in a manufacturing context, the development of new waterbased core technology for light alloys. Cores used for steel casting are made from fused silica and are removed using hot sodium hydroxide under refluxing (pressurising hot acids). However, aluminium and other light alloys are attacked by sodium hydroxide. Currently there is no

Read More