CAST MAN

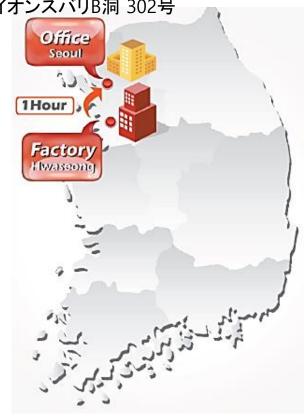
目次

- 1 会社概要
 - 2 会社沿革
 - 3 組織図
 - 4 保有装備、主要生産品
 - 5 銅部品開発現況
 - 6 アルミ部品開発現況
 - 7 Salt core開発現況
- 8 会社競争力

1. 会社概要

• 事業場 所在地

- 本社/工場:京畿道 華城市 麻道面 松亭路264番ギール73


- ソウル事務所:ソウル 衿川區 加山デジタル団地1路 168 ウリンライオンスバリB洞 302号

• 事業部門

- 銅及びアルミニウム合金高圧ダイキャスト
- 金型設計及び制作

• 保有技術

- 高品位鋳造製品開発及び制作
- 金型設計技術
- 数值解釈技術:熱流動、凝固、構造解析
- 鋳造関連特許保有(5件)

2. 会社沿革

<u>1997. 11</u> STIC&D 設立

☞ 鋳造及び修理分野専門エンジニアリング

2010.09 (株)CAST MAN 設立

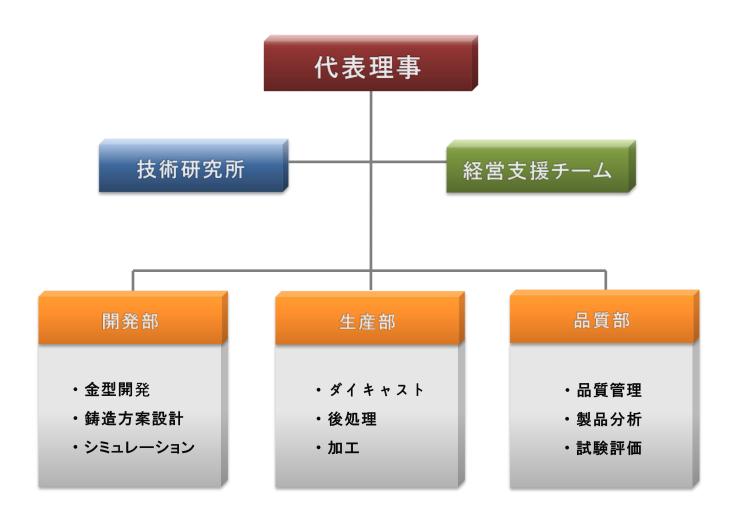
☞ STIC&D 鋳造事業部独立法人化

2010. 10 ベンチャー企業認証

2011. 05 技術付設研究所 設立

2011.06 ISO 9001, ISO 14001 認証

2011. 12 韓国生産技術研究院パートナー企業選定


2012.06 部品·素材専門企業認証

2012. 12 ISO/TS 16949 認証

2013. 12 技術革新刑 中小企業(INNO-BIZ) 認証

3. 組織図

4. 保有装備 - 生産

	が生まり		
THE PERSON NAMED IN	100		

区分	装備	仕様	数量	備考
		125 ton	1	
	_	250 ton	1	
ダイキャスト		350 ton	1	Aluminum
31 + + A F	高圧 -	650 ton	1	Copper
	_	350 ton	1	
		650 ton	1	
	マシニングセンター		2	HASS
	タッピングセンタ ー	11 Axis Head	2	HASS
後処理及び加工	ショート機	-	1	-
後処珪及び加工	グラインダー	-	1	-
	 旋盤	-	1	-
	ミーリング	-	1	-

4. 主要生産品

主要事業

Copper/Brass Parts (試製品、 量産)

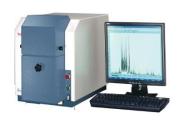
- Air-conditioner Compressor
- Industrial Motor
- EV Motor

Salt Core parts (試製品開発完了)

- Turbo charger compressor housing
- Water pump housing
- Oil pump case

Aluminum Parts (量産)

EV Connector



4. 保有装備 - 品質

区分	名称	仕様	台数	製造社
	X-ray	160KV	1	SEC Co., Ltd.
	3次元測定器	700X800X500(mm)	1	Dukin Co., Ltd.
		Al & Cu 合金分析	1	ARL
	 ピンホール検査機	感圧式	1	KN Tech
八+ ⊏	 鋳造解釈 S/W	FLOW-3D	1	FLOW SCIENCE
分析	工具顕微鏡	250X150X200(mm)	1	3D FAMILY
		100kN	1	KMT
	 電機伝導度測定器	60KHz	1	FIRST ELECTRONIC
	熱画像カメラ	-40°C~1,500°C	1	AVIO
	デジタル温度計	-200℃~1,360℃	1	-

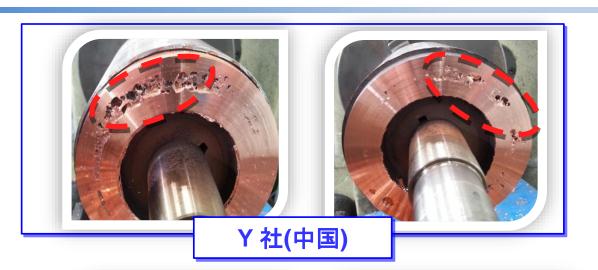
Copper Die Casting

5.銅部品開発現況-銅ダイキャスト開発履歴

주 식 회 사 **캐 스 트 만**

年度	お客社	用途	仕様
2010	韓国電気研究員	高速電動機	3KW,10KW
2012	韓国電気研究員	電気自動車	30KW
2012	現代もビス	電気自動車	100KW
2013	韓国電気研究員	高速電動機	60KW
2014	GM	高速電動機	2.5KW
2014	HYOSUNG中工業	産業用	2.2KW,15KW
2014	韓国電気研究員	高速電動機	30KW
2015	日本	コンプレッサー	0.75KW
2015	韓国	コンプレッサー	0.75KW
2016	韓国	産業用	0.75,1.5,2.2, 3. 7, 5. 5kW
2016	韓国	自動車用	始動発電機
2016	韓国	産業用	15kW
2016	韓国	電気自動車	50kW
2016	韓国	ターボ・ブロワー	55kW, 75kW
2017	韓国	産業用	量産
2018	韓国	電気自動車	100kW

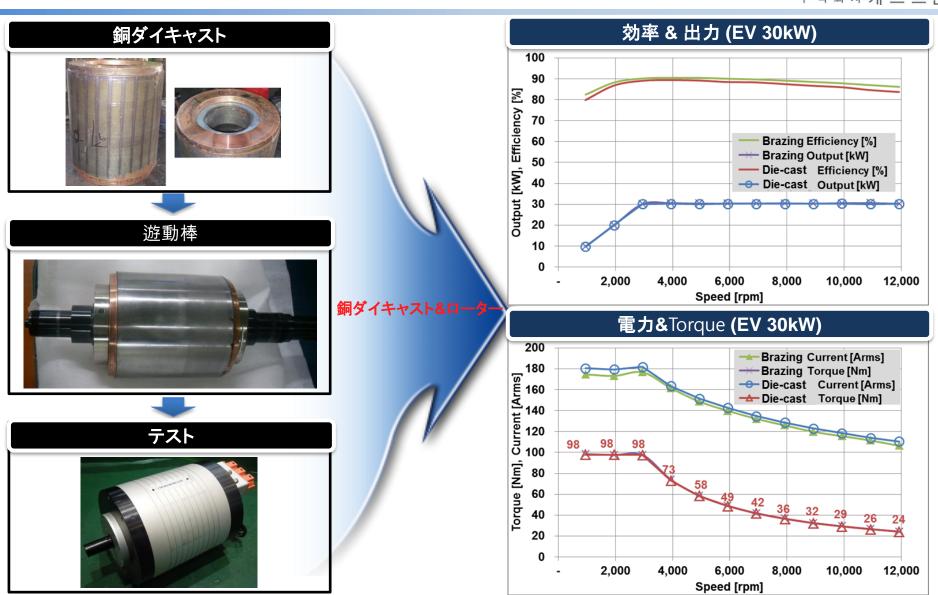
5. 銅部品の開発現況 – ダイキャストsize



주 식 회 사 **캐 스 트** 만

区分	産業	産業用電気自				高速電動機			コンプレッ サー	
	2.2KW	15KW	30KW	100KW	2.5KW	3KW	10KW	30KW	60KW	0.75KW
お客社	HYO SUNG	HYO SUNG	韓国電気 研究員	現代 MOBIS	GM	韓国電気 研究員	韓国電気 研究員	韓国電気 研究員	韓国電気 研究員	アイチ <u>エレクトロ</u> <u>ニクス</u> (日本)
Size	118mm 150mm	168mm 254mm	133mm 160mm	160mm 295mm	28mm 75mm	35mm 70mm	50mm 130mm	133mm 160mm	86mm 160mm	55mm 100mm

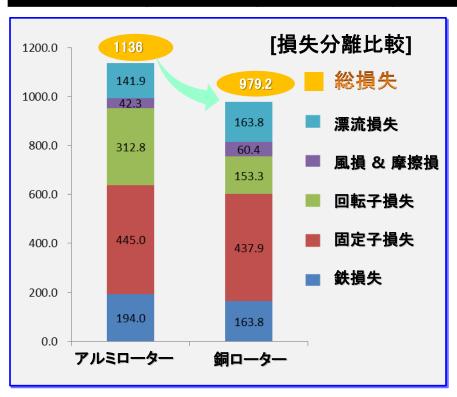
5. 銅部品の開発現況 – ダイキャスト加工

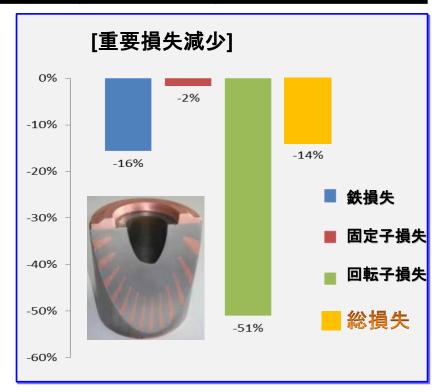


他社に比べて、高い技術力と品質保有

5. 銅部品 開発現況─同ダイキャスト効率[EV用] CAST MAN

주식회사캐스트맨




5. 銅部品開発現況 - 銅ローター効率[産業用]

주식회사 캐 스 트 맨

15kW / 4P	効率 (%)	力率 (%)	機動電流 (A)	機動 Torque(%)	備考
OALD-9-	93.0	81.6	129.4	188	エネルギー基準: IEC 60034-30-1 (2014)
OCuローター	94.1	82.0	156.9	219	IE3(AL) →IE4(Cu)

5. 銅ローター開発現況 -ダイキャスト記述

주식회사캐스트맨

銅ローターダイキャスト時に問題点

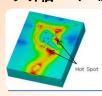
金型

- 反復的な熱衝撃による金型破損
- -金型と鎔湯の温度偏差による熱衝撃
- 容湯温度: 1350℃, 金型温度: 2~300 ℃(温度差 1000℃ 以上)
- •アルミダイキャスト金型に比べ短い金型寿命

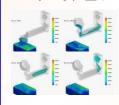
製品内部欠陥

- •ダイキャストの経験や理論不足
- •早い凝固による不安的な溶湯挙動
- •高い収縮欠陥や気泡欠陥の発生率

工程及び環境


- •高温鎔湯作業の高い危険性
- •銅の酸化防止技術
- •連続生産の工程技術開発
- 銅ダイキャスト専用設備の開発

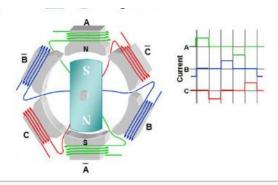
金型の設計や製作技術


- ◆金型の表面処理技術を適用
- •金型の素材研究及び選定
- •最適の金型構造の検討及び開発

欠陥の低減技術

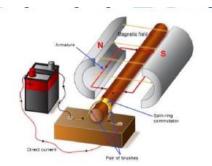
- パソコンのシミュレーション:流動、凝固現象の予測
- 銅ダイキャストの基礎理論の樹立
- •最適の銅ダイキャスト案設計

工程最適化



- •銅ダイキャストの工程変数の確立
- •銅ダイキャストの工程最適化
- 銅ダイキャストの作業標準化
- •溶解設備および酸化防止技術の開発

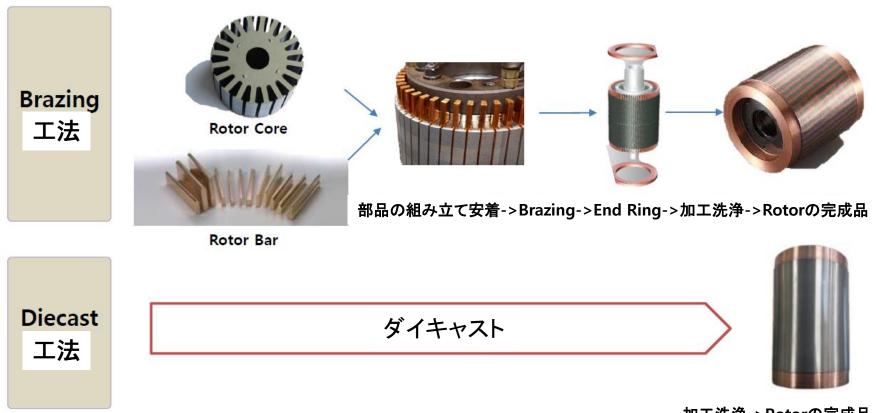
5. 銅部品の開発現況 - 銅ローター必要性



■ 誘導電動機IM

- 構造が簡単で、ブラシや整流子のような機械消耗部が無い
- 高速で瞬間最大トルクを出力することができ、回答特性が早い
- 動作環境(高温、熱衝撃など)に有利
- 安い価格
- 直流電動機に比べて制御方法が難しい
- サイズが比較的広い

■ 永久磁石電動機PM


- 制御用モーターとして、優秀な特性を持っていること
- サイズが比較的小さいこと
- 比較的高い価格
- 希土類など原資材の需給難しい時、価格急騰の可能性
- 電気自動車、数量増加に対応困難
- 高温で永久磁石の性能が落ちる

Cu(銅)ローターを適用した高効率/小型誘導電動モーターが必要。

5. 銅部品の開発現況-銅ローター必要性

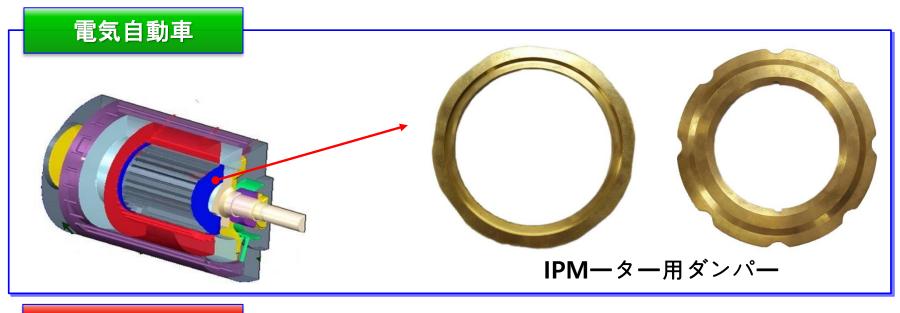
テスラは銅ローターを使用しているが、Brazing手法適用 ダイキャスト手法適用時、工程単純化とコスト削減

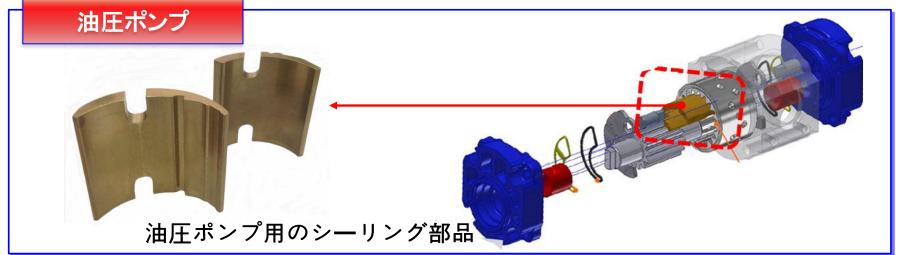
5. 銅部品の開発現況 – EVバッテリーモジュール

주식회사캐스트맨

ダイキャスト品 設計変更

BATTERY MODULE_ブル仕様




BATTERY MODULE_ングル仕様

5. 銅部品の開発現況 -黄銅部品

Aluminum Die Casting

6.ルミ部品の開発現況-EV用部品

LS EV Automotive

High Voltage Connector

Application for HV Accessory Components (10~40A)

[10A/15A]

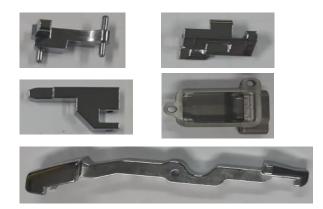
[40A/B/D]

Application for HV Main Power Components (100~300A)

[100A]

[Eyelet : 100~300A]

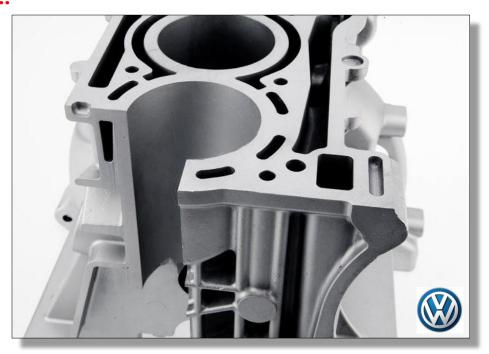




6.ルミ部品開発現況-自動車や機械部品

주 식 회 사 **캐 스 트 맨**

機械部品


Salt Core

7. ソルトコア開発現況 -必要性

崩壊性コア;高強度ソルトコア開発

- □ 自動車産業から要求事項
 - ☞原価削減、一体化デザイン、生産性向上, ...
- □ 高圧鋳造アンダーカット
 - ☞ 複雑なスライダーの使用(保守要)
 - ☞現実的に整形が難しい
- □重力鋳造コア
 - ☞高圧鋳造に適用難しい
 - ☞高圧鋳造の高圧/高速に対する剛性不足
- □ 崩壊性コア (Lost Core)記述
 - ☞ 新しい部品開発の可能性
 - ☞ 重工部品や複雑な内部設計部品(アンダーカット)製造
 - ☞エ、密閉や組み立て削減

7. ソルトコア開発現況 -工法の比較

既存の鋳物工法の比較

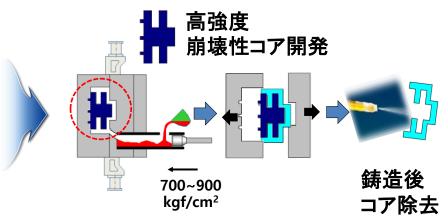
区分	工法概略度	アンダーカット成形	生産性	鋳造の圧力
高圧鋳造	金型 700~900 kgf/cm² 製品	アンダーカット形状は整形不可金型除去不可	非常に高い C/T 120 秒 エンジン ブロックの基準	700 – 900 Kgf/cm² 沙型 適用不可
重力鋳造	→ Land State (1) 1 kgf/cm² → 股 沙型 金型	アンダーカット形状が整形可能 鋳造後,沙型を機械的の振動ま たは熱処理で除去	低い C/T 500 秒 エンジン - ブロックの基準 —	1 – 1.4
低圧鋳造	一般 沙型 型 型 1.2~1.4 kgf/cm²	→	ま常に低い 非常に低い C/T 600 秒 エンジン ブロックの基準	Kgf/cm² 沙型 適用可能

*アンダーカット:鋳造品の凸部分または側面の穴などがあり、金型の平行移動だけでは鋳造品をだせない形状

7. アルミ部品開発現況 -ソルトコア

高強度ソルトコア開発

高圧鋳造 vs 低圧/重力鋳造


生産性↑

薄い製品

形相自由度

特性	高圧鋳造	低圧/重力鋳造
生産性	++	-
ち暑	+	-
表面品質	+	-
寸法精密度	++	-
現状自由度	-	++
原材料選択		+

機能

- 鋳物のアンダーカット形状実現
- > 鋳物内部に中古形状実現

要求性能

- ▶ 高い鋳造圧力(60~80MPa)に形状維持
- > 鋳物素材と科学的反応なし
- ▶ 鋳造後 破砕がたやすいこと

7. ソルトコア開発現況 - メリット

部品一体化可能

生産性向上

ソルトコアのメリット

- 柔らかな表面品質
- 高い熱衝撃性
- 水溶性
- 断熱性

- 化学的なバインダを使用しない ■
- 別途コーチイング材使用しない
- 有害物質使用しない
- コア支持構造一体化

- ・ 複雑な内部ユーロ設計可能
 - アンダーカット成形可能 Near net shape 製造
- 表面品質仕様可能
- 他のソルトコアと結合可能

7. ソルトコア開発現況 -試製品

ソルトコア適用開発品

7. ソルトコア開発現況 -ソルトコア

주식회사 캐 스 트 맨

신기술 인증서

기 술 명 : (공동)알루미늄 부품 개발을 위한 최적 솔트코어 기술

회 사 명 : (주)캐스트맨. 현대자동차(주)

대 표 자 : 홍기원, 이원희

소 재 지 : 경기 화성시 장안면 석포공단길 31-16

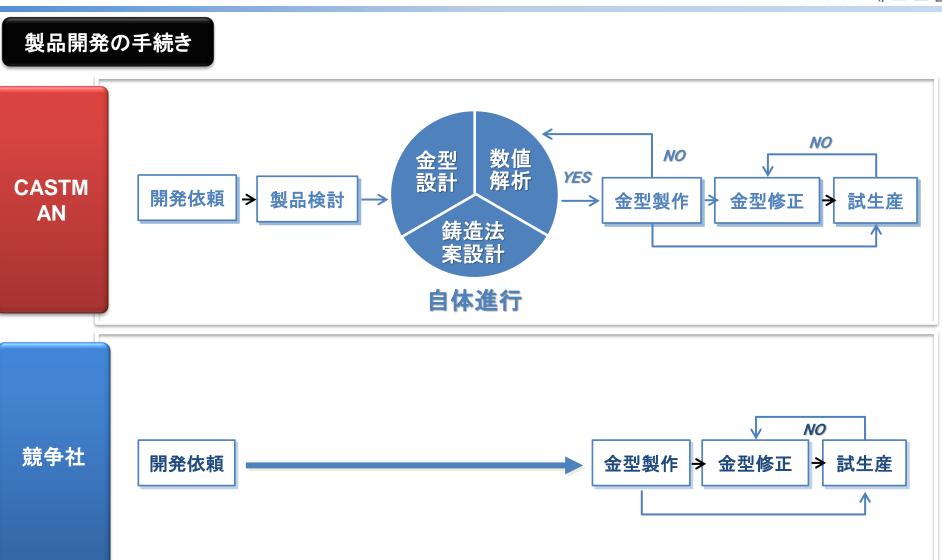
서울 서초구 헌릉로 12, 1층

인증번호 : 제1117호

유효기간: 2017년 12월 21일부터 2019년 12월 20일까지

위의 기술을 「산업기술혁신 촉진법」제15조의2에 따른 신기술로 인증합니다.

2017년 12월 21일


산업통상자원부장관

8.会社の競争力-開発の手続き

주식회사캐스트맨

8.会社の競争力-品質

주식회사 캐 스 트 맨

ISO 14001 品質経営システム

ISO 9001 品質経営システム

TS 16949 品質経営システム

Thank you

