本入門論文は、['Ergebnisse aus Forschung und Entwicklung, Band 28']が発行した論文【"薄肉構造アルミニウムボディ鋳物の大量生産のための費用効率の高いプロセスルート"】の研究内容を紹介するものです。
1. 概要:
- タイトル: A cost-efficient process route for the mass production of thin-walled structural aluminum body castings (薄肉構造アルミニウムボディ鋳物の大量生産のための費用効率の高いプロセスルート)
- 著者: Mohamed Youssef Ahmed Youssef
- 出版年: 2021年
- 掲載誌/学会: Ergebnisse aus Forschung und Entwicklung, Band 28 (RWTHアーヘン工科大学鋳造研究所)
- キーワード: (キーワードは明示的に提供されていませんが、内容から) アルミニウム、薄肉鋳物、構造部品、高圧ダイカスト(HPDC)、RheoMetalTM、コスト分析、自動車産業
2. Abstract (要約)
自動車分野におけるCO2排出量削減の継続的な要求に応えるため、いくつかの方法が研究され、現在も活発に研究されています。自動車業界で採用されているアプローチの1つは、車両の軽量化であり、重い鋼板部品をより軽量で機能的に統合されたアルミニウム鋳造品に置き換えることです。しかし、薄肉構造ボディ鋳物の大量生産にこのアプローチを適用すると、主に高価な原材料(アルミニウム合金)の使用により、部品コストが上昇し、経済的でなくなる可能性があります。したがって、本論文では、この提案を費用効率の高い方法で実行するための可能な手段を調査することが重要であると考えました。2020年型フォードエクスプローラーショックタワーの生産における主要なコスト要因を決定するために、最初にコスト計算調査が実施されました。続いて、この調査結果に対する詳細な調査が行われました。HPDCおよびRheoMetalプロセスに関する調査。
3. 研究背景:
研究テーマの背景:
自動車分野におけるCO2排出量削減の継続的な要求は、車両の軽量化を必要としています。重い鋼製部品を、より軽量で機能的に統合されたアルミニウム鋳造品に置き換えることが重要なアプローチです。(要約および導入部より)
先行研究の状況:
先行研究では、アルミニウム鋳造の使用を含む、車両の軽量化と燃費向上を目的としたさまざまなアプローチが検討されてきました。本文書では、高圧ダイカスト(HPDC)、半凝固鋳造(チクソキャスティングおよびレオキャスティングを含む)、自動車構造用アルミニウム合金、および鋳造品質に対するプロセスパラメータの影響に関する多数の研究が参照されています。(導入部および理論的背景より)
研究の必要性:
薄肉構造アルミニウムボディ鋳物の大量生産は、アルミニウム合金のコストが高いため、経済的ではない可能性があります。したがって、これらの鋳物を製造するための費用効率の高いプロセスルートを調査するための研究が必要です。(要約および論文の目的より)
4. 研究目的と研究課題:
研究目的:
薄肉構造アルミニウムボディ鋳物の大量生産(1,000,000〜2,000,000個)のための費用効率の高いプロセスルートを開発すること。(論文の目的より)
主要研究内容:
- 薄肉構造アルミニウムボディ鋳物(2020年型フォードエクスプローラーショックタワー)のコストに最も大きな影響を与える要因を特定する。(研究アプローチより)
- 高圧ダイカスト(HPDC)試験およびRheoMetalTM鋳造試験を実施する。(研究アプローチより)
- HPDCとRheoMetalTM鋳造試験の結果を比較し、費用効率の高いプロセスルートを決定する。(研究アプローチより)
- 適切な試験合金を定義する。(要約より)
- 板材および部品の製造。(要約より)
5. 研究方法論
研究デザイン: コスト分析、プロセス最適化、材料特性評価、機械的試験を含む比較実験研究。
データ収集:
- コスト計算調査: Bühler AGから提供された計算ツールを改良して使用し、機械の種類、合金、真空条件、金型寿命、鋳造プロセスなどの要因が2020年型フォードエクスプローラーショックタワーのコストに与える影響を分析しました。(コスト計算調査より)
- HPDC試験: 異なるアルミニウム合金とさまざまなプロセスパラメータ(溶湯流速、加圧力など)を使用して、3つの異なるサプライヤーで試験板と部品を製造しました。
- サプライヤー1: RWTHアーヘン工科大学鋳造研究所(Foundry Institute (GI))
- サプライヤー2: Magna BDW technologies Soest GmbH
- サプライヤー3: Comptech AB
(実験アプローチより)
- RheoMetalTM鋳造試験: 異なるアルミニウム合金とさまざまなプロセスパラメータ(溶湯過熱度、%EEM、EEMの回転速度など)を使用して、サプライヤー1とサプライヤー3で試験板と部品を製造しました。(実験アプローチより)
- 材料特性評価:
- 一軸引張試験(ISO 6892-1規格、方法B)
- 3点曲げ試験(VDA 238-100規格)
- 密度測定(アルキメデスの原理)
- セルフピアッシングリベット(SPR)試験
- 微細構造解析(光学顕微鏡、SEM-EDS分析)
- 発光分光分析
(材料特性およびプロセスパラメータの特性評価より)
分析方法:
- コスト分析: さまざまなシナリオのコスト分析結果を比較します。(コスト計算調査より)
- 機械的試験: 応力-ひずみ曲線、降伏強度(Rp0.2)、極限引張強度(Rm)、全伸び、エネルギー吸収量を分析します。(主要研究結果より)
- 微細構造解析: 相、欠陥(気孔、コールドフレーク、せん断帯、偏析)、結晶粒径を特定します。(主要研究結果より)
- SPR接合評価: 外面の亀裂を確認し、重ね剪断試験を実施します。(材料特性およびプロセスパラメータの特性評価より)
- 統計分析: MinitabおよびMicrosoft Excelを使用して、データの視覚化と比較を行います。(結果の評価より)
- シミュレーション: Altair RADIOSSTM ソフトウェアを使用して、異なる厚さでの試験結果を予測します。(要約より)
研究範囲: 薄肉構造アルミニウムボディ鋳物の製造におけるHPDCおよびRheoMetalTMプロセスの調査。費用効率、機械的特性、耐衝撃性、およびリベット接合性に焦点を当てています。2020年型フォードエクスプローラーショックタワーをケーススタディとして使用します。
6. 主要研究結果:
主要研究結果と提示されたデータ分析:
- コスト計算調査: 熱処理は、構造体部品のコストに最も大きな影響を与えます。鋳放し状態で機械的および接合要件を満たすことができる合金を選択すると、高い費用効率が得られます。RheoMetalTMプロセスは、主に金型寿命へのプラスの影響により、HPDCプロセスよりも高いコスト削減の可能性を示しました。(要約より)
- HPDCプロセス最適化:
- 溶湯流速: 機械的特性に対する溶湯流速の一貫した影響は見られませんでした。(高圧ダイカストプロセスに関する調査より)
- 加圧力: 加圧力を高くすると、気孔率が低下し、機械的特性が向上しました。(高圧ダイカストプロセスに関する調査より)
- RheoMetalTMプロセス最適化:
- 溶湯過熱度: 溶湯過熱度が高いほど、機械的特性が向上すると予想されました。(RheoMetalTMプロセスに関する調査より)
- %EEM: %EEMが高いほど、初晶α-Al相のサイズが小さくなり、気孔率が低下しました。(RheoMetalTMプロセスに関する調査より)
- EEMの回転速度: EEMの回転速度が高いほど、気孔率が増加しました。(RheoMetalTMプロセスに関する調査より)
- 材料特性評価(HPDC):
- AlMg4Fe2 (D-(3-650) & F-(740))、MYFORD (G-(755))、およびAlSi10MnMg-T7は、2020年型フォードエクスプローラーショックタワーの機械的要件を満たしました。(高圧ダイカストプロセスに関する調査より)
- AlMg4Fe2およびAlSi10MnMg-T7は、最高のリベット接合性を示しました。(高圧ダイカストプロセスに関する調査より)
- Material Characterization (RheoMetalTM):
- MYFORD (G-(755-30-1100)-R) was able to deliver better performance than the other alloys. (From Short version)
- RheoMetalTM process led to cast parts with lower crash resistance potentials than those produced using the HPDC process. (From Short version)
- New Alloy Development (MYFORD): Lower iron content (0.5%) resulted in the primary solidification of the α-Al phase, improving feeding efficiency and rheocastability. (From Short version)
List of figure names:
- Figure 0.1: The JMatPro® simulations of the AlMg4FeX alloy with (a) X= 1.3% Fe and (b) X= 0.5% Fe (MYFORD).
- Figure 0.2: (a) The geometrical dimensions and (b) the thickness distribution (mm) of the 2020 Ford explorer aluminium shock tower.
- Figure 1.1: The current and future CO2 emission requirements for passenger cars (8).
- Figure 1.4: MMLV BIW design (12).
- Figure 1.5: The thesis milestones.
- Figure 2.1: Porsche 911- rear Longitudinal rail (Magna BDW technologies Soest GmbH).
- Figure 2.2: Jaguar XE/XF- Front shock tower (Magna BDW technologies Soest GmbH).
- Figure 2.3: Range rover- rear longitudinal frame (Magna BDW technologies Soest GmbH).
- Figure 2.4: The casting processes and the extent of their implementation in the automotive industry (13).
- Figure 2.5: The properties of the different casting methods (14).
- Figure 2.6: The different die-casting processes (15).
- Figure 2.7: (a) The effect of the gate velocity on the pore fraction and on (b) the mechanical properties (modified from (18)).
- Figure 2.8: The effect of the intensification pressure (IP) on (a) the porosity content and (b) the macrostructures of the high pressure die castings (modified from (21)).
- Figure 2.9: The concept of vacuum assisted die casting (22).
- Figure 2.10: The structure of the cold flake and its accompanying oxide layer (28).
- Figure 2.11: Shear bands in a HPDC test bar of an AlSi7Mg0.3 alloy (30).
- Figure 2.12:The typical die casting microstructures of the AlSi7 alloy that are formed using (a) the conventional liquid die casting process and (b) the semi-solid casting process (38).
- Figure 2.13: Different technologies for the semi-solid casting of the metallic alloys (modified from (40)).
- Figure 2.14: The main stages in thixocasting (41).
- Figure 2.15: Different techniques of melt stirring: (a) mechanical stirring, (b) passive stirring, (c) electromagnetic vertical stirring, (d) electromagnetic horizontal stirring (39).
- Figure 2.16: A typical thixocasting microstructure of the A356 alloy with regions of entrapped liquid (44).
- Figure 2.17: Illustration of the process steps in rheocasting (45).
- Figure 2.18: The slurry preparation in the RheoMetalTM process: Step 1) pouring the melt into the ladle, Step 2) inserting the rotating enthalpy exchange material (EEM) into the melt, step 3) the semi-solid slurry is formed (48).
- Figure 2.19: An illustration of the Semi-Solid Rheocasting process (S.S.R.TM) (41).
- Figure 2.20: A schematic diagram of the RheoMetalTM process (source: RheoMetal AB).
- Figure 2.21: (a) Dock cleat (b) LED housing and (c) Brackets for the telecom industry.
- Figure 2.22: The influence of the rotation speed on the (a) average size of the 𝛼1-Al phase, (b) the fraction of the 𝛼1-Al phase, (c) the slurry formation time and the cooling rate.
- Figure 2.23: The influence of the melt superheat on the (a) average size of the 𝛼1-Al phase, (b) the fraction of the 𝛼1-Al phase, (c) the slurry formation time and the cooling rate.
- Figure 2.24: The combined influence of the melt superheat and the EEM amount on (a) the average size of the 𝛼1-Al phase, (b) the fraction of the 𝛼1-Al phase, (c) the slurry formation time and the cooling rate.
- Figure 2.25: (a) Eutectic rich bands and (b) porosity bands that can develop in Rheocast parts (54).
- Figure 2.26: The microstructure of a rheocast radio filter (a) near the gate and (b) near the vent (49).
- Figure 2.27: The hypoeutectic Al-Si phase diagram (61).
- Figure 2.28 : The time - temperature graphs of the different heat treatments.
- Figure 3.1: An aluminium shock tower (red) in the 2020 Ford explorer’s body.
- Figure 3.2: The outline of the ‘expenses of investment’s section in the calculation tool.
- Figure 3.4: The cost per part breakdown chart according to the RheoMetalTM and the HPDC process scenarios.
- Figure 4.1: (a) The geometrical dimensions and (b) the thickness distribution (mm) of the 2020 Ford explorer aluminium shock tower.
- Figure 4.2: The experimental approach.
- Figure 4.3: The HPDC setup consisting of (a) the holding electric resistance furnace, (b) the shot sleeve, ladle & robot arm and (c) the vacuum assisted die.
- Figure 4.4: The dimensions of the plates from supplier 1.
- Figure 4.5: The die cavity’s design for the HPDC trials at supplier 1.
- Figure 4.6: The dimensions of the plates from supplier 2.
- Figure 4.7: The setup consisting of (a) the induction furnace, (b) the EEM production station and (c) the slurry production station.
- Figure 4.8: (a) The EEM’s height before adjustment (casted EEM), (b) the sawing machine and (c) the EEM’s height after adjustment (hEEM).
- Figure 4.9: The slurry making process.
- Figure 4.10: The die cavity’s design for the RheoMetalTM casting trials at supplier 1.
- Figure 4.11: (a) The top view, (b) the bottom view and the (c) side view of the part.
- Figure 4.12: (a) The 800-ton HPDC machine, (b) the die and the second robot arm and the (c) moving tray.
- Figure 4.13: The different pre-steps for the production of the semi-solid slurry.
- Figure 4.14: The phase diagram of the standard AlMg4Fe2 alloy with 1.5-1.7%Fe and 4.5% Mg (modified from (77)).
- Figure 4.15: The suggested enhancement to the standard AlMg4Fe2 alloy, as demonstrated by the circle and the arrow (modified from (77)).
- Figure 4.16: The JMatPro® simulation for the Al-Mg-Fe alloy with a 1.3%Fe.
- Figure 4.17: The JMatPro® simulation for the MYFORD alloy.
- Figure 4.18: The exact geometrical dimensions of the Type E sample in mm (6).
- Figure 4.19: The exact geometrical dimensions of the mini samples in mm.
- Figure 4.20: A 3D model of the supplier 1 plate and the tensile testing samples.
- Figure 4.21: (a) The initial dimension, (b) the extra 1 mm and (c) the final dimension of the (i) mini sample and the (ii) Type E sample in mm.
- Figure 4.22: The top and side views of a mini sample (a)before and (b)after preparation.
- Figure 4.23: The extracted tensile test samples from the (a) supplier 1 plates, (b) supplier 2 plates and (c) supplier 3 parts.
- Figure 4.24: The tensile test setup for the mini and the Type E samples.
- Figure 4.25: The different test speeds during tensile testing.
- Figure 4.26: (a) The setup of the 3-point bending test and (b) the important dimensions (4).
- Figure 4.27: The dimensions of the bending test samples.
- Figure 4.28: The location of the 3-point bending test samples in the (a) supplier 1 plates, (b) supplier 2 plates and (c) supplier 3 parts.
- Figure 4.29: (a) An example of a bending angle and (b) the bending angle’s measuring tool.
- Figure 4.30: The setup for the density measurement trials.
- Figure 4.31: The positions of the SPR samples in (a) the supplier 1 plates (thickness = 3.1 mm) and (b) the supplier 2 plates (thickness = 2.65 mm).
- Figure 4.32: An example of a good SPR joint (86).
- Figure 4.33: The flat die design (88).
- Figure 4.34: Henrob SPR setup for manual trials.
- Figure 4.35: (a) The joint making using the SPR process (86) and (b) the connected structures.
- Figure 4.36: An example of the (a) circumferential cracks, (b) deep radial cracks and (c) light radial cracks.
- Figure 4.37: The 25 mm * 100 mm lap shear test samples.
- Figure 4.38: The SPR trials on the parts from supplier 3.
- Figure 4.39: The location of the extracted samples from (a) the supplier 1 plates, (b) the supplier 2 plates and (c) the supplier 3 parts.
- Figure 4.40: An example of a hot mounted sample.
- Figure 4.41: The positions a, b and c in the supplier 1 plates.
- Figure 4.42: (a) The total elongation values (%) of the different samples and (b) their respective positions in the plates. (Designation from Table 4.3, P54)
- Figure 4.43: (a) The total elongation values (%) of the different sample types and (b) the outline of the samples in one of the investigated plates. (Designation from Table 4.3, P54)
- Figure 4.44: (a) The effect of the sample orientation on the total elongation values (%), (b) the positions of the longitudinal and perpendicular samples in respect to each other, (c) the location of the extracted longitudinal samples and (d) the location of the extracted perpendicular samples. (Designation from Table 4.3, P54)
- Figure 4.45: The consistency of the HPDC process at supplier 1 using the (a) Type E samples and the (b) mini tensile test samples. (Designation from Table 4.3, P54)
- Figure 5.1: The influence of the melt flow velocity on the total elongation (%) of AlMg4Fe2. (Designations from Table 4.3, P54)
- Figure 5.2: The influence of the melt flow velocity on the total elongation (%) of (a) AlSi7Mg0.3 and (b) AlMg6Si2MnZr. (Designations from Table 4.3, P54)
- Figure 5.3: The influence of the melt flow velocity on the total elongation (%) of AlMg5Si2Mn. (Designations from Table 4.3, P54)
- Figure 5.4: The influence of the intensification pressure on the total elongation (%) of AlMg4Fe2. (Designations from Table 4.3, P54)
- Figure 5.5: The comparison between the different HPDC alloys and alloy-heat treatment combinations in terms of their (a) Rp0.2 values (MPa), (c) Rm values (MPa) and (c) total elongation values (%). (Designations from Table 4.3, P54)
- Figure 5.6: The comparison between the different HPDC alloys in terms of their (a) Rp0.2 values (MPa), (c) Rm values (MPa) and (c) total elongation values (%). (Designations from Table 4.9, P65)
- Figure 5.7: The force-displacement chart of the Al-Si alloys and alloy-heat treatment combinations. (Designations from Table 4.3, P54)
- Figure 5.8: The energy-displacement diagram of the Al-Si alloys and alloy-heat treatment combinations. (Designations from Table 4.3, P54)
- Figure 5.9: The simulated force-displacement chart of the Al-Si alloys and alloy-heat treatment combinations. (Designations from Table 4.3, P54)
- Figure 5.10 : The simulated energy-displacement chart of the Al-Si alloys and alloy-heat treatment combinations. (Designations from Table 4.3, P54)
- Figure 5.11: The force-displacement chart of all the HPDC alloys and alloy-heat treatment combinations that were used for the casting of the plates. (Designations from Table 4.3, P54)
- Figure 5.12: The energy-displacement chart of all the HPDC alloys and alloy-heat treatment combinations that were used for the casting of the plates. (Designations from Table 4.3, P54)
- Figure 5.13: The force-displacement chart of the HPDC alloys that were used at supplier 3. (Designations from Table 4.9, P65)
- Figure 5.14: The energy-displacement chart of the HPDC alloys that were used at supplier 3. (Designations from Table 4.9, P65)
- Figure 5.15: The force-displacement chart for the HPDC alloys and alloy-heat treatment combinations that belonged to the groups (b) and (c). (Designations from Table 4.3, P54)
- Figure 6.1: The influence of the intensification pressure on the total elongation (%) of the AlMg4Fe2 alloy. (Designations from Table 4.5, P58)
- Figure 6.2: The comparison between the different RheoMetalTM alloys in terms of their (a) Rp0.2 values (MPa), (c) Rm values (MPa) and (c) total elongation values (%). (Designations from Table 4.5, P58)
- Figure 6.3: The comparison between the different RheoMetalTM alloys in terms of their (a) Rp0.2 values (MPa), (c) Rm values (MPa) and (c) total elongation values (%). (Designations from Table 4.9, P65)
- Figure 6.4: The force-displacement chart for the RheoMetalTM alloys that were used for the casting of the plates at supplier 1. (Designations from Table 4.5, P58)
- Figure 6.5: The energy-displacement chart for the RheoMetalTM alloys that were used for the casting of the plates at supplier 1. (Designations from Table 4.5, P58)
- Figure 6.6: The force-displacement chart of the RheoMetalTM alloys that were used at supplier 3. (Designations from Table 4.9, P65)
- Figure 6.7: The energy-displacement chart of the RheoMetalTM alloys that were used at supplier 3. (Designations from Table 4.9, P65)
- Figure 6.8:The force-displacement chart for D-(50-4.63-575-1000)-R. (Designation from Table 4.5, P58)
- Figure 7.1: The shrinkage porosities in the microstructures of (a) AlMg5Si2Mn (B-(3.5-650)) and (b) AlMg6Si2MnZr (C-(3.5-650)). (Designations from Table 4.3, P54)
- Figure 7.2: The 500x microstructural images of (a) AlSi10MnMg-F and (b) AlSi10MnMg-T7. (Designations from Table 4.3, P54)
- Figure 7.3: Dislocations overcoming a precipitate a) by shearing or b) by looping (Orowan mechanism) and c) the effect of the dislocations passing mechanism on the total yield strength of the alloy (65).
- Figure 7.4: (a) The Rp0.2 values (MPa), (b) the Rm values (MPa) and (c) the total elongation values (%) of AlSi10MnMg-T7. (Designations from Table 4.3, P54)
- Figure 7.5: The 200x microstructural images of (a) AlSi10MnMg (H) and of (b) AlMg4Fe2 (D-(3-650)). (Designations from Table 4.3, P54)
- Figure 7.6: The 500x microstructural images of (a) AlMg4Fe2 (F-740C) and of (b) MYFORD (G-755C). (Designations from Table 4.9, P65)
- Figure 7.7: The total elongation (%) chart for the investigated RheoMetalTM alloys at supplier 1. (Designation from Table 4.5, P58)
- Figure 7.8: The 500x microstructural images of (a) the AlMg4Fe2 alloy (F-750R-1100-30C) and of (b) the MYFORD alloy (G-755R-1100-30C). (Designations from Table 4.9, P65)
- Figure 7.9: The crash resistance potentials of the RheoMetalTM parts (red) and the parts produced by HPDC (black).
7. 結論:
研究結果の概要:
1. コスト分析:
- 熱処理が主要なコスト要因: コスト計算調査により、熱処理プロセスが薄肉構造アルミニウム鋳物の総製造コストに大きく寄与することが明らかになりました。
- RheoMetal™の可能性: RheoMetal™プロセスは、従来のHPDCと比較して、特に金型寿命の延長(金型摩耗の低減)により、コスト削減の可能性を示しました。
2. HPDCプロセスと材料評価:
- 合金の性能: HPDCで試験された合金のうち、AlMg4Fe2、MYFORD、およびAlSi10MnMg-T7(熱処理)が、2020年型フォードエクスプローラーショックタワーに求められる機械的要件(降伏強度、引張強度、伸び)を満たしました。
- 耐衝撃性: HPDCでは、AlMg4Fe2とAlSi10MnMg-T7が最も高い耐衝撃性(エネルギー吸収)を示しました。MYFORDも優れた耐衝撃性を示しました。
- リベット接合性: HPDCでは、AlMg4Fe2とAlSi10MnMg-T7が最も優れたリベット接合性(セルフピアッシングリベット接合の成功率)を示しました。MYFORDも非常に良好なリベット接合性を示しました。
- プロセスパラメータの影響:
- 加圧力: 加圧力を高くすると、気孔率が低下し、機械的特性が一貫して向上しました。
- 溶湯流速: 溶湯流速が機械的特性に与える影響は一貫性がなく、既存の文献と一致する部分もありました。
3. RheoMetal™プロセスと材料評価:
- 合金の性能: 試験されたRheoMetal™合金のうち、MYFORDとAlMg4Fe2のみが、ショックタワーの機械的要件を満たしました。
- 耐衝撃性: MYFORDとAlMg4Fe2は、他のRheoMetal™合金よりも大幅に高い耐衝撃性を示しました。しかし、この特定の研究においては、RheoMetal™部品は、HPDC部品と比較して、一般的に同等またはそれ以下の耐衝撃性を示しました。これは、使用された特定のパラメータと、一部のRheoMetal試験の手作業による性質に起因すると考えられます。
- リベット接合性: MYFORDは、RheoMetal™合金の中で最高のリベット接合性を示しました。
- プロセスパラメータの影響:
- 溶湯過熱度: 溶湯過熱度が高いほど、一般的に有利であり、初晶α-Al相が微細化し、機械的特性が向上する可能性がありました。
- %EEM: %EEM(エンタルピー交換材)が高いほど、一般的に初晶α-Al相が微細化し、気孔率が低下しました。
- EEM回転速度: EEMの回転速度は、低い方が気孔率の増加を避けるために一般的に好ましいとされました。
- サプライヤー1のRheoMetal試験の限界: サプライヤー1でのRheoMetal試験は、手作業によるプロセスと最適化されていないパラメータが原因で、サプライヤー3での試験よりも信頼性と一貫性が低いことがわかりました。
4. 新合金開発 (MYFORD):
- 特性の改善: 標準のAlMg4Fe2と比較して鉄含有量を減らした(0.5%)MYFORD合金は、供給効率とレオキャスタビリティを改善するために特別に設計されました。
- 初晶α-Al晶出: 鉄含有量を低くすることで、α-Al相の初晶晶出が促進され、半凝固プロセスに有利になります。
- 優れた性能: MYFORDは、HPDCとRheoMetal™の両方の試験(特にサプライヤー3)において、機械的特性、耐衝撃性、リベット接合性の点で一貫して優れた性能を示しました。
5. HPDCとRheoMetal™の比較 (サプライヤー3の結果に基づく):
- 同等の機械的特性: 両方のプロセスで製造された部品は、同等の機械的特性(降伏強度と引張強度)を達成しました。
- 耐衝撃性: この研究では、最適化されたパラメータを使用したHPDCプロセスの方が、RheoMetal™プロセスよりも同等またはそれ以上の耐衝撃性を持つ部品が得られました。これは、RheoMetal™が本質的に優れた機械的特性をもたらすという最初の仮説に反するものです。これは、プロセス最適化の重要性を強調しています。
- リベット接合性: MYFORD合金を使用した場合、両方のプロセスで良好なリベット接合性を持つ部品が製造されました。
研究の学術的意義:
- 新合金開発: MYFORD合金(AlMg4Fe0.5)の開発と検証の成功は、重要な貢献です。この合金は、AlMg4Fe2系の既知の制限(金属間化合物の初晶晶出による供給不良とレオキャスタビリティの低下)を、晶出シーケンスを変更することによって対処しています。これにより、高強度で鋳放し特性を持つAl-Mg-Fe合金を、これまで不向きであった用途に使用できる可能性が開かれます。これは特許出願によって裏付けられています。
- プロセスパラメータの最適化: この研究は、特定の合金に対するHPDCおよびRheoMetal™プロセスパラメータの最適化に関する貴重な洞察を提供します。溶湯流速、加圧力、溶湯過熱度、%EEM、EEM回転速度などのパラメータ間の複雑な相互作用を強調しています。この研究は、最適なパラメータが普遍的なものではなく、特定の合金と鋳造形状に合わせて調整する必要があることを示しています。
- HPDCとRheoMetal™の比較: 同じ合金(MYFORD)を使用して、同じ部品(または類似の部品)に対してHPDCとRheoMetal™プロセスを直接比較することは、貴重な貢献です。当初の仮説ではRheoMetal™が有利でしたが、(特定の条件下での)結果は、最適化されたパラメータを使用したHPDCが、同等またはそれ以上の耐衝撃性を達成できることを示しました。これは、厳密な実験的検証の重要性を強調し、プロセス固有の利点に関する仮定に疑問を投げかけます。
- 微細構造と特性の関係: この研究は、微細構造と機械的特性の間の基本的な関係を強化します。この研究では、微細構造の特徴(結晶粒径、相形態、気孔率、欠陥の存在)を細かく記録し、観察された機械的挙動(引張特性、耐衝撃性、リベット接合性)と関連付けています。これは、プロセスが微細構造にどのように影響し、その結果、性能にどのように影響するかについての理解を深めるのに役立ちます。
- リベット接合性評価: 自動車産業で使用される重要な接合技術であるセルフピアッシングリベット(SPR)試験を含めることは重要です。この研究は、合金組成とプロセスがSPR接合の成功にどのように影響するかを示しており、これは軽量の複合材料構造にとって非常に重要です。
研究の実用的意義:
- 費用効率の高い製造: 主な実用的意義は、薄肉構造アルミニウム鋳物のより費用効率の高い製造への道筋を特定することです。HPDCと組み合わせて使用されるMYFORD合金は、以下の組み合わせを提供します。
- 熱処理の排除: 鋳放し状態で必要な機械的特性を達成できるため、T6またはT7熱処理に伴う多大なコストと時間を排除できます。
- 高性能: この合金は、要求の厳しい構造部品である2020年型フォードエクスプローラーショックタワーの性能要件を満たすか、それを上回ります。
- 金型寿命延長の可能性: この特定
8. References:
- [1] Rio Tinto, “Aluminium: Your guide to automotive innovation,” 2019. [Online]. Available: https://www.riotinto.com/documents/Aluminium_Automotive_innovation_brochure.pdf. [Accessed: 11-Nov-2019].
- [2] Aluminium Rheinfelden GmbH, “Handbook- Primary aluminum casting alloys,” 2017. [Online]. Available: http://rheinfelden-alloys.eu/wp-content/uploads/2017/12/LeporelloCastingAlloys_12-2017_Singular_pages.pdf. [Accessed: 12-Sep-2019].
- [3] Stena Aluminium, “Aluminium alloy EN AB-42000,” [Online]. Available: https://www.stenaaluminium.com/siteassets/document/product-sheets/eng-en-ab-42000.pdf. [Accessed: 30-Oct-2019].
- [4] Verband der Automobilindustrie (VDA), “VDA 238-100 : Plate bending test for metallic materials,” Berlin : VDA, 2010.
- [5] International Organization for Standardization (ISO), “ISO 6892-1. METALLIC MATERIALS - TENSILE TESTING - Part 1 : Method of test at room temperature,” Geneva : ISO, 2016.
- [6] Deutsches Institut für Normung (DIN), “DIN 50125: Prüfung metallischer Werkstoffe- Zugproben,” Berlin : Beuth Verlag, 2016.
- [7] O. Hoegh-Guldberg et al., “Impacts of 1.5°C Global Warming on Natural and Human Systems,” in Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, V. Masson-Delmotte et al., Eds. Geneva : The intergovernmental panel on climate change (ipcc), 2018.
- [8] Z. Yang and A. Bandivadekar, “2017 Global update : Light-duty vehicle greenhouse gas and fuel economy standards,” 2017. [Online]. Available: https://www.theicct.org/sites/default/files/publications/2017-Global-LDV-Standards-Update_ICCT-Report_23062017_vF.pdf. [Accessed: 29-May-2018].
- [9] Ducker Worldwide LLC, “2015 North American Light Vehicle Aluminum Content Study,” 2014. [Online]. Available: https://www.autonews.com/assets/PDF/CA95065611.PDF. [Accessed: 07-Nov-2019].
- [10] M. Goede, et al., “Super Light Car—lightweight construction thanks to a multi-material design and function integration,” European Transport Research Review, vol. 1, no. 1, pp. 5–10, 2009.
- [11] NADCA Design, “Die Casting vs Metal Extrusion,” NADCA Design. [Online]. Available: https://www.diecastingdesign.org/metal-extrusions. [Accessed: 11-Nov-2019].
- [12] G. Yuksel, et al., “MMLV : NVH Sound Package Development and Full Vehicle testing, SAE Technical Paper 2015-01-1615,” SAE International, 2015.
- [13] European Aluminum Association, “The Aluminum Automotive manual, Manufacturing casting methods,” 2002. [Online]. Available: https://www.european-aluminium.eu/media/1526/aam-manufacturing-1-casting-methods.pdf. [Accessed: 23-May-2019].
- [14] The American Foundry Society Technical Dept, “Aluminium Alloys,” Engineered casting solutions, vol. 8, no. 4, pp. 30–34, 2006.
- [15] AZoM, “Aluminium Casting Techniques - Sand Casting and Die Casting Processes,” 2002. [Online]. Available: https://www.azom.com/article.aspx?ArticleID=1392. [Accessed: 04-Jul-2018].
- [16] Foundry Lexicon, “Foundry Lexicon,” Foundry Lexicon. [Online]. Available: https://www.giessereilexikon.com/en/foundry-lexicon/Encyclopedia. [Accessed: 24-Apr-2019].
- [17] Robert Karban, “The effects of intensification pressure, gate velocity, and intermediate shot velocity on the internal quality of aluminum die castings,” PHD thesis, Purdue University, 2000.
- [18] D. R. Gunasegaram, B. R. Finnin, and F. B. Polivka, “Melt flow velocity in high pressure die casting : its effect of microstructure and mechanical properties in an Al-Si alloy,” Materials Science and Technology, vol. 23, no. 7, pp. 847–856, 2007.
- [19] E.A. Herman, “Gating Die Casting Dies,” Rosemont,IL : NADCA, 1996.
- [20] E. Fiorese, et al., “Influence of injection parameters on the porosity and tensile properties of high-pressure die cast Al–Si alloys : A review,” International Journal of metalcasting, vol. 1, no. 9, pp. 43–53, 2015.
- [21] S. Otarawanna, et al., “Feeding mechanisms in High-pressure die castings,” Metallurgical and Materials Transactions A, vol. 41, no. 7, pp. 1836–1846, 2010.
- [22] X.P. Niu, et al., “Vaccum assisted high pressure die casting of aluminium alloys,” Journal of Materials Processing Technology, vol. 105, no. 1–2, pp. 119–127, 2000.
- [23] S. SUN, B. Yuan, and M. Liu, “Effects of moulding sands and wall thickness on microstructure and mechanical properties of Sr-modified A356 Aluminum casting alloy,” Transactions of Nonferrous Metals Society of China, vol. 22, no. 8, pp. 1884–1890, 2012.
- [24] M.B. Djurdjevic and M. Grzincic, “The Effect of Major Alloying Elements on the size of secondary dendrite arm spacing in the As-cast Al-Si-Cu Alloys,” ARCHIEVES of FOUNDARY ENGINEERING, vol. 12, no. 1, pp. 19–24, 2012.
- [25] K. Radhakrishna and S. Seshan, “Dendritic arm spacing and mechanical properties of Aluminium Alloy castings,” Cast Metals, vol. 2, no. 1, pp. 34–38, 1989.
- [26] M. Hartlieb, “High Integrity Die Casting : A Holistic Approach To Improved Die Casting Quality,” [Online]. Available: http://www.visi-trak.com/pdf/High%20Integrity%20Die%20Casting%20-%20iMdc%20Dec%202013.pdf. [Accessed: 07-Nov-2019].
- [27] Niels Pasligh, “Hybride formschlüssige Strukturverbindungen in Leichtbaustrukturen aus Stahlblech und Aluminiumdruckguss,” Dissertation, Giesserei-Instiut der RWTH Aachen, 2011.
- [28] A. Ahamed and H. Kato, “Influence of Casting Defects on Tensile properties of ADC12 Aluminum Allo Die-Castings,” Materials Transactions, vol. 49, no. 7, pp. 1621–1628, 2008.
- [29] X. Cao and J. Campbell, “Oxide inclusion defects in Al-Si-Mg cast alloys,” Canadian Metallurgical Quarterly, vol. 44, no. 4, pp. 435–448, 2005.
- [30] C.M.Gourlay and A.K.Dahle, “Dilatant shear bands in solidifying metals,” Nature, vol. 445, no. 7123, pp. 70–73, 2007.
- [31] A. Ghosh, “Segregation in cast products,” SADHANA, vol. 26, no. 1–2, pp. 5–24, 2001.
- [32] S.P. Midson and A. Jackson, “A comparison of Thixocasting and Rheocasting,” in 67th World Foundry Congress (wfc06): Casting the Future, Harrogate, UK: Institute of Cast Metals Engineers, 2006, pp. 1081–1090.
- [33] S.P. Midson, L.E. Thornhill, and K. Young, “Feeding mechanisms in High-pressure die castings,” in Proc.5th Int.Conf. On Semi-Solid Processing of Alloys & Composites, Golden, Colorado: Colorado School of Mines, 1998. p. 181.
- [34] M. Jolly, “Prof. John Campbell’s Ten Rules for Making Relaible Castings,” JOM, vol. 57, no. 5, pp. 19–28, 2005.
- [35] Shahrooz Nafisi and Reza Ghomashchi, “Grain refining of conventional and semi-solid A356 Al-Si alloy,” Journal of Materials Processing Technology, vol. 174, pp. 371–383, 2006.
- [36] M.C. Flemings, “Behaviour of metal alloys in the semi-solid state,” Metallurgical Transactions A, vol. 22, no. 5, pp. 957–981, 1991.
- [37] D.G. McCartney, “Grain refining of aluminium and its alloys using inoculants,” International Material Reviews, vol. 13, no. 5, pp. 247–260, 1989.
- [38] A Pola, M Toci, P Kapronas, "Microstructure and properties of Semi-Solid Aluminum Alloys: A literature review", Metals. 2018, Vol.8,3, p.181.
- [39] H. Gerhard, et al., “Semi-solid Forming of Aluminium and Steel-Introduction and overview,” in Thixoforming: Semi-Solid Metal Processing, H. Gerhard and R Kopp, Eds. Weinheim : WILEY-VCH Verlag GmbH & Co. KGaA, 2009.
- [40] F. Czerwinski, “The basics of modern semi-solid metal processing,” JOM, vol. 58, no. 6, pp. 17–20, 2006.
- [41] James A Yurko, Raul A. Martinez, and Merton C.Flemings, "The use of Semi Solid Rheocasting (SSR) for Aluminum automotive castings." SAE paper 2003-01-0433., 2003.
- [42] Z. Fan, “Semisolid metal processing,” International Materials Reviews, vol. 47, no. 2, pp. 49–85, 2002.
- [43] D. H. Kirkwood, et al., Semi-Solid Processing of Alloys. Berlin, Heidelberg: Springer, 2010.
- [44] M. Modigell, P. Annalisa, and T. Marialaura, “Rheological Characterization of Semi-Solid Metals: A Review,” Metals, vol. 8, no. 4, pp. 245–268, 2018.
- [45] T. Basner, “Rheocasting of semi solid A357 Aluminum,” SAE paper :2000-01-0059, SAE International, 2000.
- [46] S.P. Midson, “Rheocasting processes for Semi-Solid Casting of Aluminium Alloys,” Die Casting Engineer, vol. 1, pp. 48–51, 2006.
- [47] Hong C.P. and Kim J.M., “Development of Advanced Rheocasting Process and its applications,” Solid State Phenomena, Vols. 116-117, pp. 44–53, 2006.
- [48] Patent: WO/2006/062, 482. A method of and a device for producing a liquid-solid metal composition. Filling date: 2006, Inventors: Wessen, M; Cao, H.
- [49] Mostafa Payandeh, “Rheocasting of Aluminium Alloys, Process and components characteristics,” PhD thesis, Jönköping university, 2016.
- [50] H.Cao, M.Wessén, and O.Granath, “Effect of injection velocity on porosity formation in Al rheocast component using Rheometal process,” International Journal of Cast Metals Research, vol. 23, no. 3, pp. 158–163, 2010.
- [51] J. Lee, H. Seok, and H. Lee, “Effect of the Gate Geometry and the Injection Speed on the Flow,” Metals and Materials International, vol. 9, no. 4, pp. 351–357, 2003.
- [52] O.Granath, M.Wessen and H.Cao, "Determining the effect of the slurry process parameters on semisolid A356 alloy microstructures produced by Rheometal process", International Journal of Cast Metals Research, vol. 21, no.5, pp. 349-356, 2008.
- [53] M. Bladh, M. Wessen, and A.K. Dahle, “Shear band formation in shaped Rheocast Aluminium component at various plunger velocities,” Trans.Nonferrous Met. Soc. China, vol. 20, no. 9, pp. 1749–1755, 2010.
- [54] M. Payandeh, A. Jarfors, and M. Wessen, “Influence of microstructural inhomogenity on fracture behaviour in SSM-HPDC Al-Si-Cu-Fe component with low Si content,” Solid state phenomena, Vols. 216-217, pp. 67–74.
- [55] Baiwei Zhu, “On the influence of Si on Anodising and Mechanical properties of Cast Aluminium Alloys,” Licentiate thesis, Jönköping University, 2017.
- [56] S. Hegde and K.N. Prabhu, “Modification of eutectic silicon in Al-Si alloys,” Journal of Materials science, vol. 43, no. 9, pp. 3009–3027, 2008.
- [57] X. Zhu, et al., “The effects of varying Mg and Si levels on the microstructural inhomogenity and eutectic Mg2Si morphology in die-cast Al-Mg-Si alloys,” Journal of Materials Science, vol. 54, no. 7, pp. 5773–5787, 2019.
- [58] W. Yuan and Z. Liang, “Effect of Zr addition on properties of Al-Mg-Si aluminum alloy used for all aluminium alloy conductor,” Materials and Design, vol. 32, no. 8, pp. 4195–4200, 2011.
- [59] S. Ji, et al., “Effect of iron on the microstructure and mechanical property of Al-Mg-Si-Mn and Al-Mg-Si diecast alloys,” Materials Science and Engineering A, vol. 564, pp. 130–139, 2013.
- [60] J.Y. Hwang, H.W. Doty, and M.J. Kaufman, “The effects of Mn additions on the microstructure and mechanical properties of Al-Si-Cu casting alloys,” Materials Science and Engineering A, vol. 488, no. 1–2, pp. 496–504, 2008.
- [61] J.L. Murray and A.J. McAlister, “,” Bulletin of Alloy Phase Diagrams, vol. 5, no. 1, pp. 86–112, 1984.
- [62] G.T. Zeru, B.R. Mose, and S.M. Mutuli, “The fluidity of a Model Recycle-Friendly Al-Si Cats Alloy for Automotive Engine Cylinder Head Application,” International Journal of Engineering Research & Technology (IJERT), vol. 3, no. 8, 2014.
- [63] G. Timelli and F. Bonollo, “Fluidity of aluminium die casting alloys,” International Journal Of Cast Metals Research, vol. 20, no. 6, pp. 304–311, 2007.
- [64] M Gwózdz and K Kwapisz, "Influence of ageing process on the microstructure and mechanical properties of aluminium-silicon cast alloys - Al-9%Si-3%Cu and Al-9%Si-0.4%Mg", Jönköping University, Bachelor thesis, 2008.
- [65] A.M.A. Mohamed and F.H. Samuel, “A Review on the Heat Treatment of Al-Si-Cu/Mg Casting Alloys,” in Heat treatment - Conventional and novel applications, IntechOpen, 2012, pp. 55–72.
- [66] L Katgerman and D Eskin, "Hardening, annealing and aging," in Handbook of Aluminum: Vol. 1: Physical Metallurgy and Processes, G.E Totten and D.S Mackenzie, Eds. New York : Marcel Dekker, Inc, 2003, pp. 269–271.
- [67] Bühler AG, “Carat. The solution with highest value creation for sophisticated parts,” 2018. [Online]. Available: http://www.buhlergroup.com/northamerica/en/downloads/Brochure_Carat_EN_2018.pdf. [Accessed: 24-May-2019].
- [68] Tecnopres, “Hydraulic 4 columns Trimming presses,” 2018. [Online]. Available: https://www.tecnopres.it/wp-content/uploads/2018/06/caratteristiche-tecniche-presse-KZP.pdf. [Accessed: 24-May-2019].
- [69] KMA Umwelttechnik GmbH, “KMA press release GIFA 2007,” 2007. [Online]. Available: https://www.foundry-planet.com/fileadmin/redakteur/Material/KMAforGIFA2007.pdf. [Accessed: 08-Nov-2019].
- [70] STØTEK Inc, “Holding Furnace (STE) / (STET),” STØTEK Inc. [Online]. Available: http://stotek.com/our-products/ste-stet-holding-furnace/. [Accessed: 27-Jul-2018].
- [71] The London Metal Exchange, “LME Aluminum alloy,” The London Metal Exchange, 2019. [Online]. Available: https://www.lme.com/Metals/Non-ferrous/Aluminium-Alloy#tabIndex=2. [Accessed: 24-Jan-2019].
- [72] H. Kaufmann and P.J. Uggowitzer, Metallurgy and Processing of High Integrity Light Metal Pressure Castings. Berlin : SCHIELE & SCHÖN, 2014.
- [73] Q. Han, E.A. Kenik, and S. Viswanathan, “Die soldering in aluminium die casting,” Office of Scientific & Technical Information Technical Reports, 2000.
- [74] H.A. Abdulhadi, et al., “Thermal Fatigue of Die-Casting Dies: An Overview,” in MATEC Web of Conferences, ICMER 2015, 2016, vol. 74, p. 00032.
- [75] Visi-trak worldwide, LLC, “High-Q-Cast,” [Online]. Available: http://www.visi-trak.com/Media/High-Q-Cast-NADCA-2011.pdf. [Accessed: 23-Jul-2018].
- [76] S.P. Midson, R.B. Minkler, and H.G. Brucher, “Gating of Semi-Solid Aluminum Castings,” in Proc 6th Inter. Conf. on Semi-Solid Processing of Alloys and Composites, Turin, Italy, 2000, pp. 67–71.
- [77] Aluminium Rheinfelden GmbH, “Primary aluminum- HPDC alloys for Structural Casts in Vehicle Construction,” 2017. [Online]. Available: http://rheinfelden-alloys.eu/wp-content/uploads/2018/01/Handbook-Al-HPDC-Alloys-for-Structural-Casts_RHEINFELDEN-ALLOYS_2017_EN.pdf. [Accessed: 08-Nov-2019].
- [78] G.H. Gulliver, “The quantitative effect of rapid cooling upon the constitution of binary alloys,” J.Inst.Met., vol. 9, pp. 120–157, 1909.
- [79] E. Scheil, “Comments on the layer crystal formation,” Z.Metallkd., vol. 34, pp. 70–72, 1942.
- [80] ESAB, “ESAB knowledge center,” ESAB. [Online]. Available: http://www.esabna.com/us/en/education/blog/waterjet-cutting-process-basics.cfm. [Accessed: 24-May-2019].
- [81] Techni waterjet, “Waterjet advantages,” Techni waterjet, 2018. [Online]. Available: http://www.techniwaterjet.com/waterjet-advantages/. [Accessed: 24-May-2019].
- [82] SMU department of physics, “Mechanics laboratery manual - Archimedes’ Principle and Buoyancy,” SMU department of physics, 2002. [Online]. Available: http://www.physics.smu.edu/~scalise/mechmanual/archimedes/lab.html. [Accessed: 08-Mar-2019].
- [83] M. Abbas, G.R. St.Pierre, and C.E. Mobley, “Microporosity of Air Cast and Vacuum Cast Aluminium Alloys,” AFS Transactions, vol. 49, pp. 47–56, 1986.
- [84] X. He, I. Pearson, and K. Young, “Self-pierce riveting for sheet materials: State of the art,” Journal of Materials Processing Technology, vol. 199, no. 1–3, pp. 27–36, 2008.
- [85] D. Li, et al., “Self-piercing riveting- a review,” The International Journal of Advanced Manufacturing Technology, vol. 92, no. 5–8, pp. 1777–1824, 2017.
- [86] Atlas Copco Group, “Henrob self-pierce riveting,” [Online]. Available: https://www.atlascopco.com/content/dam/atlas-copco/industrial-technique/general/documents/brochures-leaflets/joining-solutions/henrob-self-pierce-riveting-intro-presentation.pdf. [Accessed: 06-Aug-2019].
- [87] —, “Henrob BG-Rivet,” [Online]. Available: https://www.atlascopco.com/content/dam/atlas-copco/industrial-technique/general/documents/brochures-leaflets/joining-solutions/bg-rivet-pdf.pdf. [Accessed: 07-Aug-2019].
- [88] —, “Henrob die catalogue,” [Online]. Available: https://www.atlascopco.com/content/dam/atlas-copco/industrial-technique/general/documents/brochures-leaflets/joining-solutions/henrob-die-catalog.pdf. [Accessed: 08-Nov-2019].
- [89] E.V. Stephens, “Mechanical strength of self-piercing riveting,” in Self-Piercing Riveting: Properties, Processes and Applications, A Chrysanthou and X Sun, Eds. Woodhead Publishing Limited, 2014.
- [90] D. Li, et al., “Influence of Die Profiles and Cracks on Joint Quality and Mechanical Strengths of High Strength Aluminium Alloy Joint,” Advanced Materials Research, vol. 548, pp. 398–405, 2012.
- [91] SCG polymer solutions incorporated, “SEM Analysis | SEM-EDS Analysis,” [Online]. Available: https://www.polymersolutions.com/capabilities/scanning-electron-microscopy-with-energy-dispersive-spectroscopy/. [Accessed: 20-Mar-2019].
- [92] Encyclopaedia Britannica, “Spectrochemical analysis,” Encyclopaedia Britannica. [Online]. Available: https://www.britannica.com/science/spectrochemical-analysis. [Accessed: 22-Jan-2019].
- [93] S. OTARAWANNA and A.K. DAHLE, “Casting of aluminium alloys,” in Fundemetals of Aluminium Metallurgy: Production, Processing and Applications, Roger Lumely, Ed. Woodhead Publishing Limited, 2011.
- [94] R. Porcaro, et al., “The behaviour of a self-piercing riveted connection under quasi-static loading conditions,” International Journal of solids and structures, vol. 43, no. 17, pp. 5110–5131, 2006.
- [95] J.M. Park, et al., “High-strength bulk Al-based bimodal ultrafine eutectic composite with enhanced plasticity,” Journal of Materials Research, vol. 24, no. 8, pp. 2605–2609, 2009.
- [96] Q.G. Wang, C.H. Caceres, and J.R. Griffiths, “Damage by Eutectic Particle Cracking in Aluminum Casting Alloys A356/357,” Metallurgical and Materials Transactions A, vol. 34, no. 12, pp. 2901–2912, 2003.
- [97] A. Verma, et al., “Influence of cooling rate on the Fe intermetallic formation in an AA6063 Al alloy,” Journal of Alloys and Compounds, vol. 555, pp. 274–282, 2013.
- [98] Bielomatik, “Minimal Quantity Lubrication (MQL) Systems in Metal Cutting,” [Online]. Available: https://www.bielomatik.com/fileadmin/Dokumente/EN/Schmiersysteme/Brochure_MQL_EN_0316KL.pdf. [Accessed: 25-Oct-2019].
- [99] I. Vicario, et al., “Development of high pressure die casting dies with internal refrigeration and sensors with reinforced cast steels,” International Journal of Manufacturing Engineering, vol. 2014, p. Article ID 287986, 2014.
- [100] L. Kucharikova, et al., “Role of Chemical Composition in Corrosion of Aluminum Alloys,” Metals, vol. 8, no. 8, pp. 581–593, 2018.
9. Copyright:
- This material is a paper by "Mohamed Youssef Ahmed Youssef": Based on "A cost-efficient process route for the mass production of thin-walled structural aluminum body castings".
- Source of paper: 10.18154/RWTH-2021-03555
This material was created to introduce the above paper, and unauthorized use for commercial purposes is prohibited. Copyright © 2025 CASTMAN. All rights reserved.